MO3D-3

A Hybrid Aggressive Space Mapping
Algorithm For EM Optimization

M.H. Bakr, J.W. Bandler, N. Georgieva and K. Madsen

Simulation Optimization Systems Research Laboratory
and Department of Electrical and Computer Engineering
McMaster University, Hamilton, Canada L8S 4K1

Abstract—We present a novel, Hybrid Aggressive
Space Mapping (HASM) optimization algorithm.
HASM is a hybrid approach exploiting both the Trust
Region Aggressive Space Mapping (TRASM) algo-
rithm and direct optimization. It does not assume that
the final space-mapped design is the true optimal de-
sign and is robust against severe misalignment be-
tween the coarse and the fine models. The algorithm is
based on a novel lemma that enables smooth switching
from the TRASM optimization to direct optimization
and vice versa. The new algorithm has been tested on
several microwave filters and transformers.

I. INTRODUCTION

We present a novel optimization algorithm, Hybrid
Aggressive Space Mapping (HASM). Space Mapping
(SM) optimization [1, 2, 3] assumes that the circuit under
consideration can be simulated using two models: a fine
model and a coarse model. The fine model is accurate but
is computationally intensive, e.g., a full-wave EM simu-
lator. The coarse model is assumed to be fast but not very
accurate. SM optimization directs most of the optimiza-
tion computational effort towards the coarse model while
maintaining the accuracy of the fine model. The overall
computational effort needed is much smaller than that
needed for direct optimization.
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The parameter extraction step is a crucial procedure in
the Aggressive Space Mapping (ASM) technique [4]. In
this step a coarse model point whose response matches a
given fine model response is obtained. This is essentially
an optimization procedure. The nonuniqueness of the
extracted parameters may lead to divergence or oscillation
of the iterations [2]. To alleviate this problem the
TRASM algorithm was introduced [3]. TRASM inte-
grates a trust region methodology [5] with the ASM tech-
nique. Also, it utilizes a recursive multi-point parameter
extraction in order to improve the uniqueness of the ex-
traction step.

The design obtained by pure SM optimization in most
cases is very near optimal. However, the optimality of the
final design can not be guaranteed. This is because the
final space-mapped response matches the optimal coarse
model response which may be different from the optimal
fine model response obtained by direct optimization. The
new algorithm is designed to overcome this limitation and
handle severely misaligned cases.

II. AGGRESSIVE SPACE MAPPING

We refer to the vectors of “fine” model parameters and
“coarse” model parameters as Xen and Xos, respectively.
The first step is to obtain the optimal design of the coarse
model xor . ASM aims at establishing a mapping P be-
tween the two spaces [4]

Xos = P(xem) n
such that
“Rem (Xem) = Ros (xos)” <¢€ 03]

where R, is the vector of fine model responses, R, is the
vector of coarse mode responses and “ || is a suitable
norm. We define the error function

f = P(xem) - x:)s 3)

The final fine model design is obtained and the mapping
established by solving the nonlinear system
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Let x{ be the ith iterate in the solution of (4). In the
ASM technique, the next iterate x5V is found by a

quasi-Newton iteration

X6 = X+ n® ®
where A" is obtained from
BORY =~ £ ©)

and B is an approximation to the Jacobian of the vector
f with respect to Xem at the ith iteration. The matrix B is
updated at each iteration using Broyden’s update [6].
Vector f is obtained by evaluating P(x.n), which is
done indirectly through parameter extraction. This opti-
mization process may have more than one minimum,
leading to divergence or oscillation of the ASM technique.
The TRASM algorithm [3] was designed to overcome this
problem. At the ith iteration, the residual vec-
tor f D= P(x{))— xos defines the difference between
the vector of extracted coarse model parameters
x=P(x4)) and the optimal coarse model design. The
mapping is established by driving this residual vector to
zero. It follows that the value ||f (')” can serve as a meas-
ure of the misalignment between the two spaces in the ith
iteration. The ith TRASM iteration is obtained from

(B(i)T B(i)+/11)h(i) = _B(i)Tf(i) )
where B®) is an approximation to the Jacobian of the
coarse model parameters with respect to the fine model
parameters at the ith iteration. Parameter A is selected

such that the step obtained satisfies "h(")" <& where § is
the size of the trust region.

