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ABSTRACT: For the first time in design optimization of microwave circuits, the aggressive
space mapping (SM) optimization technique is applied to automatically align electromag-
netic (EM) models based on hybrid mode-matching / network theory simulations with
models based on finite-element (FEM) simulations. SM optimization of an H-plane res-
onator filter with rounded corners illustrates the advantages as well as the challenges of the
approach. The parameter extraction phase of SM is given special attention. The impact of
selecting responses and error functions on the convergence and uniqueness of parameter
extraction is discussed. A statistical approach to parameter extraction involving 1, and
penalty concepts facilitates a key requirement by SM for uniqueness and consistency. A
multipoint parameter extraction approach to sharpening the solution uniqueness and
improving the SM convergence is also introduced. Once the mapping is established, the
effects of manufacturing tolerances are rapidly estimated with the FEM accuracy. SM has
also been successfully applied to optimize waveguide transformers using two hybrid mode-
matching / network theory models: a coarse model using very few modes and a fine model

using many modes to represent discontinuities.

Microwave CAE 9: 54-70, 1999.

© 1999 John Wiley & Sons, Inc. Int J RF and

Keywords: optimization techniques; space mapping

. INTRODUCTION

Direct exploitation of electromagnetic (EM) sim-
ulators in the optimization of arbitrarily shaped
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3D structures at high frequencies is crucial for
first-pass success CAD [1, 2]. Recently, we re-
ported successful automated design optimization
of 3D structures using FEM simulations [1, 3].
The objective of space mapping (SM) [3-5] is
to avoid direct optimization of computationally
intensive models. In this article, for the first time,
aggressive space mapping (ASM) optimization is
applied to automatically align the results of two
separate EM simulation systems. The RWGMM
library [6, 7] of waveguide models based on the
mode matching (MM) technique [6-8] is used for
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fast /coarse simulations in the so-called optimiza-
tion space X,,. The library is linked to the net-
work theory optimizers of OSA90/hope™
(Hewlett-Packard, Santa Rosa, CA). Ansoft’s
Maxwell Eminence (Ansoft, Pittsburgh, PA) or
HP HFSS (Hewlett-Packard, Santa Rosa, CA)
(both widely known simply as HFSS) simulations
accessed through Empipe3D™ (Hewlett-Packard,
Santa Rosa, CA) serve as the “fine” model in the
so-called X,, space. The SM procedure executes
all these systems concurrently.

Both RWGMM and HFSS provide accurate
EM analysis. RWGMM is computationally effi-
cient in its treatment of a variety of predefined
geometries. It is ideally suited for modeling com-
plex waveguide structures that can be decom-
posed into the available library building blocks.
FEM-based simulators [9, 10] such as HFSS are
able to analyze arbitrary shapes, but they are
computationally very intensive.

ASM optimization of an H-plane resonator
filter with rounded corners is carried out. These
rounded corners make RWGMM simulations
somewhat less accurate. Once the mapping is
established, subsequent Monte Carlo analysis of
manufacturing tolerances exploits the FEM-based
space-mapped model with the speed of the
MM /network theory simulator. To illustrate the
flexibility in selecting the X,,, and X,, models,
SM is also applied to optimize waveguide trans-
formers using two hybrid MM /network theory
models: a coarse model using very few modes and
a fine model using many modes to represent the
discontinuities.

The parameter extraction phase is the key to
effective SM optimization. The methodology,
however, is sensitive to nonunique solutions or
local minima inconsistent with the desired solu-
tion. An in-depth study of this phenomenon is
presented and ways to overcome such problems
are addressed. We show that, at the expense of
increased simulations of the fast coarse model, we
can satisfy the requirement for uniqueness and
consistency. We investigate how the choice of
error functions influences the convergence and
uniqueness of parameter extraction. We offer a
solution based on statistical parameter extraction
involving a powerful 1 algorithm and penalty
function concepts. We introduce a multipoint pa-
rameter extraction approach to sharpening the
solution uniqueness and improving the SM con-
vergence in the automated design of a waveguide
transformer.
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Il. FULLY AUTOMATED SPACE
MAPPING OPTIMIZATION

