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Abstract— We propose a novel hybrid aggressive space-
mapping (HASM) optimization algorithm. HASM exploits both
the trust-region aggressive space-mapping (TRASM) strategy
and direct optimization. Severe differences between the coarse
and fine models and nonuniqueness of the parameter extraction
procedure may cause the TRASM algorithm to be trapped in
local minima. The HASM algorithm is based on a novel lemma
that enables smooth switching from the TRASM optimization to
direct optimization if the TRASM algorithm is not converging.
It also enables switching back from direct optimization to the
TRASM algorithm in a smooth way. The uniqueness of the
extraction step is improved by utilizing a good starting point.
The algorithm does not assume that the final space-mapped
design is the true optimal design and is robust against severe
misalignment between the coarse and fine models. The examples
include a seven-section waveguide transformer, the design of an
H-plane waveguide filter, and a double-folded stub filter.

Index Terms—CAD, design automation, electromagnetic simu-
lation, iterative methods, microstrip filters, optimization methods,
space mapping, waveguide filters.

I. INTRODUCTION

I N THIS PAPER, a hybrid aggressive space-mapping
(HASM) algorithm is presented. Space-mapping (SM)

optimization [1]–[4] assumes that the circuit under consid-
eration can be simulated using two models: a fine model
and a coarse model. The fine model is accurate, but is
computationally intensive, e.g., a full-wave electromagnetic
(EM) simulator. The coarse model is assumed to be fast,
but not very accurate. SM optimization directs most of the
optimization computational effort toward the coarse model
while maintaining the accuracy of the fine model. The overall
computational effort needed is much smaller than that for
direct optimization.
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Parameter extraction is crucial to the aggressive space map-
ping (ASM) technique [4]. Here, a coarse-model point whose
response matches a given fine-model response is obtained. This
is essentially an optimization problem. The nonuniqueness of
the extracted parameters may lead to divergence or oscillation
of the iterations [2]. To alleviate this problem the trust-
region aggressive space-mapping (TRASM) algorithm was
introduced [3]. TRASM integrates a trust region methodology
[5] with the ASM technique. Also, it utilizes a recursive multi-
point parameter extraction in order to improve the uniqueness
of the extraction step.

In this paper, we address the convergence behavior of
the TRASM algorithm. We discuss the effect of a severely
misaligned coarse model. We show that, in this case, TRASM
optimization may be trapped in local minima.

The design obtained by pure SM optimization in most cases
is very near optimal. However, the optimality of the final
design cannot be guaranteed. This is because the final space-
mapped response matches the optimal coarse-model response,
which may be different from the optimal fine-model response
obtained by solving the original design problem in the fine-
model space.

Our HASM algorithm is designed to overcome these limita-
tions. The algorithm switches smoothly between SM optimiza-
tion and direct optimization and vice versa. A novel lemma
enables such a switch. The algorithm also integrates a novel
prediction of the starting point for the parameter-extraction
problem to enhance the uniqueness.

II. SM OPTIMIZATION: A BRIEF REVIEW

We refer to the vectors of “fine”-model parameters and
“coarse”-model parameters as and , respectively. The
first step in any SM algorithm is to obtain the optimal design of
the coarse model . The corresponding response is denoted
by . ASM aims at establishing a mapping between the
two spaces [4]

(1)

such that

(2)

where is the vector of fine-model response, is the
vector of coarse mode response, and is a suitable norm.
We define the error function

(3)
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The final fine-model design is obtained and the mapping is
established by solving the nonlinear system

(4)

Let be the th iterate in the solution of (4). In the ASM
technique, the next iterate is found by a quasi-Newton
iteration

(5)

where is obtained from

(6)

and is an approximation to the Jacobian of the vector
with respect to at the th iteration. The matrix is

updated at each iteration using Broyden’s update [6].
Vector is obtained by evaluating , which is done

indirectly through parameter extraction. The nonuniqueness
of this problem may lead to divergence or oscillation of the
ASM technique. The TRASM algorithm [3] was designed to
overcome this problem. At theth iteration, the residual vector

defines the difference between the vector
of extracted coarse-model parameters and the
optimal coarse-model design. The value serves as a
measure of the misalignment between the two spaces in theth
iteration. The TRASM algorithm aims at minimizing .
The th iteration of the algorithm is given by

(7)

Parameter is selected such that the step obtained satisfies
, where is the size of the trust region.

