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Abstract— We propose a novel hybrid aggressive space- Parameter extraction is crucial to the aggressive space map-
mapping (HASM) optimization algorithm. HASM exploits both  ping (ASM) technique [4]. Here, a coarse-model point whose

the trust-region aggressive space-mapping (TRASM) strategy regnonse matches a given fine-model response is obtained. This
and direct optimization. Severe differences between the coarse.

and fine models and nonuniqueness of the parameter extraction is essentially an optimization problem. '_I'he nonumquengss_of
procedure may cause the TRASM algorithm to be trapped in the extracted parameters may lead to divergence or oscillation

local minima. The HASM algorithm is based on a novel lemma of the iterations [2]. To alleviate this problem the trust-
that enab!e§ SmOOth switching from the_ TRASM optimizatic_m 0 region aggressive space-mapping (TRASM) algorithm was
direct optimization if the TRASM algorithm is not converging. introduced [3]. TRASM integrates a trust region methodology

lIERe}LsSoMer;?g(l)ﬁh;wﬁhgwgsrl?%%lihfrsvrgydlq_eﬁé OUF::;;”JZ?%C;Z tgf trhi [5] with the ASM technique. Also, it utilizes a recursive multi-

extraction step is improved by utilizing a good starting point. POINt parameter extraction in order to improve the uniqueness

The algorithm does not assume that the final space-mapped of the extraction step.

design is the true optimal design and is robust against severe |n this paper, we address the convergence behavior of

misalignment between the coarse and fine models. The examples,e TRASM algorithm. We discuss the effect of a severely

include a seven-section waveguide transformer, the design of an__." . . .

H-plane waveguide filter, and a double-folded stub filter. m'sla“.gne_d coarse model. We _ShOW that., '.n this case, TRASM
) _ o optimization may be trapped in local minima.

Index Terms—CAD, design automation, electromagnetic simu-  The design obtained by pure SM optimization in most cases
lation, iterative methods, microstrip filters, optimization methods, . . . . i
space mapping, waveguide filters. is very near optimal. However, t.he_ optimality of the final

design cannot be guaranteed. This is because the final space-
mapped response matches the optimal coarse-model response,
. INTRODUCTION which may be different from the optimal fine-model response
N THIS PAPER, a hybrid aggressive space-mappirPtained by solving the original design problem in the fine-
(HASM) algorithm is presented. Space-mapping (SMmpodel space.
optimization [1]-[4] assumes that the circuit under consid- Our HASM algorithm is designed to overcome these limita-
eration can be simulated using two models: a fine modgpns. The algorithm switches Smoothly between SM Optimiza-
and a coarse model. The fine model is accurate, butti@n and direct optimization and vice versa. A novel lemma
computationally intensive, e.g., a full-wave electromagnetfables such a switch. The algorithm also integrates a novel
(EM) simulator. The coarse model is assumed to be fapfediction of the starting point for the parameter-extraction
but not very accurate. SM optimization directs most of theroblem to enhance the uniqueness.
optimization computational effort toward the coarse model

while maintaining the accuracy of the fine model. The overall Il. SM OPTIMIZATION: A BRIEF REVIEW
computational effort needed is much smaller than that for\ye refer to the vectors of “fine”-model parameters and
direct optimization. “coarse”-model parameters as,, andz,,, respectively. The

first step in any SM algorithm is to obtain the optimal design of
Manuscript received March 26, 1999; revised July 12, 1999. This work wilae coarse modet” . The corresponding response is denoted

supported in part by the Natural Sciences and Engineering Research Couggil g+ ; iahi ;
(NSERC) of Canada under Grant OGP0007239 and under Grant STP0201 ,R(’S' ASM aims at eStab“Shmg a mappitg between the
by Com Dev, by Remec Nanowave, and by the Micronet Network of Centrb40 Spaces [4]
of Excellence. The work of N. Georgieva was supported by an NSERC
Postdoctorate Fellowship. The work of M. H. Bakr was supported under an Tos = P(iﬂem) (1)
Ontario Graduate Scholarship.
M. H. Bakr and N. Georgieva are with the Simulation Optimization Systensuch that
Research Laboratory, Department of Electrical and Computer Engineering,
McMaster University, Hamilton, Ont., Canada L8S 4K1. | Rem(Zem) — Ros(xos)|| < € (2
J. W. Bandler is with the Simulation Optimization Systems Research

