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An Aggressive Approach to Parameter Extraction
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Abstract— A novel aggressive parameter-extraction (APE) MPE technique was suggested by Bakal.[3]. This approach
algprlthm IS Presented. Our APE algquthm addres§es the employs a mapping between the two models to enhance
optimal selection of parameter perturbations used to increase uniqueness.

trust in parameter-extraction uniqueness. The uniqueness of o lqorith . t minimizing th b f t
the parameter-extraction problem is crucial especially in the ur algorthm aims at minimizing the number or pertur-

space_mapping approach to circuit design_ We establish an bations Used in the MPE proceSS by Ut|I|Z|ng perturbations
appropriate criterion for the generation of these perturbations. that significantly improve the uniqueness in each iteration.

The APE algorithm classifies possible solutions for the parameter Consequently, we designate this as an aggressive parameter-
extraction problem. Two different approaches for obtaining extraction (APE) algorithm. Each perturbation requires an

subsequent perturbations are utilized based on a classification of dditi | fi del simulati that id b ral
the extracted parameters. The examples include the parameter 2dditional fine-model simufation that could be very centra

extraction of a decomposed electromagnetic model of a high- Processing unit (CPU) intensive. We classify the different
temperature superconducting filter. The parameter extraction solutions returned by the MPE process and, based on this

of an empirical model of a double-folded stub filter is also classification, a new perturbation that is likely to sharpen the
carried out. result is suggested.

Index Terms—Design automation, electromagnetic simulation,
microstrip filters, optimization methods, parameter extraction,
space mapping, waveguide filters. Il. PARAMETER EXTRACTION

The objective of parameter extraction is to find a set of
parameters of a model whose response matches a given set of

o ) _ ~ measurements. It can be formulated as
ARAMETER extraction is important in device modeling

and characterization. It also plays a crucial role in space-
mapping (SM) technology [1]-[3]. Optimization approaches to T, = arg {lgoisn |1 R — Ros(Ios)H} (1)
parameter extraction often yield nonunique solutions. In SM
optimization, this nonuniqueness may lead to divergence Where R, is the vector of given measuremens,, is the

oscillatory behavior. vector of circuit response, anef, is the vector of extracted

W_e presef_“ an “aggresswe_” approach to param_eter _eg:cirameters. In the context of SM, the fine-model response
trgcnon. While .generally applicable, the new algorithm i -m, typically from an electromagnetic simulator, at a certain
d|§cussed here“|rl1 th”e context of SM technology. We assume nt .., supplies the target respong®,. Fig. 1 illustrates

eX|sterlce of a" fine” model that generates the target respo 58 single-point extraction (SPE) for the two-dimensional
and a “coarse” model whose parameters are to be extractegase_ An MPE procedure [5] was suggested to improve the

Seve_ral authors have addressed nonuniqueness in para 'lﬁjiﬁfueness of the step. The vector of extracted coarse model
extraction. For example, Bandlest al. [4] proposed the ?Tgl;lrametersﬁ should satisfy
0S8

idea of making unknown perturbations to a certain syste
whose parameters are to be extracted. Barglle. [5] later

I. INTRODUCTION

suggested that multipoint extraction (MPE) be used to match zl, = arg {Inin [eg o ek }T } @)
the first-order derivatives of the two models to ensure a Fos !
global minimum. The perturbations used in that approach are
predefined and arbitrary. The optimality of the selection dfhere
those perturbations was not addressed. Recently, a recursive
[0} :Ros (-”"os) - Renl(-”"enl) (3)
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Fig. 1. lllustration of the SPE procedure.
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Fig. 3. lllustration of the relationship between the generated 1éts, the fine-model pointagfﬂl, and the extracted coarse-model poimf;éi) generated

by the APE algorithm.

MPE procedure are related by It is also suggested in [3] that the parameter-extraction step

terminates if the vector of extracted parameters approaches a

limit.

It follows that the solution of (2) simultaneously matches the '€ Perturbations used in [3] are not guaranteed to result in

responses of a set of corresponding points in both spaces.Slgnlflcant improvement in the uniqueness of the exj[racteql pa-
Bakr et al. [3] suggested that the perturbations utilized iﬁameters. A large number of additional fine-model simulations

Azg? = Azgl.

B . may be needed to ensure the uniqueness of the step.
(2)-(4) should satisfy For both (5) and (6), the séf of fine-model points utilized
A:cffs) — BA!EEQV (6) in MPE is

The matrix B approximates the mapping between the two V = {Zem} U {zem + Az |V Az € Vp}. 7)
spaces. In the context of SM, (6) is superior to (5), as it
integrates the available mappidg into the MPE procedure. Fig. 2 illustrates the MPE procedure.
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Given x{), 8 and n.
Initialize i=1 and
= {xi',,).}
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Apply multi-point parameter
extraction using the points in
the set ¥ to get x¢{¥

J( x5 ) has
rank n ?

Is x5{ approaching
a limit ?

Obtain a new perturbation
Ax using second method. Set

i+1) . (1) (i+1)
puh = pt u{xe‘m }and
=i+1.

Y

Obtain a new perturbation
Ax using first method. Set

(i+1) — () (i+1)
yO0 =0 U} and
i=itl.

Yes

Fig. 4. The flowchart of the APE algorithm.