By inspecting the steps involved in SM optimiza-
tion [4, 5], we recognize that the parameter ex-
traction process is explicitly dependent on the
specific models involved. In the flow diagram
shown in Figure 1 the MM waveguide library
serves as the X,; model and the FEM simulator
serves as the X,,, model. SM optimization starts
with conventional design optimization of the
coarse model: MM optimization, which leads to
the optimal parameter values x¥ . Those parame-
ter values determine the starting point for the SM
update loop, which can be implemented within a
generic layer of iterations. Following this guide-
line, the ASM strategy has been fully automated
using a two-level Datapipe architecture [11]. Fig-
ure 1 illustrates the two iterative loops involving
two different sets of variables. The outer loop
updates the optimization variables x,, of the
X,,, model based on the latest mapping. Within
each SM iteration the inner, dotted block, ex-
tracts the parameters x,, of the X , model while
x,,, is held constant. The parameter extraction
process is carried out through auxiliary optimiza-
tion iterations performed exclusively within the
X,, model. The goal of parameter extraction is to

MM optimization
*
Xos

SM starting point: X.pm = Xos

EM model:
FEM simulation R em(Xem)

SM update: X,p

OS model:
parameter extraction

yes

Figure 1. Flow diagram of the SM optimization proce-
dure concurrently exploiting the hybrid MM /network
theory and FEM techniques and statistical parameter
extraction.
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match the reference data: the fine model re-
sponses R,,(x,,) obtained from FEM simula-
tion. The outer SM iterations terminate when the
coarse model parameters x,, approach x} . The
Datapipe techniques allow us to carry out the
nested optimization loops in two separate pro-
cesses while maintaining a functional link be-
tween their results (e.g., the next increment to
x,, is a function of the results of parameter
extraction).

Within the inner loop of parameter extraction,
we can also utilize the Datapipe technique to
connect external model simulators to the opti-
mization environment (e.g., the Empipe3D system
is a specialized Datapipe interface to HFSS). Fur-
ther details of the parameter extraction step will
be elaborated in Sections IV through VII.

lll. SPACE MAPPING OPTIMIZATION
USING MM/NETWORK THEORY
AND FEM

We address the design of the H-plane resonator
filter with rounded corners shown in Figure 2a.
The waveguide cross-section is 15.8 X 7.9 mm,
while the thickness of the irises is ¢ = 0.4 mm.
The radius of the corners is R = 1 mm. The iris
and resonator dimensions d,, d,, [;, and [, are
selected as the optimization variables.

First, minimax optimization of the X,; model
(Fig. 2b) is performed by exploiting the waveguide

R
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Figure 2. Structures for SM optimization: (a) X,,,
model, for analysis by FEM; (b) X,, model, for hybrid
MM /network theory. The waveguide cross-section
is 15.8 X 7.9 mm; the thickness of the irises is ¢ =
0.4 mm. Optimization variables are iris openings d;, d,
and resonator lengths [, [,.

MM library with specifications provided by Arndt
(12,

IS,,| < —35dB  for 13.5 GHz < f < 13.6 GHz,
IS;;] < —20dB for 14.0 GHz < f < 14.2 GHz,
ISy, | < —35dB for 14.6 GHz < f < 14.8 GHz,

where f represents the frequency.
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Figure 3. Magnitudes of S;; and S,; of the H-plane filter before SM optimization, as
simulated using RWGMM (curves) and HFSS (points).
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Figure 4. Magnitudes of S;; and §,; of the H-plane filter before SM optimization, as
simulated using RWGMM (curves) and HFSS (points); passband detail.

The minimax solution x¥ is d; = 6.04541,
d, = 321811, I, = 13.0688, and [, = 13.8841. It
yields the target response for SM. At this point,
the fine model X,,, is analyzed by FEM using the
x*  wvalues. The corresponding responses of the
FEM model and hybrid mode-matching /network
theory models are shown in Figure 3. Focusing on
the passband, we treat responses in the region
13.96 < f < 14.24 GHz. The passband responses
of both models at the point x}; are shown in
Figure 4. Some discrepancy is evident.

Tables I and II summarize the steps of the
successful ASM optimization. The solution, corre-
sponding to point d, = 6.17557, d, = 3.29058,
I, = 13.0282, and [/, = 13.8841, shown in Figure 5
was obtained after only four HFSS simulations,
each with only 15 frequency points. The SM re-
sults were verified by directly optimizing the H-

TABLE 1. Space Mapping Optimization of the
H-Plane Filter?