Laboratory, Department of Electrical and Computer Engineering, McMastgihere R,,,, is the vector of fine-model responsR,, is the

University, Hamilton, Ont., Canada L8S 4K1, and is also with the Bandler . .
Corporation, Dundas, Ont., Canada L9H 5E7. Sector of coarse mode response, dhiflis a suitable norm.

K. Madsen is with the Department of Mathematical Modeling, Technicale define the error function
University of Denmark, DK-2800 Lyngby, Denmark.
Publisher Item Identifier S 0018-9480(99)08440-9. f=Plzen,) —x,. (3)

0018-9480/99$10.001 1999 IEEE



BAKR et al. HYBRID AGGRESSIVE SM ALGORITHM FOR EM OPTIMIZATION 2441

The final fine-model design is obtained and the mapping is 39

established by solving the nonlinear system /'_\\
f(zem) = 0. 4 25 4 _ \
Let 2L, be theith iterate(in t)he solution of (4). In the ASM 20 / » S \
technique, the next iteratet’t ) is found by a quasi-Newton ’ N
iteration _ , i/ /// %\\\

alt = 0 + p® (5)

=
N
S
=
=
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where ) is obtained from
BYR) = —f(wéi%) (6) 0.5 \\\x

and B™ is an approximation to the Jacobian of the vector o \ S e
f with respect tox.,, at theith iteration. The matrixB is .10 05 0 05 10 15 20 25 30
updated at each iteration using Broyden’s update [6]. x

Vector f is obtained by evaluating’(«.,,, ), which is done @
indirectly through parameter extraction. The nonuniqueness
of this problem may lead to divergence or oscillation of the 30—
ASM technique. The TRASM algorithm [3] was designed to ’
overcome this problem. At thah iteration, the residual vector 25
Ff = P(xéﬁ?l) —z*_ defines the difference between the vector
of extracted coarse-model parametef@ = P(xﬁ?l) and the
optimal coarse-model design. The val{i¢”)|| serves as a N
measure of the misalignment between the two spaces iittthe "
iteration. The TRASM algorithm aims at minimizingf®||. 1o
The ith iteration of the algorithm is given by

(B(i)TB(i) + )\I>h(i) _ _B(i)Tf(i)' 7) 051

Parameter is selected such that the step obtained satisfies 0
||| < 8, where§ is the size of the trust region. ;

1.0 15 20 25 30

I1l. SOME PROPERTIES OFSM

ASM and TRASM are efficient algorithms. The number 30
of fine-model simulations needed to obtain the space-mapped S :
design is of the order of the problem dimensionality. However, '
both algorithms depend on the existence of a coarse model that | / '
is fast and has enough accuracy. \\

If the coarse model is bad (i.e., very different from the fine _ ,5 N\ :
model) SM might not work. To illustrate this, we consider \ by / /
the Rosenbrock function [7]. We form an artificial problem in 10 N ’ — Y7/
which the “coarse” model is given by \\\ 7 =//

2\2 2 \ \ e PN
R,, = 100(zs — 22)? 4 (1 — 21) 8) 0s —" /
and the “fine” model by 0 \ / i/
2 - -
R = 100((22 + a2) = (w1 + a)?)? + (1= (o1 + ) e e e
9) ©

wherea; anda, are constant shifts. The target of the direatig. 1. Different contour plots for the Rosenbrock problem for the case

optimization problem is to minimiz&,,,. Considering (8) and « =t [—0} . ?”(IJJ%]J - ()a) The||gongtt)U_r Plgttr?ﬂzcnﬁ +a- zt()SII%-t(b)tThe( )
H o T s _ _ contour piot o Tem —I’;S 5 obtaine rougn parameter extraction. (C

(9), we natice thatco% =[1.0 .1.0]. andz?,, = (zF, ) Contours of the fine-model Rosenbrock function.

wherea = [a;  as]'. The misalignment between the two

models is thus given by the two shiftg and a-.