III. SOME PROPERTIES OFSM

ASM and TRASM are efficient algorithms. The number
of fine-model simulations needed to obtain the space-mapped
design is of the order of the problem dimensionality. However,
both algorithms depend on the existence of a coarse model that
is fast and has enough accuracy.

If the coarse model is bad (i.e., very different from the fine
model) SM might not work. To illustrate this, we consider
the Rosenbrock function [7]. We form an artificial problem in
which the “coarse” model is given by

(8)

and the “fine” model by

(9)

where and are constant shifts. The target of the direct
optimization problem is to minimize . Considering (8) and
(9), we notice that and
where . The misalignment between the two
models is thus given by the two shifts and .

We discuss two sets of values for the shifts. First, we
consider . Using (8) and (9), we notice
that the coarse-model point whose response matches the fine
response at a point is . It follows that
the mapping between the two spaces is given by

(a)

(b)

(c)

Fig. 1. Different contour plots for the Rosenbrock problem for the case
��� = [�0:1 � 0:1]T . (a) The contour plot ofkxxxem +���� xxx
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obtained through parameter extraction. (c)

Contours of the fine-model Rosenbrock function.

. The contours of are shown in
Fig. 1(a). The mapping is then approximated through
multipoint parameter extraction [3]. Only one perturbed fine-
model point is utilized. The contours of
obtained in this manner are shown in Fig. 1(b). Fig. 1(a) and
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(b) shows that has a single minimum, which is the
solution that would have been obtained by direct optimization.
The differences between the two plots are attributed to the
nonuniqueness of the parameter-extraction process. Taking the
point as the initial solution of the fine model, the TRASM
algorithm is expected to converge to . The corresponding
contours of are shown in Fig. 1(c), whose minimum value
is at , as expected.

The same steps are repeated for the case .
The contour plot of is shown in Fig. 2(a).
The contour plot of obtained using parameter
extraction is shown in Fig. 2(b). Fig. 2(b) illustrates the exis-
tence of a minimum of other than , which
is closer to the starting point of the TRASM algorithm .
It follows that the TRASM algorithm is unlikely to converge
to . The corresponding contours of for this case are
shown in Fig. 2(c), whose minimum value is at .

The solution obtained using SM optimization is very near
optimal if is similar to the optimal fine-model response

. However, this cannot be guaranteed. For example,
consider

(10)

Assume also that

(11)

where . It is clear that is equal to while
is zero. It follows that SM may converge to a solution other
than .

IV. SM AND DIRECT OPTIMIZATION

The properties of SM suggest that a hybrid algorithm be
used. This algorithm exploits the efficiency of SM and defaults
to direct optimization when SM fails. Our HASM algorithm
utilizes a novel lemma that enables smooth switching between
the TRASM algorithm and direct optimization and vice versa.

Lemma: Assume that corresponds to through
a parameter-extraction process. The Jacobian of the
fine-model response at and the Jacobian of the coarse-
model response at are then related by

(12)

where is a valid mapping between the two spaces at
and .

Proof: As the points and correspond to each
other, it follows that their responses match, i.e.,

(13)

Now define a new fine-model point where
is a small perturbation. The response at this new point

is perturbed from the response at the point by

(14)

The point corresponds to a coarse-model point
that satisfies

(15)

(a)

(b)

(c)

Fig. 2. Different contour plots for the Rosenbrock problem for the case
��� = [�1:5 � 1:5]T . (a) The contour plot ofkxxxem +���� xxx
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obtained through parameter extraction. (c)

Contours of the fine-model Rosenbrock function.

Also, by definition of the mapping , the two perturbations
and are related by

(16)
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Fig. 3. Illustration of the connection between SM optimization and direct
optimization.

Multiplying both sides of (16) by , we get

(17)

Comparing (17) with (15), we conclude that

(18)

Relation (18) is interesting. It shows that by having the matrix
and the coarse-model Jacobian , we are able to obtain

a good estimate of the Jacobian of the fine-model response
without any further fine-model simulations. It follows that
when SM optimization is not converging, we can switch to
direct optimization and supply it with the available first-order
derivatives given by (18).

Another relationship that can be easily obtained from (18) is

(19)

Relation (19) assumes that is full rank and , where
is the number of parameters and is the dimensionality

of both and . It is used for switching back from
direct optimization to SM optimization. Fig. 3 illustrates the
switching between SM optimization and direct optimization.

We illustrate the lemma as follows. Consider

(20)

and

(21)

Take . Here, . The solution
for the parameter-extraction problem is .
The Jacobian at is

(22)

From (20) and (21), it is seen that

(23)

It follows that at is estimated by

(24)

which is the exact Jacobian of the fine-model response.