I11. SPACE MAPPING AND
DIRECT OPTIMIZATION

The HASM algorithm exploits the following novel
lemma that allows for smooth switching between direct
optimization and SM. The proof is omitted here for the
sake of brevity.

Lemma Assume that X,; corresponds to X, through
a parameter extraction process. Then the Jacobian J,, of
the fine model responses at Xx,, and the Jacobian J,; of
the coarse model responses at x,, are related by

Tom=Jos B ®
where B is the Jacobian of coarse model parameters with
respect to the fine model parameters at x,,, .

Relation (8) shows that by using B and J, we are able
to obtain a good estimate of the Jacobian of the fine model
responses without any further fine model simulations. It
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follows that when ASM optimization is not converging we
can switch smoothly to direct optimization. The point
reached becomes a starting point for direct optimization,
with corresponding first-order derivatives calculated by
®.

It follows from (8) that

-1
B= (JoTsJos) Joz Jem (9)

Relation (9) assumes that J . is full rank and m 2 n,
where » is the number of parameters and m is the number
of responses. It is used for switching back from direct
optimization to SM optimization.

IV. THE HASM ALGORITHM

The HASM algorithm exploits SM when effective,
otherwise it defaults to direct optimization. The objective
function of the TRASM algorithm is

I =P Ceem—as

while the objective function for direct optimization is

"gllz = Rem(xem)_Ros(xz.c) n

While the SM objective (10) aims at matching the
optimal coarse model parameters with the extracted coarse
model parameters in the parameter space, objective
function (11) aims at matching the same points mapped
through the appropriate responses in the response space.
Solving the matching problem may be easier in one of
these two spaces depending on the functional behavior of
the coarse and fine models.

The HASM algorithm consists of two phases: the first
phase follows the TRASM strategy while the second
exploits direct optimization. It utilizes (8) and (9) for
switching between phases as dictated by the smoothness
of convergence.

The main objective of the HASM algorithm is to
minimize (11). In the jth iteration we assume the
existence of trusted extracted coarse model parameters
x4 = P(x{)). The step taken in this iteration is given
by (7) where single-point parameter extraction is then
applied at the point xU¢" to get fD= P(x{#D) - xys.

The new point is accepted and the first phase resumes
in two different cases. The first case occurs if this point
satisfies certain success criteria with respect to the
reductions in both objective functions (10) and (11).
B is then updated. The second case occurs if this point
satisfies the success criterion for the objective function
(11) but does not satisfy the success criterion for (10).
However, the vector of extracted parameters obtained by
multi-point parameter extraction approaches a limit that
satisfies the success criterion for (10).

(10)
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Switching to the second phase takes place in two
different cases. The first case is that the success criterion
of (11) is not satisfied which means that we have to reject
the new pointxn?. The Jacobian of the fine model
responses at the point X9 is then evaluated. This is done
by first evalvating the Jacobian of the coarse model
responses Jg? at the previously extracted coarse model
point x57=P(x%). J4) is then approximated using (8).
Both ¢, and J%) are then supplied to the second phase.

The second case occurs when the new point xG?
satisfies the success criterion of (11) but does not satisfy
the success criterion of (10). In this case the point x$”
is better than the previous point x4 and is accepted. As
the vector of extracted parameters does not satisfy the
success criterion of (10), the vector f(”])can not be
trusted. In order to trust this vector, recursive multi-point
parameter extraction is applied at the point x50 until
either £V approaches a limiting value or the number of
additional points used for multi-point parameter extraction
reaches n. If f“Vapproaches a limit that does not

satisfy the success criterion of (10), g+ is updated,
J at the extracted coarse model point x (5D = P(x{1)
is evaluated and J¢:» is then approximated using (8).

Otherwise, JUV is approximated using the n+1 fine
model points used for multi-point parameter extraction.
The second phase is then supplied by the point x4+ and

the Jacobian estimate J&:V, which is either calculated
using (8) or through finite differences.

