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Abstract

A unified discussion of least pth approximation as it relates to
optimal computer-aided design of networks and systems is presented. General
objective functions are proposed and their properties discussed. The main
result is that a wider variety of design problems and a wider range of
specifications than appear to have been considered previously from the least
pth point of view should now be tractable.

INTRODUCTION

It is well-known to network and system designers that least pth
approximation with a sufficiently large value of p can result in an optimal
solution very close to the optimal minimax solution [1-4]. Many designers
continually express their preference for least pth approxiﬁation because of
its flexibility [5]. Gradient optimization methods suitable for least pth
approximation, such as the Fletcher-Powell method [6], are widely available
as computer subroutines and are often easier to use than minimax algorithms.
The results obtained are usually almost as good for practical purposes as
the minimax solution.

To the authors' knowledge, a generalization of least pth approx-
imation to design with upper and lower response specifications, such as
encountered in filter design, does not appear to have received serious
attention in the literature. Usually, least pth approximation is applied

to the approximatidn of a single specified function by a network or system

. response. Minimax approximation using nonlinear programming methods, on

the other hand, has been applied to more general problems [7,8]. See also
references {2] and [3].

This paper presents a unified discﬁssion of least pth approxima-
tion. General objective functions are proposed and their properties

discussed. The usefulness of least pth approximation is extended to a wider
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variety of network and system design problems and a wider range of specifications

than appear to have been considered previously from the least pth point of view.

THE OBJECTIVE FUNCTIONS
Definitions '

Define real error functions related to the '"upper" and ''lower'

specifications, respectively, as [2]

e

e ($:9) & w (V) (F($,9) -5, (V)

(1)

ne>

ep($:¥) & w,o(¥) (F(,¥)-5,(¥))

where
F(%,w) is the approximating function (actual response)
Su(W) is an upper specified function (desired response bound)
Sl(w) is a lower specified function (desired responsg bound)
wu(w) is an upper positive weighting function
wt(w) is a lower positive weighting function
g is a vectof containing the k independent parameters
¥ is an independent variable (e.g., frequency or time)

In filtef design problems, for example, F(*,w) will be the response,
Q may represent the network parameters, y could be frequency, Su(w) would
refer to the passband specification and Sz(w) to the stopband specification.
F(Q,w) is -often continuous in 2 and ¢y, but Sz(w), Su(w), wz(w) and wu(w) are
most likely discontinuous in ¥, but with Su(w)zsl(W)*' See, for example,
Figures 1 and 2. Time-domain approximation problems can also be readily
formulated in these terms. ‘

A special case of (1) occurs when Su=S£=S and WLEW oW, leading to
the more common form

e(9,¥) & w(¥) (F($,¥)-S(¥)) . | (2)

* Su may be considered as being « and Sp as -« in those bands of ¥
where they are not explicitly indicated.
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In practice, we will evaluate all the functions at a finite discrete
set of values of y taken from one or more closed intervals. Therefore, we
will let

ne

euicz) eucg’wi) iel

€pi($)

where it is assumed that a sufficient number of sample points have been chosen

u

(3)

ue>

ez(z’wi) ie Iz

so that the discrete approximation problem adequately approximates the:
continuous problem. I, and 1, are appropriate index sets. For the special
case, Iu=I£=I.

Case 1 - Specification Violated

In the case when the specification is violated some of the eui(g)
or -ezi(z) are positive. For the special case mentioned earlier, we will
generally always have some tei(g) positive. In an effort to meet the

specification we propose the following objective function to be minimized:

U@) = I [ey; 1P+ T [-ep(0)]P 4
ieJ ied v o
u 2z .
where
Iy i} {ileui(Q) >0, iel)}
, (5)
Jp & {il-e, () 20, i e 1)

and p > 1. 1If Ju and Jl are empty then U(%) is set to zero and optimization

is terminated. Note that the special case is readily accommodated since the

. objective function reduces to

ue) = 1 les@)IP . | 6)
e iel 1
The larger the value of p the more nearly would we expect the
maximum error to be emphasized, since

' 1
max[e ; (§), -ep; (9] = lim { [ [e (91P+ ] STRCILLE )

i | p*m ieJu ier
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In using gradient methods of minimization we would be concerned if
the objective function in (4) had discontinuous derivatives. Note that U(g)
is continuous if the appropriate eui(g) and eii(z) are continuous. Differen-

tiating the objective function we have

= p-1 - - p-1
u(g) = igJup[eui(g)l ve 5 (9) iEJ;[ eps (D177 Yoy (9) 8)

where

e
>
QQ
©
(8]

For p>1; and with eui(g) and eli(z) éontinuous with continuous derivatives for
eui(g)zo and -eZi(g)ZO, ZU(%) will be continuous, becoming Q at the minimum.
If the minimum value of U(ﬁ) is zero then we have just met or exceeded the
specification. In general, of course, this will not be possible if the design
problem is similar to the example depicted in Figure 1.