V. SELECTION OF THE STARTING POINT

The discussion in Section III reveals how the nonuniqueness
of the parameter-extraction process can affect the convergence
of SM optimization. The uniqueness of this procedure can be
improved by utilizing a good starting point. In the first iteration
of the algorithm, there is no available information about the
mapping between the two spaces. A reasonable assumption is
to take as the starting point for the parameter-extraction
optimization problem. As the algorithm proceeds, the matrix

approximates the mapping between the two spaces. A
prediction of the extracted parameters in theth iteration is
given by

(25)

This predicted point is then taken as a starting point for
the parameter-extraction optimization problem. It supplies a
good starting point provided that is a valid solution to
the parameter extraction in the previous iteration and
approximates the mapping between the two spaces.

VI. THE HASM ALGORITHM

The HASM algorithm exploits SM when effective, other-
wise it defaults to direct optimization. Two objective functions
are utilized by the algorithm. The first objective function is

(26)

while the second function is

(27)

While (26) aims at matching the extracted coarse-model pa-
rameters to in the parameter space, (27) aims at matching
the same points mapped through the appropriate responses in
the response space.

The HASM algorithm consists of two phases: the first phase
follows the TRASM strategy, while the second phase exploits
direct optimization. It utilizes (18) and (19) for switching
between phases as dictated by the smoothness of convergence.

In the th iteration, we assume the existence of trusted
extracted coarse-model parameters . The step
taken in this iteration is given by (7) where

. Single-point parameter extraction is then applied at the
point to get .

The first phase utilizes two success criteria related to the
reduction in (26) and (27). The SM success criterion is defined
as

(28)

which indicates that the actual reduction in the objective
function (26) should be greater than a certain fraction of the
predicted reduction. The direct optimization success criterion
is

(29)
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which implies that the new iterate is a descent iterate
of (27).

The new point is accepted and the first phase
resumes if this point satisfies both (28) and (29). is then
updated. The vector satisfying (28) is either obtained
through single-point extraction or through recursive multipoint
extraction [3] that approaches a limit satisfying (28). We
denote by and the solution obtained at the end
of the first phase and the corresponding fine-model response,
respectively.

Switching to the second phase takes place in two cases.
The first case is that (29) is not satisfied, which means that
we have to reject the new point . The Jacobian of the
fine-model response at the point is then evaluated. This
is done by first evaluating the Jacobian of the coarse-model
response at the previously extracted coarse-model point

. is then approximated using (18). The
second phase is then supplied by , , and .

The second case occurs when the new point satisfies
(29), but does not satisfy (28). In this case, the point
is better than the previous point and is accepted. As the
vector of extracted parameters does not satisfy (28), the vector

can not be trusted. In order to trust this vector, recursive
multipoint parameter extraction is applied at the point
until either approaches a limiting value or the number
of additional points used for multipoint parameter extraction
reaches . If approaches a limit that does not satisfy
(28), is updated to , at the extracted coarse-
model point is evaluated and is
then approximated using (18). Otherwise, is approxi-
mated using the fine-model points used for multipoint
parameter extraction. The second phase is then supplied by the
point , , and the Jacobian estimate , which
is either calculated using (18) or through finite differences.

The second phase utilizes the first-order derivatives supplied
by SM to carry out a number of successful iterations. By a
successful iteration, we mean an iteration that satisfies the
success criterion

(30)

which indicates that the actual reduction in the objective
function (27) should be greater than a certain fraction of the
predicted reduction. Notice that the superscriptis used as
an index for the successful iterates of the direct optimization
phase. At the end of each successful iteration, parameter
extraction is applied at the new iterate and is used to
check whether a switch back to the first phase can take place.
The criterion for such a switch is

(31)

If it is satisfied, is evaluated at the point
, is reevaluated using (19), and the algorithm

switches back to the first phase. Otherwise, the second phase
continues. We denote by and the solution obtained at

the end of the second phase and the corresponding fine-model
response, respectively.

For any iteration , the two phases are given by the
following steps.

Phase 1:

Step 0: Given , , , and . Set
.

Comment: is the utilized trust region size.
Step 1: Obtain by solving (7) with . Let

.
Step 2: Evaluate using (5) and set

.
Comment: is the set of fine-model points utilized in the

multipoint extraction.
Step 3: Apply multipoint parameter extraction using

the points in the set to obtain .
Comment: The prediction given in (25) is used as a

starting point for the multipoint parameter ex-
traction.