We discuss two sets of values for the shifts. First, wem + a. The contours of|z.., + a — «}||3 are shown in
considera = [-0.1 — 0.1]Z. Using (8) and (9), we notice Fig. 1(a). The mappind’(z.,.) is then approximated through
that the coarse-model point whose response matches the findtipoint parameter extraction [3]. Only one perturbed fine-
response at a poiBt.,, IS £, = (e + ). It follows that model point is utilized. The contours QfP(z..,) — =7, ||3
the mapping between the two spaces is givenf{y.,,) = obtained in this manner are shown in Fig. 1(b). Fig. 1(a) and
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(b) shows that||f||2 has a single minimum, which is the 30 77 7 \\
solution that would have been obtained by direct optimization. / /{’/ ﬁ%
The differences between the two plots are attributed to the 25 {‘\ & y
nonuniqueness of the parameter-extraction process. Taking the \ : “;\\ \ /
pointz*, as the initial solution of the fine model, the TRASM 20 NOR 4
algorithm is expected to converge #¢,,,. The corresponding \\ \ N &:ﬁ
contours ofR.,, are shown in Fig. 1(c), whose minimum value o 15 N e — T
is at[l.1 1.1]%, as expected. \

The same steps are repeated for the ease[—1.5 —1.5]. 1.0 i
The contour plot of|x.,. + c« — z*_||3 is shown in Fig. 2(a). T
The contour plot of| P(x.,,)—=,||3 obtained using parameter 0.5
extraction is shown in Fig. 2(b). Fig. 2(b) illustrates the exis-
tence of a minimum off P(z.,,)—=z:,||3 other thane?,,, which %00 05 0 05 10 15 20 25 30

is closer to the starting point of the TRASM algorithsj, .
It follows that the TRASM algorithm is unlikely to converge

to «7,,,. The corresponding contours &%.,,, for this case are
shown in Fig. 2(c), whose minimum value is[at5 2.5]%. 30 T 5
The solution obtained using SM optimization is very near \ % \\}N\l fﬁ
optimal if R_ is similar to the optimal fine-model response 25 o Tt o )
R?,.. However, this cannot be guaranteed. For example, -\ L] ﬁ%\ \xj
consider 20 \ Y E\\ S \
E a:\ (RS
Repy = 100(z2 — 27)* + (1 — 21)*. (10) o sk \ \\\ \ NN
AR Nl vE==
Assume also that 10 ‘ 5\ N K\\ ]
Ry = Rep + € (11) \ i g\\ \\ /‘.L
_ _ _ 05 L A
yvheres > 0. It is clear thatR}, is equal toe Whlle_ij \\\\J/ / #
is zero. It follows that SM may converge to a solution other 0 : P .
than z7,,. 0 05 0 05 10 15 20 25 30
Xy
IV. SM AND DIRECT OPTIMIZATION (b)

The properties of SM suggest that a hybrid algorithm be 5,
used. This algorithm exploits the efficiency of SM and defaults
to direct optimization when SM fails. Our HASM algorithm 25
utilizes a novel lemma that enables smooth switching between
the TRASM algorithm and direct optimization and vice versa.
Lemma: Assume thatz,, corresponds toz.,, through
a parameter-extraction process. The Jacobfap, of the o
fine-model response at,,, and the Jacobiad, . of the coarse-
model response at,; are then related by 1.0

Jern = JOSB (12)

where B is a valid mapping between the two spacescat
and z.,.,.
Proof. As the pointsz.,, and z,s; correspond to each

other, it follows that their responses match, i.e., u
(c)
R =R . 13
em(&em) 0s(®os) (13) Fig. 2. Different contour plots for the Rosenbrock problem for the case
] . B a=[-15 —1.5]T. (a) The contour plot ofizem + o — %,]|3. (b) The

Now d?ﬂne a new fine quel poiat, = Zcpm + AI”."’ where contour plot of| | P(z...) —x¥,||2 obtained through parameter extraction. (c)
Az, is a small perturbation. The response at this new poifbntours of the fine-model Rosenbrock function.
is perturbed from the response at the paipt, by