Point d, d, I L,
xl, 6.04541 3.21811 13.0688 13.8841
x2, 6.19267  3.32269  12.9876  13.8752
X 6.17017  3.29692 13.0536 13.8812
x! 6.17557  3.29058 13.0282 13.8841

e

3

*Values of all optimization variables are in millimeters.

plane filter using Empipe3D driving the HFSS
solver. Essentially the same solution was found.

IV. ERROR FUNCTIONS FOR
PARAMETER EXTRACTION

A natural choice in formulating the objective
function for the parameter extraction phase of

TABLEII. Parameter Extraction Results for Space Mapping Optimization®
Point d, d, L I, lls — x5l
xl 5.89815 3.11353 13.1500 13.8930 0.19823
x2, 6.07714 3.25445 12.9757 13.8757 0.10519
x3; 6.03531 3.22421 13.1119 13.8806 0.04482
x4 6.04634 3.22042 13.0618 13.8831 0.00750

*Values of all optimization variables are in millimeters.
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Figure 5. FEM responses (points) of the H-plane filter at the SM solution compared with
optimal X, target responses (curves). The results were obtained after only four simulations

by HFSS.

SM is to use the responses for which the specifi-
cations are given. In the case of the H-plane
filter, they are |S;;| in decibels at selected pass-
band frequencies, and thus the individual errors
could be formed by subtracting |S;;| in decibels
from the corresponding specifications (also in
decibels). A good choice of the objective function
for parameter extraction is the /; norm of the
error vector. We are, however, free to use any
error formulation that allows us to align the mod-
els. The results reported in the preceding section
were obtained using |S,;]. With that formulation,
the SM iterations proceeded flawlessly. No dif-
ficulty in the parameter extraction phase was
noticed.

We also took a close look at the /| objective
function using some other error formulations.
Figure 6 shows two cases of the /| norm for
parameter extraction during the second iteration
of SM. They are determined in the vicinity of the
starting point w.r.t. two selected parameters: the
iris openings d, and d,. Figure 6a corresponds to
the error definition in terms of [S;;| (dB). It
exhibits many local minima and provides us with
an excellent opportunity to investigate the
uniqueness of the parameter extraction phase in
SM, as well as to improve its robustness. When
the errors are defined in terms of |S,,| (as was
used to obtain the SM results reported in Section

IID), the corresponding function surface becomes
significantly smoother, as shown in Figure 6b.

V. STATISTICAL PARAMETER
EXTRACTION

We propose an automated statistical parameter
extraction procedure to overcome potential pit-
falls arising out of inaccurate or nonunique solu-
tions. First, we perform standard /, parameter
extraction [13] of the X,, model starting from
xi.. If the resulting response matches well the
X,,, model response (the /), error is small
enough), we continue with the SM iterations.
Otherwise, we turn to statistical exploration of
the X,, model.

The key to statistical parameter extraction is to
establish the exploration region. Unlike general
purpose random /global optimization approaches,
we want to carry out local statistical exploration
as deemed suitable for SM. To this end, we take
advantage of the fact that during the SM itera-
tions the desired parameter extraction solutions
should rapidly approach x* in the X, space (see
[5, 14).

Consider the kth SM iteration. When the cur-
rent mapping [x,, = P%*~D(x,, )] is applied to
the current point in the X,, model space, we
arrive at x¥*, since that point has been deter-
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Figure 6. Variation of the /| objective w.r.t. iris
openings d, and d,. Other parameters are held fixed at

values corresponding to x*.. Individual errors defined
in terms of (a) |S;;] (dB); (b) 1Sy l.

mined by the inverse mapping [x%, =
P*=D7(x*); see [5]). The fact that the new point
(to be extracted) differs from x¥  is not only a
basis for modifying the mapping, but also quanti-
tatively establishes the degree of inconsistency
w.r.t. the existing mapping. This allows us to
define an appropriate exploration region. If, for
the kth step, we define the multidimensional in-
terval 9 as

o= xlgs_l - xﬁs’ €Y
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the statistical exploration may be limited to the
region defined by
Xosi € [X* - 2|81L x* + 2|8,” (2)

osi osi

Another choice for the exploration region could
be an elliptical multidimensional domain with
semiaxes 2|8,| defined by