The second phase utilizes the first-order derivatives
supplied by SM to carry out a number of successful
iterations. By a successful iteration we mean an iteration
that satisfies the success criterion of (11). At the end of
each successful iteration parameter extraction is applied

at the new iterate x(el,‘,? and is used to check whether the

success criterion of (10) is satisfied. If it is satisfied J,ﬂﬂ‘)

is evaluated at the point x$¥) =P(x{)), B is reevaluated

using (9) and the algorithm switches back to the first
phase. The superscript k£ is used as an index for the
successful iterates of the direct optimization phase. If the
success criterion of (10) is not satisfied phase 2
continues.

The objective function (11) aims at matching the fine
model response to the optimal coarse model response but
this does not ensure the optimality of the space-mapped
solution if the optimal coarse model response is different
from the optimal fine model response. This motivates the
suggestion that if the second phase has reached a point
where no more improvement in the objective function
(11) is possible, direct optimization is used to solve the
original design problem in the fine model space using a

minimax optimizer [7]. The starting point for the mini-
max problem is the final design obtained by the two
phases. This ensures minimax optimality of the design.

The current implementation of the HASM algorithm is
in MATLAB [8].

V. THREE-SECTION WAVEGUIDE
TRANSFORMER

We consider the design of a three-section waveguide
transformer [9]. The design constraints are

vswr < 1.04 for 5.7 GHz < f<7.2 GHz (12)

The designable parameters are the heights of the
waveguide sections b;, b, and b; and the lengths of
waveguide sections L;, L, and L;. The fine model exploits
HP HFSS [10] through HP Empipe3D [11]. The coarse
analytical model, optimized first, does not take into ac-
count the junction discontinuity effects [9].

The optimal coarse model design is taken as the initial
fine model design (Fig. 1). The HASM algorithm
switched to the second phase after two iterations of the
TRASM algorithm, which required 4 fine model simula-
tions. The fine model design at the end of the first phase
is given in the third column of Table I. The second phase
carries out only one iteration which required 2 fine model
simulations. The fine model design obtained at the end of
the second phase is given in the fourth column of Table 1.
The corresponding fine model response is shown in Fig. 2.
To ensure optimality a minimax optimizer is applied to
the original design problem, starting from the design ob-
tained at the end of the second phase. The optimal fine
model design is given in the fifth column of Table I. The
optimal fine model response is shown in Fig. 3.
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frequency (GHz)

Fig. 1. The optimal coarse model response (—) and the fine
model response (0) at the optimal coarse model design
for the three-section waveguide transformer.



TABLE 1
THE OPTIMAL COARSE MODEL DESIGN AND THE
DESIGNS OBTAINED DURING DIFFERENT PHASES OF

THE HASM ALGORITHM
Parameter  Xos Ist Pl.lase 2nd P_hase Xom
Design Design
b 0.903 0.903 0.901 0.905
b, 1.371 1.364 1.357 1.358
b; 1.736 1.732 1.725 1.719
L, 1.549 1.470 1.472 1.470
L, 1.584 1.564 1.565 1.576
Ly 1.646 1.797 1.777 1.783

All values are in cm
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Fig. 2. The optimal coarse model response (—) and the fine
model response (o) obtained at the end of the second
phase of the HASM algorithm for the three-section
waveguide transformer.

P
& °

53 55 57 59 61 63 65 67 69 71 173
frequency (GHz)

Fig. 3. The optimal coarse model response (—) and the minimax
optimal fine model response (o) for the three-section
waveguide transformer.
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VI. CONCLUSIONS

We present a novel, Hybrid Aggressive Space Map-
ping (HASM) optimization algorithm. This algorithm
enables smooth switching from Space Mapping (SM) op-
timization to direct optimization if SM fails. The direct
optimization phase utilizes all the available information
accumulated by SM in direct optimization. The algorithm
also enables smooth switching back from direct optimiza-
tion to space mapping if SM is converging smoothly. The
connection between SM and direct optimization is based
on a novel lemma. The technique is successfully demon-
strated through the design of a waveguide transformer.
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