AR = Jep, AZcpn- (14) Also, by definition of the mappind3, the two perturbations

: . Az.,, and Az,, are related by
The pointz,, corresponds to a coarse-model paipt + Az,

that satisfies

AR = JonAxep, = J oy At (15) BAzx,., = Ax,,. (16)
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J =J.B V. SELECTION OF THE STARTING POINT

The discussion in Section Ill reveals how the nonuniqueness
of the parameter-extraction process can affect the convergence
of SM optimization. The uniqueness of this procedure can be
Space Mapping Direct Optimization improved by utilizing a good starting point. In the first iteration
of the algorithm, there is no available information about the
mapping between the two spaces. A reasonable assumption is
to takez*_ as the starting point for the parameter-extraction
optimization problem. As the algorithm proceeds, the matrix

x. /. B X, Jom

- -1 .
B=(0800) 05 T B® approximates the mapping between the two spaces. A
Fig. 3. lllustration of the connection between SM optimization and dire@rediction of the extracted parameters in thle iteration is
optimization. given by
@) — 50 B(z‘)( (i+1) _ 40 ) 25
Multiplying both sides of (16) by/,,, we get Tos = Tos + Tem T Fem (25)
J,.BAx..,, = J,.Az,,. 17) This predicted point _is then_ tgke_n as a starting poin_t for
the parameter-extraction optimization problem. It supplies a
Comparing (17) with (15), we conclude that good starting point provided thatffs) is a valid solution to
the parameter extraction in the previous iteration @@
Jem = JosB. (18) approximates the mapping between the two spaces.

Relation (18) is interesting. It shows that by having the matrix

B and the coarse-model Jacobidp,, we are able to obtain VI. THE HASM ALGORITHM

a good estimate of the Jacobian of the fine-model responserhe HASM algorithm exploits SM when effective, other-
without any further fine-model simulations. It follows thalyise it defaults to direct optimization. Two objective functions
when SM optimization is not converging, we can switch t@re utilized by the algorithm. The first objective function is
direct optimization and supply it with the available first-order

derivatives given by (18). I£1I5 = [|1P(zem) — 25,13 (26)

Another relationship that can be easily obtained from (18) is . .
while the second function is

||9||§ = | Rem(®em) — Ros(zﬁs)llg- (27)

While (26) aims at matching the extracted coarse-model pa-
rameters tac’_ in the parameter space, (27) aims at matching
éhe same points mapped through the appropriate responses in
e response space.

The HASM algorithm consists of two phases: the first phase
follows the TRASM strategy, while the second phase exploits

Repm =(092; 4 0.122)% + (0.1z; +0.925)>  (20) direct optimization. It utilizes (18) and (19) for switching

between phases as dictated by the smoothness of convergence.

and In the 4th iteration, we assumeEQ the exis(t)ence of trusted

IR extracted coarse-model parametets = P(z.,,). The step
Roo =1+ 2. (21) taken in this iteration is given by (7) wherd’l " = 29,
Take .., = [2.0 1.0]”. Here, R.,, = 4.82. The solution R Single-point parameter extraction is then applied at the

for the parameter-extraction problemas, = [1.90 1.10]7. point 2 to get 0T = P(wgirfl)) -z,

B=JLJ, ) I T (19)

Relation (19) assumes thdt, is full rank andm > n, where

n is the number of parameters amd is the dimensionality

of both R.,, and R,;. It is used for switching back from

direct optimization to SM optimization. Fig. 3 illustrates th

switching between SM optimization and direct optimization.t
We illustrate the lemma as follows. Consider

The Jacobian/, . at z,. is The first phase utilizes two success criteria related to the
reduction in (26) and (27). The SM success criterion is defined
Jos = [3.8 2.2]. (22) as
From (20) and (21), it is seen that (H 5O - H f<i+1>H) > 0,01(H FO - H FO 4 BOR® )
28
B— {8;’ 8;} (23) (28)
' ' which indicates that the actual reduction in the objective
It follows that J..,,, at z.,, is estimated by function (26) should be greater than a certain fraction of the
09 01 predicted reduction. The direct optimization success criterion

Jom = [3.8 2.2] [0.1 09

}:[3.64 2.36]  (24) is
o+ < o

which is the exact Jacobian of the fine-model response. (29)
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which implies that the new itera (1 is a descent iterate the end of the second phase and the corresponding fine-model

of (27). response, respectively.

