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Abstract

A new algorithm for nonlinear minimax approximation has been developed.
It is suitable for minimax optimization of network and system responses. A
linear programming problem using gradient information of one or more highest
ripples in the error function to produce a downhill direction followed by a
linear search to find a minimum in that direction is central to the algorithm.
It is compared numerically with another algorithm based on the method of
Osborne and Watson on the optimization of commensurate and noncommensurate
transmission-line matching networks, for which the optima are known.

INTRODUCT ION

The minimax algorithm due to Osborne and Watson [1] deals with minimax
formulations by following two steps - a linear programming part which provides
a given step in the parameter space, followed by a linear search along the
direction of the step. This algorithm is very similar to the one proposed by
Ishizaki and Watanabe [2] and works very well if the objective function is not
highly non-linear in the vicinity of the optimum. In cases when the linear
approximation is not very good in the vicinity of the optimum, this method may
fail to converge towards the optimum for successive iterationms.

The razor search algorithm due to Bandler and Macdonald [3] is based
on pattern search, where a few random moves are used in an effort to negotiate
certain kinds of razor-sharp valleys in multi-dimensional space. This method
is good if the gradient information is not available. A more recent algorithm
due to Bandler and Lee-Chan [4] exploits the gradient information of the
extrema of the error function to get a downhill direction by solving a set of
simultaneous equations. The method works well except that in the case of
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linear dependence of the equations, some problems'may arise in the convergence
towards the optimum. Another method proposed by Heller [5] uses a quadratic
programming approach to solve the minimax problem, but consumes a considerable
amount of computer time.

A new algorithm has been developed in which gradient information of
one or more of the highest ripples in the error function is used to produce a
downhill direction by solving a suitable linear programming problem. A linear
search follows to find the minimum in that direction, and the procedure is
repeated. The algorithm is compared numerically with another based on the
Osborne and Watson algorithm on the optimization of commensurate and non-
commensurate transmission-line matching networks, for which the optima are
known.

ALGORITHM 1

The first algorithm that was programmed is based on the Osborne and
Watson algorithm. Linearizing the real and differentiable error functions
; _ei(%), i=1,2,.. 40>k, at some feasible point 35, where 2 denotes the k
~ independent parameters, we have the following constrained minimax approximation
problem: ‘ |
| minimize U= xk+1\ | | )

subject to ¢i x) - ¢i + 9

£ e, (3) + Yol (47) |43 %) - 0] ¢ 4py [0 S Xy i=1,2,...,m>k )

x>0 . K . | (3)
¢ . =dp- -
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and where A¢g°¢£i
x. 01+ 221 i=1,2,....,k (5)
i j
%

The solution to this linear program produces an incremental change in parameter
values given by AQJ. Observe that the following upper and lower bounds on the
parameters have been incorporated:

0 <dp <o <o Cdsl,2,...,k )

Next we use a method based on golden section search suggested by
Temes [6] to find yj corresponding to the constrained minimum value of
maxlei(tJ + YJAQJ)l for i=1,2,...,n. We now set £J+1=£J+YJA$J and repeat the
i

process of linearizing the error functions and solving a linear programming.
problem. '

Under certain conditions this iterative process will converge to the
'nonlinear minimax optimum. For conditions of convergence of the original
Osborne and Watson process see reference [1]. An important point is that the
Haar condition shopld be satisfied by [,Y'e1 zez . Xen], that is, every kxk

submatrix is nonsingular.

ALGORITHM 2

‘ The second algorithm is a generalization of the gradient razor search
method [4], and is basically of the steepest descent type. In this case,
suppose we have the problem: 3 ‘ }

minimize U = max f,(¢) ; B ¢))
. it -
iel : . o o
where the fi(z) are real nonlinear differentiable functions generally. Linear-
izing fi(z) and letting ’

J 4 {iifi(g) = m?l.xfi(’t)b, ie I} (8)



we can write at some feasible point %J

s, (¢7) = IR (e a8 ied | 9)
In order for Ag to define a descent direction for max f. (%) we must have
iel
j j :
Xficz ) Az <0 ield (10)
Consider
‘ Joo . j j '
b’ = - 1o 78 (¢) (n
ied
Jol =1 | (12)
iedJ
a0 ied IR a3
which suggests the linear program:
. j
maximize a ., > 0 ; (14)
subject to v
- o) j -oJ :
Vf e )ng i V(7)) < -l ) ied (15)

plus (12) and (13).

We should have Ag I=0 if. ¢J is optimal since the necessary conditions
for a minimax optimum are then sat15f1ed See Bandler [7]. Observe that J
is nonempty, and that if J has only one element we obtain the steepest descent
d1rect10n for the corresponding maximum of the f, (2) _

We may also impose the following parameter constraints

_ _
¢£1 ' v Su1
bpn | . . ¢
J _ ) J u2| - .
. S8 igJ a; YE (47 < : (16)
N3 | uk |

~ however, a feasible downhill direction might not be obtained.
The solution to the linear program provides AQJ. The same golden
section search method mentioned earlier is then used to find yJ corresponding

to the constrained minimum value of max f. (2 +yJA¢J) 23+1 is set to
iel
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$j+yjA$j and the process is repeated.

To summarize this algorithm as it is used in practice: we try to
generate a descent direction based on the gradient vectors of those functions
(selected as follows) whose current values fall within a specified tolerance,

- proceed to the minimum of ga§ fi(z) in that direction and repeat the process.
It is important to note th;i since this algorithm is intended for discrete
minimax approximation it is assumed that there is a sufficient number of

functions fi(z), say n, and, furthermore, only fj(z) such that

fj(’t) > fj-l(’%) : : 3=2,3,...,n

fj(«t) > fj"l('t) j=_1,2,...,n-1 (17)

are chosen as possible candidatés, where fi(g), i=1,2,...,nAindicates, fdr
example, sequential sampling of a continuous function f(£5w) having, in general,
a number of local maxima for increasing values of y on a closed interval*.