Z(xosi - xtsi)z/lailz < 4. (3)

A set of N, starting points is then statistically
generated within the region (2) or (3), and N,
parameter extraction optimizations are carried
out. These parameter extractions are further aided
by a penalty function [14] of the form

/\||x§s - xts”’ (4)

which augments the /; objective function. In the
case of multiple minima, this penalty term forces
the optimizer to select local minima closer to xJ,.
The resulting solutions (expected to be multiple)
are then categorized into clusters and ranked
according to the achieved values of the error
function. Finally, the penalty term is removed and
the process is repeated to focus the clustered

OS model.
exﬂ'lm.on
starting from Xo¢
parameter
p jon no
successful
liniﬁaﬁud:eexplmﬁonngion
l generate starting points l
parameter extraction
l including penalty term i
categorize the solutions
select one or more best clusters
L
without the penalty term
OS model
Xo55 R (%)

Figure 7. Flow diagram of the statistical parameter
extraction procedure.
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solution(s). Absence of the penalty term brings
the solution point to the “true” local minimum,
thus removing “fuzziness” that may occur when
the penalty term is used. The aforementioned
steps are briefly summarized by the following
algorithm and are illustrated in the flow chart
shown in Figure 7.

Algorithm

Step 1. Initialize the exploration region. Equa-
tion (2) or (3) can be used in the sec-
ond and all subsequent SM iterations.

Step 2. Generate N, random starting points.

Step 3. Perform N, parameter extractions from
the N, starting points including the
penalty function (4).

Step 4. Categorize the solutions. Select one or
more best clusters of the solutions.
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Step 5. Focus the clusters by reoptimizing
without the penalty term.

This approach has been automated by adding one
more level in the Datapipe architecture described
in Section II. Furthermore, it can be parallelized,
because the N, parameter extractions considered
are carried out independently.

VI. PARAMETER EXTRACTION OF THE
H-PLANE FILTER

We use the H-plane filter example to investigate
the statistical parameter extraction outlined in
the preceding section. To verify the robustness of
the approach, we have used the /|, objective
function with various definitions of individual er-
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Figure 8. Three-dimensional plots of |S;;| in decibels versus frequency and filter parame-
ters: (a) opening of the first iris d;; (b) opening of the second iris, d,; (c) length of the first
resonator; (d) length of the second resonator. The range of parameter changes is defined by
the first SM step: A; = 0 at x* and A; = 1 at x._.



rors. The case when the individual errors are
defined in terms of |S;;| in decibels was already
illustrated by Figure 6a for the second iteration of
ASM.

Figure 8 presents the variation of the
MM /network theory model response in the vicin-
ity of the starting point. Responses are computed
along the direction of the first ASM step, defined
by points x* and x.,. Although the responses
shown in Figure 8 are all smooth when only one
parameter is varied, the /, objective function
defined in terms of |S;| (dB) has multiple min-
ima; hence, the optimizer may terminate at an
undesirable solution.

A set of 100 starting points is statistically gen-
erated from a uniform distribution within the
range (2). The distances between the point x}
and the random starting points are depicted in
Figure 9a. The corresponding 100 /;, parameter
extraction optimizations with the penalty term (4)
are then performed from these points. The dis-
tances between x); and the solutions of parame-
ter extraction optimizations based on the errors
defined in terms of |S;;] in decibels are shown in
Figure 9b. The solutions are scattered, confirming
our observation that the /, objective function
has many local minima, as illustrated in Figure
6a. Among the 100 solutions, a cluster of 15
points is detected. Figure 9b provides some in-
sight into the process of cluster selection: all the
points within the cluster exhibit a similar distance
from x* . A deciding factor, however, for a point
to belong to the cluster is its distance from other
points in the cluster. Therefore, only a subset of
all the points with similar bar sizes can actually
form the cluster. Furthermore, depending on the
cluster “diameter,” some points actually selected
for the cluster may appear in Figure 9b as out-
liers. Once the cluster is identified, removing the
penalty term and restarting the parameter extrac-
tion process from all its points further sharpens
the solution. Here, all the points within the clus-
ter converge to the same solution, as depicted in
Figure 9c. Figures 10 and 11 show the responses
of the X,; model at those 100 points before and
after parameter extraction, respectively. Figure 12
displays the responses corresponding to the clus-
ter of 15 points that converged to the same solu-
tion, validating successful parameter extraction.