The new pointzit?) is accepted and the first phase For any iterationi > 0, the two phases are given by the
resumes if this point satisfies both (28) and (2B)? is then following steps.
updated. The vectoft) satisfying (28) is either obtained Phase 1:
through single-point extraction or through recursive multipoint Step 0: Given =9, 9, B® ands®. Setsi+) =
extraction [3] that approaches a limit satisfying (28). We 6,
denote byz!  and R, the solution obtained at the end Comment: 6§ is the utilized trust region size.

em em

of the first phase and the corresponding fine-model responseStep 1: Obtainh¥ by solving (7) withs = §¢+1), Let

respectively. §EHD = ||AD]|5.

Switching to the second phase takes place in two casesStep 2: Evaluate (™) using (5) and setV =
The first case is that (29) is not satisfied, which means that {xéﬁf{l)}.
we have to reject the new poiaﬁ?{l). The Jacobian of the CommentV is the set of fine-model points utilized in the
fine-model response at the po'mii?l is then evaluated. This multipoint extraction.
is done by first evaluating the Jacobian of the coarse-modelStep 3: Apply multipoint parameter extraction using
response/()) at the previously extracted coarse-model point the points in the set’ to obtain f¢ ).
) = Pl). J9 is then approximated using (18). The Comment: The prediction given in (25) is used as a

@) and f(i)_ starting point for the multipoint parameter ex-

The second case occurs when the new pmiﬁil) satisfies ) traction. i
(29), but does not satisfy (28). In this case, the pajiﬁ: 2 Step 4: :; gtcr)it)? éﬁ?)toag%ﬁ? )u;;]e E?gsgii’,su%?;ta;he
is better than the previous poimﬁ,ﬁ?l and is accepted. As the g Broy

) [6] and updates. Go to Step 10.
vector of extracted parameters does not satisfy (28), the vector CommentThe trust region sizé is updated based on how
f<”+1) can not be trusted. In order to trust this vector, recursive

< the predicted reduction i agrees with the
multipoint parameter extraction is applied at the poiﬁf{l) P Wl ag

S ; o actual reduction [3].
until eltherf(“’l) approaches a limiting value or the number Step 5: If (29) is not satisfied, obtaid and evaluate
of additional points used for multipoint parameter extraction JO — JOB® switch to thé)ssecond phase.
reachesn. If fUFY) approaches a limit that does not satisfy o °°
(28),B(i> is updated a3ty J(()is-l—l) at the extracted coarse- and J@ and returnse® B®  and f(’“) It
model pointay."!) = P(zgz"tl)) is evaluated and/(,; ) is shouléné)e clear that sg\r/wéral itérations m'ight be
then approximated using (18). Otherwist!*%) is approxi-

: , ; o executed in the second phase before switching
mated using the: + 1 fine-model points used for multipoint back to the first phase at Step 10.

second phase is then supplied &y, J%)

CommenftThe second phase takes as argumﬁfﬁﬁ f(i),

parameter extraction. The second phase is then supplied by thgtep 6: If [V|is equal to one, go to Step 9.
point £, £+, and the Jacobian estima#é+?), which  comment: |V| denotes the cardinality of the skt
is either calculated using (18) or through finite differences. Step 7: Compare f%*tV obtained using V| fine-

The second phase utilizes the first-order derivatives supplied model points with that previously obtained
by SM to carry out a number of successful iterations. By a using |V| — 1 fine-model points. If f¢V
successful iteration, we mean an iteration that satisfies the is approaching a limit, update the matrix
success criterion B® to get B“tY, obtain JIHY | evaluate

(i+1) G+ pli+l) o
<k>H _H <k+1>H H <k>H _H *) o y®) <k>H Jon ' = JTVB and switch to the

(Hy g ) - 0'01( 9 g+ Janh ) second phase.