If the linear program using these functions chosen does not yield
a direction of decreasing max fi(g), the procedure is repeated after including

, iel ' :
the function corresponding to the next largest of the possible candidates if it
exists. When all possible candidates have been included and max fi(g) can still
iel S
not be reduced, we repeat the procedure with r functions corresponding to the
first r largest of the candidates, beginnihg with r=1, in another series of
attempts to reduce max fi(g). Only when there are no more suitable functions
iel
left does the algorithm terminate. If, at any time, max fi(g) is reduced we
iel

resume with the original procedure.

EXAMPLES

' Both algorithms have been compared numerically on a CDC 6400 Compdter
on the problem of minimizing max|p|, where p is the reflection coefficient, on
eleven frequencies w, in the band 0.5 to 1.5 GHz for the network shown in
Figure 1. This network has already received attention from the optimization
point of view [3], [8].

*We can easily extend this algorithm, however, to deal with problems
involving discontinuous upper and lower specificaticns such as are encountered
in filter design.
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For Algorithm 1 we took e (¢) = klp(¢ jw. )| and for Algorithm 2 we
took fi(g) %*o(%,)m )l ApprOprlate grad1ent vectors were evaluated using
the adjoint network method [9]. In the 2-section examples the 11 frequencies
were uniformly spaced. In the 3-section examples the frequencies were 0.5,
0.6, 0.7, 0.77, 0.9, 1.0, 1.1, 1.23, 1.30, 1.40, 1.50 GHz.

The progress of both algorithms from identical starting points with

. respect to number of function evaluations (one function evaluation corresponds

to 11 evaluations of p) is recorded in Figures 2 and 3.

Unless otherwise noted, the linear searches for a minimum termlnated
when‘;he interval of uncertainty fell below 10 7. The points shown mark the

end of a linear search or the beginning of a linear programming problem.

Constraints on the parameters as indicated in the figures were imposed.

DISCUSSION

" The examples tested are considered to be good ones for observing the

behaviour of the two algorithms since, depending on which parameters are chosen

'»as‘variable; linear dependence of the gradient vectors off%lplz at different

frequencies can occur and the Haar condition may also not be satisfied. The
convergence of Algorithm 1 may not be guaranteed.

Space precludes an extensive discussion of these problems. We will
simply note that Algorithm 1 progressed very slowly in the examples of '
Flgures 2(a) and Z(d), and very rapidly in the examples of Figures 2(c) and
3(a). Algorithm 2 in all cases ultimately produced very good results and
progressed very rapidly in the examples of Figures 2(a) and 2(b). Appropriate'
contours for the 2-section examples may be found in reference [8].

CONCLUSIONS

~ Our results indicate that Algorithm 2 is generally more reliable in
reaching an optimal minimax solution than Algorithm 1. Typically one or two
minutes are sufficient to optimize a six-parameter design, depending on how
far from the optimum one starts and how close one wishes to get. Both algorithms
are currently being tested on filter problems.
It is felt that suitably integrating the two algor1thms 1nto one
package should result in a program which combines the efficiency of the first

one on certain problems with the reliability of the second on others.
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Algorithm 1

Alfrrithm 2

Figure 2 Constraints: Oftl,LzszZq 05i154.0 052257.0
for Algorithm 1 and 0.1£q5£1,Z252£q 0.1<2,<4.0
0.152257.0 for Algorithm 2.

Fig. 2(a) &;, £, kept fixed at optimum
values
Zy, Zp varied

start: Z;=3.5, Z3=3.0

Algorithm 2* ' *Here the final interval of

.S-‘ uncertainty in the linear
search is less than 0.1
042857 * *
L] T ' '
0 50

1 ¥ T T T .
100 150 200 250 300 350 400
number of function evaluations : -

L), £, varied
start: £1=0.8£q, k‘,2==1.2£.q

Fig. 2(b) Zj, Z3 kept at optimum values

150

0.42857

Algorithm 2

b e e e o e e o - —— — ——

Ll ! . < |
100 150 200

number of function evaluations

Fig. 2(c) &;, Z, kept fixed at optimum
values = '
Ll’ Z, varied

' start: £1=1,2£q, Z,=3.5

\ Algorithm 1

®

0‘
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T
50 ' 100 150 , 200

number of function evaluations
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Algorithm 1

S Algorithm 2

. Fig. 2(d) &, &,, 2,, 2, varied
‘ start;lllsl.zlq,~21=3}5f'y' i
gt zmso

0.42857  _ _ _ ___—e———— P ————— ——
4+ T T T T j v ! ' Tl j
-0 50 100 150 - 200 250 300 350 400 45¢(
number of function evaluations o
max|o|  Figure 3 Constraints: 0<l),£,,L;<28 0SZ;<4.0 0<Z,<7.0 0Z;<ll.0
1.0  for Algoritha 1 and 0.12,<,,8), 2.2, 0.1Z)4.0 ;
0.152,<7.0 0.1523511.0 for Algorithm 2. ‘
.3 N .
Algorithm 1 Fig. 3(a) 21, LZ’ LS kept fixed at
: optimum values
e Z,, 2, 3 varied e
e start: Z,=3.16228, Z,21.0
Algorithm 2 | 123=10.0 P
.4
‘2 To.19729 '
0 v .
0 50

T T T i _ T ‘ L
100 150 200 250 300 350 4Q9 o A

number of function evaluations
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