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Abstract. This contribution describes the Space Mapping (SM) technique which is relevant
to engineering optimization. The SM technique utilizes different models of the same physical object.
Similarly to approximation, interpolation, variable-complexity, response surface modeling, surrogate
models, and related techniques, the idea is to replace computationally intensive simulations of an
accurate model by faster though less accurate evaluations of another model. In contrast, SM attempts
to establish a mapping between the input parameter spaces of those models. This mapping allows us
to redirect the optimization-related calculations to the fast model while preserving the accuracy and
confidence offered by a few well-targeted evaluations of the accurate model. The SM technique has
been successfully applied in the area of microwave circuit design. In principle, however, it is
applicable to a wide range of problems where models of different complexity and computational
intensity are available, although insight into engineering modeling in the specific application area
might be essential.
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1. Introduction. Advances in computing technology provide engineering designers with more
and more sophisticated simulation tools that can more and more accurately predict the behaviour of
more and more complex objects. For design optimization, this means that the simulation times rather
than the optimization algorithms become a true bottleneck and limiting factors for various
applications. For such applications the scale of optimization is measured not in terms of the number
of variables, but rather in terms of real time needed to complete it. A small electronic circuit may
require weeks of simulation time and only a small fraction of a second for the optimizer to determine
the next point.

This paper describes the concept of Space Mapping (SM) [2-8]. The SM technique exploits
a mathematical link between input parameters of different engineering models of the same physical

object: (1) a computationally efficient (fast) model which may lack the desired accuracy, and (2) an

* Optimization Systems Associates Inc., P.O. Box 8083, Dundas, Ontario, Canada L9H 5E7.
The work of the first three authors was supported in part by Optimization Systems Associates Inc.

* The Simulation Optimization Systems Research Laboratory and Department of Electrical
and Computer Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7. The work
of the first four authors was supported in part by the Natural Sciences and Engineering Research
Council of Canada under Grants OGP0007239, OGP0042444, STR0167080 and through the Micronet
Network of Centres of Excellence.

t Institute of Mathematical Modeling, Technical University of Denmark, DK -2800 Lyngby,
Denmark.



accurate but CPU-intensive model. Traditionally, there exists a number of engineering models of
different types and levels of complexity to choose from. In the field of electronic circuits this may
include equivalent circuit models, ideal and detailed empirical models, electromagnetic (EM) field
theory based models, hybrid models [20], and even computational utilization of actual hardware
measurements.

As a fast model we want to use an engineering model that is capable of reasonably emulating
the behaviour of the actual physical object, for example of generating a band-selective response of
a filter. Such a model may be an otherwise good empirical model, however, the parameter values
might be outside their recommended validity ranges. It may also be the same simulator which is used
as the accurate model, e.g., an electromagnetic field solver, but with a coarser grid size than required
to produce accurate results [4,5].

Similarly to various approximation and interpolation [10,11], variable-complexity [13,15,16],
response surface modeling [19], surrogate models [23], and related techniques [21,22], the idea of SM
is to replace computationally intensive simulations of an accurate model by faster though less accurate
evaluations of another model. In contrast to those methods, SM attempts to establish a mapping
between the input parameter spaces of those models, instead of trying to refine and validate the fast
model using the same parameter values as for the accurate model. The underlying assumption is that
the inaccuracy of the fast model can be somehow compensated for by adjusting the model parameter
values.

The SM concept facilitates the demanding requirements of otherwise CPU-prohibitive design
optimization within a practical time frame. This is accomplished by redirecting the optimization-
related calculations to the fast model while preserving the accuracy and confidence offered by a few
well-targeted evaluations of the slow accurate model.

There are two phases in SM. In Phase 1, optimization is performed using the fast model to
obtain its optimal performance. In Phase 2, a mapping between the input parameter spaces of the two
models considered is iteratively established. Techniques such as least-squares or quasi-Newton steps
are used to accomplish this. A distinct auxiliary optimization (parameter extraction), also using the
fast model, must be invoked in each iteration of Phase 2. This parameter extraction is used to
determine the parameters of the fast model such that its response(s) match those of the reference
response(s) obtained from an evaluation of the accurate model. The uniqueness of the parameter
extraction process is of utmost importance to the success of SM.

The SM technique has been successfully applied in the area of microwave circuit design. In
principle, however, it is applicable to a wide variety of problems where models of different
complexity and computational intensity are available, although insight into engineering modeling in
the specific application area might be essential.