(30)  step8:  If [V]is equal ton+1, obtain the matrix/ ()
by finite differences using the skt. Switch to
the second phase.

Step 9:  Obtain a temporary poink; = zin " + h,

which indicates that the actual reduction in the objective
function (27) should be greater than a certain fraction of the
predicted reduction. Notice that the superschpis used as

an index for the successful iterates of the direct optimization where

phase.. At _the er_ld of each sucpessfu}i) iteratipn, parameter (B(i)TB(i) + )\I)ht _ _B(i)Tf(i+1)
extraction is applied at the new |tera1:é,m and is used to

check whether a switch back to the first phase can take place. and||h.|| < 86+Y. Add this point to the set’

The criterion for such a switch is and go to Step 3.

Hf<k+1>H < Hf(k)H' (31) Step10: Leti =i+ 1. Go to Step 0.
The second phase can be summarized in the following steps.
If it is satisfied, J**7 is evaluated at the point:™™) = Phase 2:
P(zﬁ,’,‘}fl)), B is reevaluated using (19), and the algorithm Step O: Given the current iterate of the SM technigue
switches back to the first phase. Otherwise, the second phase :cﬁ’,‘,)l the corresponding Jacobian matd)&ﬁ{
continues. We denote by’ andR/  the solution obtained at and f*),
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Given x4}, £, B and 5 ©

Seté‘(l‘l):a(')

Evaluate 4" using space

mapping and set ¥ = {x{*1} <
Obtain £ using the points
inV
Both success ) .
criteria satisfied? Update B®) and s > Set i=i+]
4
Direct optimization o
success criterion is Evaluate J;, >
satisfied ? from J¢ and B
Phase 2
Parameter extraction Update B to get B“*" and obtain
is approaching a limit ? J&D using BV and gU+»
Obtain g4 using the .
points in V
Obtain a temporary point
g x;andset V=V U x,
Fig. 4. A flowchart of the first phase of the proposed algorithm.
Step 1: Obtain a successful iterate ;) by solving Step 5: If the termination condition is satisfied invoke
BT 00 BT () the minimax optimizer else sét= % + 1 and
(Jern Jern + AI) Az = _Jern g go to Step 1.

A flowchart of the first phase of the HASM algorithm is shown

for a suitable value ok that satisfies the direct in Fig. 4.

Step 2- Bptém;zz?ég)ntsugssfg criterion. To ensure optimality, direct optimization is used to solve
ep : pdateJem, 10 Jep . (k1) the original design problem using a minimax optimizer [8]
Step 3:  Apply parameter extraction aten ~ 10 g€t giaring froma”, . The current implementation of the HASM
f(k+1) em

: - k1) __algorithm is in MATLAB.!
Step 4: If (31) is satisfied, obtain/\**! at the point
£ = P(zé’,‘}fl)), evaluate the matriB =
(JEADT gAY =1 gOADT gD and switch

to the first phase. IMATLAB Version 5.0, The Math Works Inc., Natick, MA, 1997.
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1.0 ("%
0.8 \ w
0.6

2 || /
0.4 \ -
02 1 - . . .
NVAVAVaVYe
5.20 6.06 6.92 7.78 8.64 9.50

frequency (GHz)

Fig. 5. The fine-model of the six-sectidifi-plane waveguide filter [9], [10]. Fig. 7. The coarse respon& (—) and the fine responsR.. (7, ) (0)
for the six-sectionH -plane waveguide filter.

O——— Y ®: r o) 1.0
L L S 5 L0
b 3 s Bs B 3By 3B B ¥
0 <‘ 1 % 2 % 3 )) 4 Q 3 > 2 ; 1 0 0.8
SN G G i. [ N G
Lo laleolal o]
l )
f \ T g 1 T 1 =
Fig. 6. The coarse model of the six-sectiitplane waveguide filter [11]. 04
0211 ; .
VIl. EXAMPLES W\/\\/\/\M
0 .