Step 4: If both (28) and (29) are satisfied, update the
matrix to using Broyden’s formula
[6] and update . Go to Step 10.

Comment:The trust region size is updated based on how
the predicted reduction in agrees with the
actual reduction [3].

Step 5: If (29) is not satisfied, obtain and evaluate
. Switch to the second phase.

Comment:The second phase takes as arguments, ,
and and returns , , and . It
should be clear that several iterations might be
executed in the second phase before switching
back to the first phase at Step 10.

Step 6: If is equal to one, go to Step 9.
Comment: denotes the cardinality of the set.
Step 7: Compare obtained using fine-

model points with that previously obtained
using fine-model points. If
is approaching a limit, update the matrix

to get , obtain , evaluate
and switch to the

second phase.
Step 8: If is equal to , obtain the matrix

by finite differences using the set. Switch to
the second phase.

Step 9: Obtain a temporary point ,
where

and . Add this point to the set
and go to Step 3.

Step 10: Let . Go to Step 0.

The second phase can be summarized in the following steps.
Phase 2:

Step 0: Given the current iterate of the SM technique
, the corresponding Jacobian matrix

and .
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Fig. 4. A flowchart of the first phase of the proposed algorithm.

Step 1: Obtain a successful iterate by solving

for a suitable value of that satisfies the direct
optimization success criterion.

Step 2: Update to .
Step 3: Apply parameter extraction at to get

.
Step 4: If (31) is satisfied, obtain at the point

, evaluate the matrix
and switch

to the first phase.

Step 5: If the termination condition is satisfied invoke
the minimax optimizer else set and
go to Step 1.

A flowchart of the first phase of the HASM algorithm is shown
in Fig. 4.

To ensure optimality, direct optimization is used to solve
the original design problem using a minimax optimizer [8]
starting from . The current implementation of the HASM
algorithm is in MATLAB.1

1MATLAB Version 5.0, The Math Works Inc., Natick, MA, 1997.
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Fig. 5. The fine-model of the six-sectionH-plane waveguide filter [9], [10].

Fig. 6. The coarse model of the six-sectionH-plane waveguide filter [11].

VII. EXAMPLES

A. Six-Section -Plane Waveguide Filter

We consider a six-section -plane waveguide filter [9],
[10]. Design specifications are taken as

for GHz GHz (32)

for GHz and

for GHz (33)

A waveguide with a cross section of 1.372 by 0.622 in
(3.485 by 1.58 cm) is used. The six sections are separated
by seven -plane septa, which have a finite thickness of 0.02
in (0.508 mm). The filter is shown in Fig. 5.

The optimizable parameters are the four septa widths,
, , and and the three waveguide-section lengths,
, and . The coarse model consists of lumped inductances

and dispersive transmission-line sections. It is simulated using
OSA90/hope.2 There are various approaches to calculate the
equivalent inductive susceptance corresponding to an-plane
septum. We utilize a simplified version of a formula due
to Marcuvitz [11] in evaluating the inductances. The coarse
model is shown in Fig. 6. The fine model exploits HP HFSS3

through HP Empipe3D.4

The fine-model response at the starting point is shown
in Fig. 7. The first phase required four iterations to reach
the design . A total of five fine-model simulations were
needed. The second phase did not carry out any successful
iteration. The response is shown in Fig. 8.

2OSA90/hope Version 4.0, formerly Optimization Systems Associates Inc.,
Dundas, Ont., Canada, now HP EEsof Division, Santa Rosa, CA.

3HP HFSS Version 5.2, HP EEsof Division, Santa Rosa, CA, 1998.
4HP Empipe3D Version 5.2, HP EEsof Division, Santa Rosa, CA, 1998.

Fig. 7. The coarse responseRRR�

os
(—) and the fine responseRRRem(xxx�

os
) (o)

for the six-sectionH-plane waveguide filter.

Fig. 8. The coarse responseRRR�

os
(—) and the fine responseRRR00

em
(o) for the

six-sectionH-plane waveguide filter.

Fig. 9. The coarse responseRRR�

os
(—) and the fine responseRRR�

em
(o) for the

six-sectionH-plane waveguide filter.

The response is obtained through direct minimax
optimization (see Fig. 9). The different fine-model designs are
given in Table I. It is clear that the convergence of the first
phase is smooth as .