Our presentation describes the theoretical formulation of SM followed by a practical



engineering example: design of a high-temperature superconducting (HTS) microstrip filter. In this
particular case we consider an equivalent empirical circuit model as the fast model. As the accurate
model, we employ an extremely CPU-intensive model based on solving electromagnetic field

equations.

2. Space Mapping Optimization.

2.1. Theory. Let the behaviour of a system be described by models in two spaces: the
optimization space, denoted by X, and the EM (or validation) space, denoted by X,,,. We represent
the optimizable model parameters in these spaces by the vectors x,, and x,,,, respectively. We assume
that X and X, have the same dimensionality, i.e., x,, € IR" and x,, € R", but may not represent the
same parameters. We assume that the X, ,-space model responses, denoted by R,(x,), are much
faster to calculate but less accurate than the X,,,-space model responses, denoted by R,,,(x.,)-

The key idea behind SM optimization is the generation of an appropriate mapping, P, from

the X,,-space to the X .-space,

2.1 Xos = P(Xgp)
such that
2.2) R, (P(X.y)) = R p(Xepm).

We assume that such a mapping exists and is one-to-one within some local modeling region

encompassing our SM solution. We also assume that, based on (2.2), for a given x,,, its image x,, in

(2.1) can be found by a suitable parameter extraction procedure, and that this process is unique.
We initially perform optimization entirely in X, to obtain the optimal solution x;s, for

instance in the minimax sense [9], and subsequently use SM to find the mapped solution X,, in X, as

(2.3) Xom = P71(x))

once the mapping (2.1) is established. We designate X, as the SM solution instead of x:,,, since the
mapped solution represents only an approximation to the true optimum in X,,.

The mapping is established through an iterative process. We begin with a set of m X_,,-space
model base points



(2.4) B, = (x%), x& (m)y,

em > Xem s ++» Xem

These initial m base points are selected in the vicinity of a reasonable candidate for the X,,,-space
model solution. For example, if x,, and x, consist of the same physical parameters, then the set

B,,, can be chosen as
(2.5) ) = x5,
with the remaining m -1 base points chosen arbitrarily by perturbation as

(2.6) xB) 2 XAl oo 3 m.

For instance, for a linear mapping, one can select perturbations along the axes. Once the set B, is
chosen, we perform EM analyses at each base point to obtain the X,,-space model responses
Re,,,(xg,)) for i =1, 2, ..., m. This is followed by parameter extraction optimization in X, to obtain
the corresponding set of m X, ,-space model base points

@.7) B, = (x1, x@, .., xmMy,

oS *

The parameter extraction process is carried out by the following optimization:

(2.8) minimize | R,,(x{)) - R, (x{))|
O
fori =1, 2, ..., m where ||-| indicates a suitable norm. The additional m -1 points apart from xg,)

are required merely to establish full-rank conditions leading to the initial approximation of the
mapping (denoted by P, - its exact construction is explained later).

At the jth iteration, both sets may be expanded to contain, in general, m; points which are
used to establish the updated mapping P Since the analytical form of P is not available, we use the

current approximation P to estimate X, in (2.3), i.e.,

2.9) XD prlixt sy,

em J



The process continues iteratively until the termination condition
* (mj +1)
(2.10) | Ros(%56) = Rem(Xerw )l < €

is satisfied, where € is acceptably small. If so, P] is our desired P. If not, the set of base points in B,,,

m.+1 m.+1
is augmented by xf,,,' ) and correspondingly, xgsﬁ ) determined by (2.8) augments the set of base
- i+1 -1, « . .
points in B,;. Upon termination, we set X, = xg:’ *1) = Pj 1(xm) as the SM solution. This process

is illustrated graphically in Fig. 1
We define each of the transformations PJ as a linear combination of some predefined and fixed

fundamental functions

(2.11) F1em)s FoGem)s fsGam)s wwes fi(Xem)
such that
‘ -
(2.12) Xos; = X @is fs(Xem)
s=1

or, in matrix form
(2.13) Xos = Bi(Xgm) = Aj f (Xgm)

where A; is an nx ¢t matrix, f(x,,) is a -dimensional column vector of fundamental functions.