A. Six-SectionH-Plane Waveguide Filter 5.20 6.06 692 7.78 8.64 9.50
. . . . ' frequency (GHz)
We consider a six-sectiol/-plane waveguide filter [9],

[10]. Design specifications are taken as Fig. 8. The coarse responf, (—) and the fine responsk’,,, (o) for the
six-section H -plane waveguide filter.
|S11] < 0.16, for 5.4 GHz < f < 9.0 GHz (32)

|S11] > 0.85, for f < 5.2 GHz and|S11| > 0.5
for 9.5 GHz < f. (33)

1.0

0.8

A waveguide with a cross section of 1.372 by 0.622 in
(3.485 by 1.58 cm) is used. The six sections are separated o6
by sevenH -plane septa, which have a finite thickness of 0.02 .5
in (0.508 mm). The filter is shown in Fig. 5. o 04
The optimizable parameters are the four septa widths

W,, W3, andW, and the three waveguide-section lengths \

. . 0.2 1
L., and L. The coarse model consists of lumped inductances
and dispersive transmission-line sections. It is simulated using W\/\\/\\/\\/
OSA90/hope. There are various approaches to calculate the 05_20 6.06 6.9 778 8.64 9.50
equivalent inductive susceptance corresponding t& griane frequency (GHz)
septum. We utilize a simplified version of a formula due
to Marcuvitz [11] in evaluating the inductances. The coar,{%';1 S
model is shown in Fig. 6. The fine model exploits HP HESS

through HP Empipe3D. _ o The responseR;,, is obtained through direct minimax
The fine-model response at the starting paifif is shown optimization (see Fig. 9). The different fine-model designs are

in Fig. 7. The first phase required four iterations to reagfiven in Table I. It is clear that the convergence of the first
the designz’,,,. A total of five fine-model simulations werephase is smooth aB.,, ~ R!  ~ R:..

needed. The second phase did not carry out any successful o
iteration. The responsR. = is shown in Fig. 8.

em

9. The coarse respon, (—) and the fine respond®;,,, (0) for the
ection H-plane waveguide filter.

B. Seven-Section Waveguide Transformer

20SA90/hope Version 4.0, formerly Optimization Systems Associates Inc., . . . .
Dundas, Ont., Canada, now HP EEsof Division, Santa Rosa, CA. The design of a seven-section waveguide transformer is also

3HP HFSS Version 5.2, HP EEsof Division, Santa Rosa, CA, 1998.  considered. The transformer is shown in Fig. 10. This example
4HP Empipe3D Version 5.2, HP EEsof Division, Santa Rosa, CA, 1998.is a classical microwave circuit design problem [12]. The fine
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1.0 .1 1.2 1.3 14 15 1.6 1.7 1.8 19

TABLE | 1.05 T T
DESIGNS OBTAINED DURING DIFFERENT PHASES FOR THESIX-SECTION | ‘
H-PLANE WAVEGUIDE FILTER
1.04 - | /
Parameter Xos Xems Xem Xem . 103 F : o
w, 0.48583 0.51326 0.51344 ; : % ‘
2 0.43494 0.47379 0.47396 R N T
W, 0.40433 0.45091 0.45100 Lol
W, 0.39796 0.44675 0.44664 a v oo 7,&“%
o
L 0.65585 0.63701 0.63695 oo vvi\% 7 N J
L, 0.65923 0.63954 0.63977 o L1 12 13 14 15 16 17 1.8 19
Ls 0.67666 0.65704 0.65694 frequency (GHz)
All values are in inches Fig. 12. The coarse respond¥,. (—) and the fine responsR.,, (0) for
the seven-section waveguide transformer.
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Fig. 10. The seven-section waveguide transformer [12]. vwvm\% v"{\‘fy
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104 - o | h Fig. 13. The coarse respond¥,. (—) and the fine responsR’,, (o) for
; the seven-section waveguide transformer.
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Fig. 11. The coarse respon&, (—) and the fine respons®...(z},) (0) Lol \
for the seven-section waveguide transformer. ' o 49
VAR AR
model is simulated using HP HFSS through HP Empipe3D. B B RS S v v -
The coarse que! is an analytlcgl mode! .tha.t neglects the frequency (GHz)
junction discontinuity [12]. The design specifications are taken
as Fig. 14. The coarse respong¥, . (—) and the fine responsR},, (o) for

the seven-section waveguide transformer.