‘ The matrix of second partial derivatives is given by

-2 T -2 T
H=p-DLL o™ Teyi(Tey)” + 1 (reg)P™ ey (vey) ]
1eJu : 15J£
-1 T -1 T
*RLL ey P (et - T (ep )P nge,l (%)
1e:Ju 1eJ£

It is easily shown that Xeui(Zeui)T and Zeﬁi(zeli)T are positive-semidefinite.
If eui(g) and 'eﬁi(t) are convex then'Z(Zeui)T and 'Z(Xeli)T are also positive-
semidefinite. For large enough values of p, however, the first two terms are
.likely to be much greater than the last two, so H is usually likely to be
positive-semidefinite anyway.

Case 2 - Specification Satisfied

For the case when the specification is satisfied all the eui(z) and
-ezi(ﬁ) will be negative. It is usually impossible to make tei(g) negative,

however, so this case need not be considered here. This time, in an effort to
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exceed the specification by as much as ssible, we propose the followin
P y po pPTOD g

objective function to be minimized:

Ue) = I L-e 1P+ T ey (1P (10)
4 ieIu iell '
} where we assume

e .(¢) >0 iel
£ W | 0 a1

and p > 1.
’ The larger the value of p the more nearly would we expect the

: minimum "error' to be emphasized, since )

min[-e_; (9), ep; (9] = lin{ [ [-e (1P + T [ep (172 P (12)

i p* 1eIu 1eI£

so that minimizing the objective function in (10) will tend to maximize the

minimum amount by which the specification is exceeded.

Differentiating (10) we have

= - -p-1 . -p-1
i vu($) iez:I pl-e; ($)177 "Te ., (9) Z plep, (9)17F Ve, (9) - (13)
u £
In this case, with l/eui(Q) and 1/e£i{$) continuous with continuous derivatives
for -eui($)>0 and e£1($)>0, ZU(Q)’will bg continuous, becoming Q at the minimum.
The matrix of second partial derivatives is given by

= p(p+D) [ 2 (- ®u ) k zm UI(V u1 * z el ZVell(Vell)T]
1sI ie Z

Rl Ce, )wzem) -1 e Pl o
1eIu “ 1512

ﬁ will be positive-semidefinite under conditions rather similar to those for

Case 1.
DISCUSSION

~ Much of the foregoing analysis is intuitively obvious. Figure 3 shows

o g R A A T O M e

sketches which can be used as an aid to understanding the procedure.
Probably the most useful parallel to the objective function of Case 1
is the simple penalty function approach for dealing with nonfeasible points in

coastrained optimization [2]. A suitable penalty term including on.y the

10.5-5




violated constraints is minimized, commonly with p=2. If the penalty term is
zero a feasible solution is indicated. If the minimum is nonzero the constraints
remain violated. In the case of generalized least pth approximation such a
situation may indicate the impossibility of satisfying the specification.

If a feasible solution in constrained optimization is‘available a
penalty term formed by all the constraint functions may be defined so that an
optimal solution close to the boundary of the feasible region is discouraged.
Indeed, by minimizing this penalty function an attempt to move as far as possible
from the boundary is made. Thus, a parallel to Case 2 is the penalty function
approach developed by Fiacco and McCormick [9,10]. This is seen by letting
p in (10) be 1. Unlike the Fiacco-McCormick technique, however, our objective
function is in the form of a penalty term, so our aim is simply to move away
from the boundary. Similar precautions to avoid nonfeasible solutions may have
to be taken (see Figure 3(d)). }

It should be remarked that the role of the weighting functions is
the usual one. In Case 1, deviations from the specification are emphasized
by relatively large weighting numbers, and a greater effort will be devoted
to forcing the corresponding response closer to the specification than the
rest of the response. In Case 2, relatively large weighting numbers have the
effect of allowing the corresponding response to remain much closer to the
specification while improving other parts. - |

CONCLUSIONS

| Implementation of the generalized least pth objectives proposed in
this paper should be very straightforward. The usually difficult problem of
choosing suitable weighting functions to force more nearly uniform approximation
is alleviated by using an appropriate value of p. Difficulties such as are |
encountered in attempting to use the conventional least pth objective function
to force responses_above:or below desired levels are virtually eliminated.
" Poles, for example, in’the stopband of filters if they are deemed desirable,
which they usually are, are readily accommodated. Numerical experiments
employing the objective functions in the optimal design of networks and systems

are currently under way.
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Figure 1 Example of a design problem for which
it is generally impossible for the
response to exceed the specification.
Case 1 is applicable. '

10.5-8



o S St e A Y i i

F(3,¥)

//////////////Sz(W)

S,(9)

L L L L L L L LS

—

2 -o
+ .

Figure 2 Exampie of a design problem in which
the response exceeds the specification.
Case 2 is applicable.
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Figure 3 Sketches to illustrate the behaviour of components
of possible generalized least pth objectives.
B is a convex continuous function of a with con-
tinuous derivatives. p>1 in (b) and (¢). p21 in (d).
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