Consider the mapping P; for all points in the sets B,, and B,;. Expanding (2.13) gives
(m;) - - = (my
(2.14) B X L x ] - A,.[ FODy F@y L. Fa

where m; > L.
The simplest choice, frequently adequate for local problems, is to consider a linear mapping.
In this particular case, f (Xzy) in (2.11) contains the n+1 linear functions: 1, Xemys Xemys -+ Xem, -

Hence, (2.14) can be written as



xésl) xg) x‘SSm")] = Qj xﬁ,i) xg,) xé,':j)]+[bj bj b}.]
(2.15) : . .
=|b: O: )
[ JQ’] xe(,:,) xé,f,) xe(,':’)

where Q; is an n x n matrix and bj is an nx 1 column vector. Let us define

1T

(2.16) C- [xg) @ x,fs”’”],
T
11 1
i@y f®y 2 )T

@.17) D - |f®) i@y . Flh)] - 0L
and
(2.18) A= [bj Q]}

Then (2.14) becomes
(2.19) cT-4;D7.
Transposing both sides of (2.19) gives

(2.20) pal - c.

Augmenting (2.20) by some weighting factors defined by an m;x m; diagonal matrix W, where

(2.21) W = diag{w;}

gives



(2.22) WDA] = WC.
The least-squares solution to this system is

T TyT T T
(2.23) A7 - (p™wTwp) DTWTWC.

Larger/smaller weighting factors emphasize/deemphasize the influence of the corresponding base
points on the SM transformation.

2.2. Implementation. We now present a straightforward implementation of the SM algorithm.
First, begin with a point, x’. 2 arg min{H(x,)}, representing the optimal solution in X,; where
H(x,s) is some appropriate objective function. Then, the algorithm proceeds as follows:
Step 0. Tnitialize x) = x%. If |Ry(x%) - Ron(xD)|| < €, stop. Otherwise, initialize
Axgn_l) fori=2,3,...m
Step 1. Select m -1 additional base points in X, by perturbation, i.e.,xgn) = xg,) + AJce(.‘,';,~ 1)
fori=2,3,...m
Step 2. Perform parameter extraction optimization to obtain xg) fori=1,2,..,m.
Step 3. Initialize j =0, m; =m.
Step 4. Compute AT (DTWTWD)-IDTWT W C and extract the matrix Q; and the vector b;
accordmg to A; = [b QJ]
Step 5. Set xo ™Y < Q'l( ),
Step 6. If || Ryg(x5) = Rep(x,, (mj+

Step 7. Perform parameter extraction optimization to obtain X,

(m;+1)

)n<e stop.
(m;+1)

(,)

Step 8. Augment the matrix C with x; and the matrix D with x_
Step9.Set j=j+1, m; =m; +1; go to Step 4.
Comments
Note, that in Steps 2 and 7 an auxiliary optimization (parameter extraction) is invoked. In
Step 5, x( i+1) may be snapped to the closest grid point if the EM simulator uses a fixed-grid

meshing scheme.

2.3. Aggressive Strategy for Space Mapping. An aggressive strategy has been derived for SM
[7,8]. It exploits quasi-Newton iterations and Broyden update [12]. The aggressive approach is
significantly more efficient than that described in the preceding subsection since it avoids performing

time-consuming and possibly unproductive EM analyses at the perturbed points around the starting



point. Instead, right from the beginning, it attempts to improve the solution in a systematic manner
by well-targeted and fewer EM simulations. Moreover, the aggressive approach is better suited for
automation of the SM technique [2].

3. Design of a High-temperature Superconducting (HTS) Parallel Coupled-line Microstrip
Filter Exploiting Space Mapping. The SM technique has been successfully applied to the design of
an HTS filter. A detailed description of the filter (see Fig. 2) can be found in [3,6-8]. The filter uses
microstrip technology where metallization strips are deposited on a solid dielectric substrate which
separates the top metal strips and the bottom metal ground plane. Fig. 2 shows the top view of the
metallization pattern. The dielectric and the ground plane box and their heights are not shown. The
filter works as a two-port with the input and output ports located at the ends of leftmost and the
rightmost strips. An electrical signal is transmitted from the input to the output by means of the
electromagnetic field in the structure, including couplings between the strips. L,, L, and Lgare the
lengths of the parallel coupled-line sections and S, S, and Sg are the gaps between the sections. The
width W is the same for all the sections as well as for the input and output microstrip lines, of length
Ly. The thickness of the lanthanum aluminate substrate used is 20 mil. The dielectric constant and
the loss tangent are assumed to be 23.425 and 3x10°°, respectively. The metallization is considered
lossless.