B. Seven-Section Waveguide Transformer

The design of a seven-section waveguide transformer is also
considered. The transformer is shown in Fig. 10. This example
is a classical microwave circuit design problem [12]. The fine
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TABLE I
DESIGNS OBTAINED DURING DIFFERENT PHASES FOR THESIX-SECTION

H-PLANE WAVEGUIDE FILTER

Fig. 10. The seven-section waveguide transformer [12].

Fig. 11. The coarse responseRRR�

os
(—) and the fine responseRRRem(xxx�

os
) (o)

for the seven-section waveguide transformer.

model is simulated using HP HFSS through HP Empipe3D.
The coarse model is an analytical model that neglects the
junction discontinuity [12]. The design specifications are taken
as

for GHz GHz (34)

The designable parameters for this problem are the height and
length of each waveguide section. The fine-model response
at is shown in Fig. 11. The first phase executed three
successful iterations that required six fine-model simulations.
The response is shown in Fig. 12. The second phase
executed four iterations (see Fig. 13). The response is
shown in Fig. 14. Table II shows the different designs.

C. Double-Folded Stub Filter

We consider the design of the double-folded stub (DFS)
microstrip structure [1]. Folding the stubs reduces the filter
area with respect to the conventional double stub structure

Fig. 12. The coarse responseRRR�

os
(—) and the fine responseRRR0

em
(o) for

the seven-section waveguide transformer.

Fig. 13. The coarse responseRRR�

os
(—) and the fine responseRRR00

em
(o) for

the seven-section waveguide transformer.

Fig. 14. The coarse responseRRR�

os
(—) and the fine responseRRR�

em
(o) for

the seven-section waveguide transformer.

[13]. The filter is characterized by five parameters:, ,
, , and (see Fig. 15). , , and are chosen as

optimization variables. and are fixed at 4.8 mil. The
design specifications are

dB for GHz and GHz

(35)

dB for GHz GHz (36)

The fine model is the structure simulated by HP HFSS
through HP Empipe3D. The coarse model exploits the mi-
crostrip line and microstrip T-junction models available in
OSA90/hope. The coupling between the folded stubs and
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TABLE II
DESIGNS OBTAINED DURING DIFFERENT PHASES FOR THESEVEN-SECTION

WAVEGUIDE TRANSFORMER

Fig. 15. The DFS filter [1], [13].

Fig. 16. The coarse model of the DFS filter.

the microstrip line is simulated using equivalent capacitors.
The values of these capacitors are determined using Walker’s
formulas [14]. Jansen’s microstrip bend model [15] is used
to model the folding effect of the stub. The coarse model is
shown in Fig. 16.

The fine-model response at is shown in Fig. 17. This
figure shows a big shift between the optimal coarse response
and the initial fine response. This signals considerable mis-
alignment between the two models.

The first phase successfully carried out eight iterations that
required 12 fine-model simulations. The response is
shown in Fig. 18. The mapping established in the first phase
is utilized to get a good estimate of and a switch to the
second phase is carried out. The response (Fig. 19) shows

Fig. 17. The coarse responseRRR�

os
(—) and the fine responseRRRem(xxx�

os
) (o)

for the DFS filter.

Fig. 18. The coarse responseRRR�

os
(—) and the fine responseRRR0

em
(o) for

the DFS filter.

Fig. 19. The coarse responseRRR�

os
(—) and the fine responseRRR00

em
(o) for

the DFS filter.

a significant improvement in the response. The design is
then taken as the starting point for the minimax optimizer. The
response is shown in Fig. 20. The designs are given in
Table III.
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Fig. 20. The coarse responseRRR�

os
(—) and the fine responseRRR�

em
(o) for

the DFS filter.

TABLE III
DESIGNS OBTAINED DURING DIFFERENT PHASES FOR THEDFS FILTER

VIII. C ONCLUSIONS

We present a novel HASM optimization algorithm. The
algorithm is designed to handle severely misaligned cases.
It enables smooth switching from SM optimization to direct
optimization if SM fails. The direct optimization phase utilizes
all the available information accumulated by SM optimiza-
tion about the mapping between the coarse and fine-model
spaces. The algorithm also enables switching back from direct
optimization to SM if SM is potentially convergent. The
connection between SM and direct optimization is based on a
novel lemma. An original approach for the prediction of the
starting point of the parameter-extraction optimization problem
is also utilized. This approach improves the uniqueness of the
extraction step and, consequently, enhances the convergence
of the algorithm. The algorithm is successfully demonstrated
through the design of waveguide transformers and filters.
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