VSWR <101, for1.06 GHz< f <18 GHz (34)

The designable parameters for this problem are the height dkdl- The filter is characterized by five parametels;, W,
length of each waveguide section. The fine-model respon3e L1, and L, (see Fig. 15).L,, L,, and S are chosen as
at zZS is shown in Flg 11. The first phase executed thr&-)um'Zat'On Va.”a.bIeSWl and W2 are f|Xed at 4.8 m|| The

successful iterations that required six fine-model simulatiorf€sign specifications are
/

The responsek,,, is shown in Fig. 12. The second phase |g, | > —3 dB, for f < 9.5 GHz and16.5 GHz < f
executed four iterations (see Fig. 13). The respolsg is N N N

shown in Fig. 14. Table Il shows the different designs. (35)
|S21] < —30 dB, for 12 GHz < f < 14 GHz (36)
C. Double-Folded Stub Filter The fine model is the structure simulated by HP HFSS

We consider the design of the double-folded stub (DF#)rough HP Empipe3D. The coarse model exploits the mi-
microstrip structure [1]. Folding the stubs reduces the filterostrip line and microstrip T-junction models available in
area with respect to the conventional double stub structudSA90/hope. The coupling between the folded stubs and
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TABLE I (U kikdbbactaiditid Bliditm N 9o,
DESIGNS OBTAINED DURING DIFFERENT PHASES FOR THESEVEN-SECTION \ °°.° o
WAVEGUIDE TRANSFORMER -10 o / ,°°
Parameter Xos X x5, Xom 20 \ y <
by 7.86732  7.84126 7.84321 7.84319 m A / -
b, 6.61888 6.56661 6.56753 6.56746 2 -40 a CR
by 4.68540 4.63369 4.63275 4.63267 i) {
bs 291987  2.88266 2.88266 2.88268 0 .
bs 1.81412 1.79307 1.79273 1.79272 60
be 1.27658 1.26697 1.26721 1.26723 "
b, 1.06847 1.06475 1.06477 1.06474 ’
L, 7.10588 7.27059 7.27141 7.27145 80 3 m m 17 7
L, 7.12201 7.03866 7.04043 7.04047 frequency (GHz)
Ls 7.11760 6.89568 6.89549 6.89552
L, 7.12331 6.89253 6.89192 6.89189 Fig. 17. The coarse respon®s, (—) and the fine responsR...(z},) (0)
for the DFS filter.
Ls 7.12815 6.98273 6.97985 6.98000
Lg 7.12154 7.03160 7.03020 7.03023
L, 7.12945 7.02606 7.02503 7.02509 0 v %o

All values are in cm
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Fig. 15. The DFS filter [1], [13]. 70
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Fig. 16. The coarse model of the DFS filter.

S, dB

the microstrip line is simulated using equivalent capacitors.
The values of these capacitors are determined using Walker’'s
formulas [14]. Jansen’s microstrip bend model [15] is used
to model the folding effect of the stub. The coarse model is
shown in Fig. 16.

The fine-model response af_ is shown in Fig. 17. This

figure shows a big shift between the optimal coarse response

-30

-40

-50

-80
80

8 11

14

frequency (GHz)

and the initial fine response. This signals considerable thg- é%s Jl?ee} coarse respon,; (—) and the fine respons&,,, (o) for
alignment between the two models. '

The first phase successfully carried out eight iterations that
required 12 fine-model simulations. The respordg, is & significant improvement in the response. The desigp is
shown in Fig. 18. The mapping established in the first phaiten taken as the starting point for the minimax optimizer. The
is utilized to get a good estimate dt,,, and a switch to the responsei,,, is shown in Fig. 20. The designs are given in

second phase is carried out. The respdée (Fig. 19) shows Table lIl.
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VIIl. CONCLUSIONS
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