Figure 13 illustrates the impact of the penalty
term. When the penalty term is not used, only 10
parameter extractions lead to the desired solu-
tion, as shown in Figure 13a. Here |S;| in deci-
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Figure 9. Euclidean distances measured from x}; to

(a) the randomly generated starting points for statisti-
cal exploration, (b) the converged points after the first
stage, and (c) the converged points after the second
stage of statistical parameter extraction. Individual
errors defined in terms of |S;,| in decibels.

bels is used to define the errors. Figure 13b and
13c presents the results when the errors are de-
fined in terms of |S,|. Without the penalty term,
the procedure leads to 52 successful parameter
extractions (Fig. 13a); adding the penalty term (4)
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Figure 10. Statistical parameter extraction: responses at 100 randomly generated starting
points.
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Figure 11. Statistical parameter extraction: responses at 100 solution points (after two
stages).
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Figure 12. MM responses corresponding to a cluster of 15 points obtained after statistical
parameter extraction. The 15 responses are indistinguishable from each other. The match to

the FEM response is very good.

yields 100% success (Fig. 13c). The corresponding
responses at the solutions are shown in Figure 14.
Note that for this case of using |S,,| in error
definition, starting from the default point, x},,
yields the correct result. This explains the flawless
SM iterations reported in Section III.

The use of |S;|in decibels amplifies errors in
the computed parameter S;;. The relative error
for this case is higher because |S;,| is small in the
passband region. We have shown that even for
such numerically sensitive cases, our new proce-
dure yields successful parameter extractions.

Vil. MULTIPOINT PARAMETER
EXTRACTION

We used the two-section waveguide transformer
example [15] to further investigate the impact of
parameter extraction uniqueness on the conver-
gence of the SM iterations. We observed symmet-
rical /| contours with respect to the two section
lengths L, and L,, as illustrated in Figure 15,
with two local minima. Consequently the result of
parameter extraction is not unique. The impact
can be seen in the trace depicted in Figure 16,
where the SM steps oscillate around the solu-

tion due to the “fuzzy” results of parameter
extraction.

We introduce a multipoint parameter extrac-
tion approach to sharpen the parameter extrac-
tion result. Instead of minimizing

IR, (x,) — R, (x. ) Q)
at a single point, we find x’_ by minimizing
IR, (xi, + Ax) — R, (x%,, + Ax)l, (6)

where Ax represents a small perturbation to x’
and x! . By simultaneously minimizing (6) with a
selected set of Ax, we hope to improve the
uniqueness of the parameter extraction process.
Conceptually, we are attempting to match not
only the response, but also a first-order change in
the response with respect to small perturbations
in the parameter values. We have exploited a
similar concept in multicircuit modeling [16]. Fig-
ure 17 depicts the /; contours for multipoint
parameter extraction of the two-section trans-
former, which indicate a unique solution. We
used three points (i.e., original x,, and two per-
turbations in the L, and L, directions) for pa-
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Figure 13. Euclidean distances measured from x*_ to

the solution points after the second stage of statistical
parameter extraction. (a) Errors defined in terms of
|S;;| in decibels; no penalty term used. (b) Errors
defined in terms of [S,l; no penalty term used. (c)
Errors defined in terms of |S,,]; the penalty term (4)
used.

rameter extraction. The corresponding SM trace
is shown in Figure 18, where the convergence of
the SM iterations is dramatically improved. The
price we may have to pay for such an improve-
ment is the increased number of X,, simulations
required: although more X,, model simulations

are needed in parameter extraction, the overall
number of iterations may be reduced.

Viil. TOLERANCE SIMULATION USING
SPACE MAPPING

Once the SM is established, it provides not only
the design solution (parameter values), but also
an efficient means for modeling the circuit in the
vicinity of the solution, in particular, for statistical
analysis. We can map parameter spreads in the
X,,, space to the corresponding incremental
changes in the X, space. Consequently, using
the space-mapped X, model, we can rapidly
estimate the effects of tolerances, benefitting at
the same time from the accuracy of the X,,
model.