This relatively small circuit exemplifies difficulties in directly using detailed EM simulations
during optimization. To obtain an accurate and detailed circuit response, such as the one drawn using
the dashed line in Fig. 4, one needs more than a week of CPU time on a Sun SPARCstation 10. To
invoke such simulations many times during optimization is prohibitive.

For this problem, we consider 6 optimization variables representing the geometrical
dimensions of the filter: L, L,, L3, S;, S, and S3. We employ two models: (1) a fast model, based
on empirical formulas available in the OSA90/hope [18] software package, and (2) an accurate but
extremely CPU-intensive model, based on solving electromagnetic field equations by the em simulator
[14].

Following Phase 1 of SM, we optimize the HTS filter using the OSA90/hope empirical model.
The optimization goal is formulated in terms of the so-called scattering parameters S. These S
parameters quantify the filter behaviour in terms of the power transfer from the input to the output
of the filter [17]. Of particular interest is the parameter |S,,| and its dependence on frequency
(frequency response). The filtering capabilities of the circuit considered are described by the design
specifications:

[S31] <0.05 in the stopband
[Sgil 2 0.95 in the passband
where the stopband includes frequencies below 3.967 GHz and above 4.099 GHz and the passband lies



in the frequency range [4.008 GHz, 4.058 GHz]. An appropriate objective function for optimization
is formulated from the design specifications [8]. Fig. 3 shows the |S,,| (and |S,|) empirical (fast)
model responses after performing minimax optimization using OSA90/hope. Using the parameter
values determined by minimax optimization the em simulated frequency response differs significantly
from that of the empirical model, as shown in Fig. 4.

In Phase 2 of SM, our aim is to establish a mapping in order to find a solution in the EM space
which substantially reproduces the performance predicted by the optimal empirical model. We report
results obtained using the aggressive strategy (Section 2.3). The original approach (Sections 2.1 and
2.2) was also used and similar results were obtained. In this phase, in order to further reduce the CPU
time of EM simulations, we do not consider as fine frequency sweeps as those shown in the figures.
We use only 15 frequency points per sweep which turned out to be adequate. The SM solution
emerges after only six such simplified EM analyses (13 for original SM). Fig. 5 compares the filter

responses of the optimal empirical model and the em simulated SM solution.

4. Conclusions. This presentation has included a theoretical formulation of the Space
Mapping technique and its application to the design of a high-temperature superconducting parallel
coupled-line microstrip filter.

Space Mapping optimization is a newly emerging and very promising approach. It exploits
the speed of an efficient surrogate model and blends it with a few slow evaluations of an accurate
model to effectively perform design optimization within a practical time frame. A few recent
publications in the engineering field exhibit some similarities to the concepts found in Space Mapping
[13,15,16,21-23]. The main difference distinguishing Space Mapping from those techniques is that
instead of trying to improve the surrogate models, it allows the input parameters of the fast model
to be different from those in the actual physical object, or in the accurate model.

In the near future we expect to see the Space Mapping concept applied to active devices. In
this domain, physics-based models and physical models will be utilized [1]. Physics-based models
relate the equivalent circuit elements to the device physics based on simplified analytical solutions
of device equations. Physical models, based on the numerical solution of fundamental device
equations are the most accurate. However, they require significantly more computation time than the
physics-based models. Hence, Space Mapping may be the key to achieving the accuracy of physical
simulation and the speed of circuit-level optimization.

Surprisingly, the concept of Space Mapping is only now establishing itself in the domain of
circuit optimization. This is despite the overwhelming array of engineering models of devices,
circuits and systems. It should be noted that designers increasingly employ accurate CPU-intensive
simulators, yet extensive use of efficient simplified models is made to avoid time-consuming analyses.

SM bridges the two approaches and takes advantage of their respective benefits.
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Fig. 1. Illustration of Space Mapping optimization: (a) set xg,i,) = x;,, assuming x,, andx,

represent the same physical parameters, (b) generate additional base points around xg,),
(c) perform X ,-space model parameter extraction according to (2.8).
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Fig. 1. Illustration of Space Mapping optimization (cont.): (d) use the inverse mapping to obtain

4
xe(m), (e) perform X .-space model parameter extraction to obtain xt(,:), (f) apply the
updated inverse mapping to obtain the SM solution X, = xgl), assuming
* 5
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