As an illustration, consider Monte Carlo analy-
sis of the H-plane filter using FEM as the X,,
model and the hybrid MM /network theory simu-
lations as the X,; model (Section III). Parameter
values are assumed to be normally distributed
with a standard deviation of 0.0333% (on the
order of 1 wm). The results of Monte Carlo
analysis are shown in Figure 19. For a specifica-
tion on |S;;| < —15 dB in the passband, the yield,
estimated from 200 outcomes, is 88.5%. When
the standard deviation is increased to 0.1%, the
yield drops to 19% for 200 outcomes. The CPU
time required for the entire Monte Carlo analysis
with 200 outcomes is comparable to just a single
full FEM simulation.

IX. SPACE MAPPING OPTIMIZATION
USING COARSE AND FINE
MM MODELS

To illustrate the flexibility in selecting the X,,,
and X, models, consider SM between two hybrid
MM /network theory models: a coarse model us-
ing very few modes and a fine model using many
modes to represent the discontinuities. These two
models are applied here to optimize waveguide
transformers, specifically three- and seven-section
transformers described in [15]. In this application,
SM enhances the efficiency of the MM-based
optimization.

Sharp corners are assumed here, which make
the MM models with large numbers of modes
very accurate. The RWGMM library allows the
designer to implicitly control the number of
higher-order modes that are used to model wave-
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Figure 14. Statistical parameter extraction: responses at 100 solution points (after two
stages) corresponding to Figure 13b when no penalty term is used and individual errors are

defined in terms of |S,,|.
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Figure 15. The /; contours of the parameter extrac-
tion problem for the two-section waveguide trans-
former. The symmetry between the variables L; and
L, produces two local minima. Consequently, the re-
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Figure 17. The /| contours of multipoint parameter

extraction of the two-section waveguide transformer.
The parameter extraction has a unique solution.

guide transition components. Increasing the num-
ber of modes improves accuracy at the expense of
higher computational cost.

For the coarse model, we use just one mode.
For the fine model, we include all the modes
below the cutoff frequency of 50 GHz. The actual
number of modes included in the fine model is
automatically determined by the RWGMM pro-
gram. As the lengths and heights of the wave-
guide sections are optimized, the number of
modes included in the fine model varies from 49

1.68

18 -
st

152 156 16 164 168 172 176

Figure 18. Trace of the SM optimization with multi-
point parameter extraction of the two-section trans-
former projected onto the minimax contours in the
L,-L, plane. The convergence is dramatically improved
when compared with Figure 16.

to 198 for the three-section and at least 180 for
the seven-section transformer. The optimized
solutions shown in Figures 20 and 21 require 2
and 14 SM iterations, respectively.

X. CONCLUSIONS

We have presented new applications of aggressive
space mapping to filter optimization using net-

13.9 14

14.1 14.2 143

frequency (GHz)

Figure 19. Monte Carlo analysis of the H-plane filter. The parameter values are randomly
generated from a normal distribution with a standard deviation of 0.0333%. The yield,

estimated from 200 outcomes, is 88.5%.
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Figure 20.

|S;;/(in dB) of a three-section waveguide transformer simulated by the RWGMM

library before and after two SM iterations. The solution is indistinguishable from the

optimal coarse model response.

work theory, mode-matching, and finite element
simulation techniques. A statistical approach to
parameter extraction incorporating the /; error
and penalty function concepts has effectively ad-
dressed the requirement of a unique and consis-
tent solution. We have introduced a multipoint
approach to enhancing the prospect of a unique

S/ (dB)

parameter extraction solution in the space map-
ping process. SM provides a feasible means for
Monte Carlo analysis of microwave circuits that
could be carried out with the accuracy of FEM
simulations. We have also demonstrated SM opti-
mization based on coarse and fine MM models
with different numbers of modes.

1.1 1.2 1.3

14

1.5 1.6 17 1.8 1.9

frequency (GHz)

Figure 21.

|S;;| (in dB) of a seven-section waveguide transformer simulated by the

RWGMM library before and after 14 SM iterations. The solution is indistinguishable from

the optimal coarse model response.
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