Ill. THE SELECTION OF PERTURBATIONS

To achieve local unigueness, it was suggested in the context

The vector of coarse-model respondesised to match the of system identification [4] that increasing the number of

two models is given by
Ros(-'l"os)

ROS (1.08 + Aa’.(()lS))

R= (8)

R+ A2

The dimensionality ofR is m,, wherem, = (N, + 1)m
and m is the dimensionality of botR,, and R.,,. Vector

08

neighborhood ofcS_ containing no other poink,. such that

perturbations enhances the possibility that the Jacobian matrix
J of R becomes full rank. The perturbations suggested in [4]
were unidentified perturbations and, thus, result in an increase
in the number of the optimizable parameters. However, it was
pointed out that the improvement in the rank.Jbbutweighs
the increase in the number of parameters.

In a later work, the idea of using known perturbations
to achieve global uniqueness of parameter extraction was
introduced [5]. By global uniqueness, we mean that there exists

z¢, is labeled locally unique [6] if there exists an ope@nly one minimumgz?, for the MPE problem.

Assume that a locally nonunigue minimusi, is obtained

R(x,,) = R(x¢,). Otherwise, it is labeled locally nonunique Using the current set of coarse-model perturbatignsHere,
It was shown in [6] that the local uniqueness condition e rank of the Jacobiad of R is k, wherek < n andn is

equivalent to the condition that the Jacobianfbhas rankn,
wheren is the number of parameters.

the number of parameters. We suggest a perturbatierhat
attempts to increase the rank of the Jacobian of the responses
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Fig. 5. The responses of the given fine-model point (0) and the coarse-model

response (—) at the poimﬁ;gl) for the 10:1 impedance transformer.
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Fig. 6. The contours of)(z, V(l)y) for the 10:1 impedance transformer.

corresponding to the augmented $&, U Az} at z¢, by at

least one. This is achieved by imposing the condition that
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Using (11) and (12), the perturbatiofz is obtained by
solving the system of linear equations

AfAx = —¢ (13)
where the matrixA is given by
A= [G(k-l-l)g(l) G gD -G(")g(’“)} (14)
and the vectok is given by
(DT o)
c=| gMTgW (15)

g(MT g

A complete derivation of (13) is given in the Appendix. It
should be noted that the system of linear equations (13) may
be an over-determined, under-determined, or well-determined
system of equations depending bandn. The pseudoinverse

of the matrixA? obtains the solution with minimurf, norm

in all cases. The fact that this solution is a minimum length
solution is of importance since (13) is based on a linear
approximation of the gradients, which can only be trusted
within a certain trust region. If the perturbatidxw is outside

this trust region, it is rescaled.

If the minimum obtained by the MPE is locally unique,
we still have to ensure that this is the true solution to the
extraction problem. The following lemma leads to a robust
way to weaken any other existing locally unique minimum.

Lemma: Assume that there exist two locally unique minima
¢! and z¢,2 for the MPE problem obtained using least
squares optimization and a set of perturbati®psA possible
perturbationAz that can be added to the sE} and can be
used to weaken one of these minima as a solution for the MPE
is in the direction of an eigenvector for the matifik, — H-
whereH ; andH are the Hessian matrices for theobjective
function at the pointze,' andz:?, respectively.

[e2-] os !

Proof: We denote byQ(z, V), the value of thet,

the gradients of» — & of the coarse-model responses in thgbjective function of the MPE problem at a coarse-model point
new response vectdk,(z7, + Az) be normal to a linearly s using a set of fine-model poinis, whereV’ is given by (7).
independent set of gradients of cardinalityf the responses The quadratic approximations 6}(z, V) in a neighborhood

in the vectorR at the pointz{,. We denote the set of linearly centered at the two locally unique minimeg,! and z¢,2

independent gradients by where
sz{gu), ...7g<k>}, ©)

We denote the set of the gradients of the newly selected:
responses iR, (xS, + Axz) by S,, where

Sa = {g((zk+1)7 Tt gl(ln)} (10)
Each of these gradients is approximated by
g =g + @9 Ax, i=k+1, -, n (11)

whereg® is the gradient of théth response at the poiaf,,

os !

respectively, are given by

Az, V) =Q(z5, V) 4+ 058z H Ax

08 ?

@Az, V) =Q(z52, V) 4+ 0.5Az  HyAx.

os ?

(16)
17)
The perturbatiomAz that results in the maximum difference

between the two quadratic models (16) and (17) for a specific
trust regioné is obtained by formulating the Lagrangian

Lz, N = (Q52 V) - Qast, V)
+0.5A2" (Hy — H ) Az + M Az Az — 6%).
(18)

andG is the corresponding Hessian. The imposed condition

on the perturbation is that

g =0  vg¥eSandvgl) €S, (12

Taking the derivative with respect tAxz gives

(H1 - HQ)AI = 2)\Azx. (19)
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Fig. 7. The fine-model response (0) and the corresponding coarse-model response (—): (a) at the first point and (b) at the second point utilized in the
DPE for the 10:1 impedance transformer.

subject to certain trust region size. Therefore, the following

10 B Ba—
s ) ) Lagrangian can be formed:
9 - A
) /
s /l L(Az, \) = Az T, (22 (251 Az
// v — Az oo (25, os (25,7 Az
7 2 =
/ + MAZT Az — 82). (22)
6 "/
N s Using a similar approach to that used in deriving (19), it can
be shown that the perturbatiahz is obtained by solving the
4 eigenvalue problem
1 (Joo () s (@522) = Joo(@5:2)  Jou(357) ) Az = N
2 (23)
1
1 2 3 4 5 6 7 The two perturbations (19) and (23) can be shown to be almost
Z identical by writing the Hessian matrix @(x, V') in terms

Fig. 8. The contours of)(z, V(2)) for the 10: 1 impedance transformer. Of the Jacobian of the coarse-model responses [7]. However,
the perturbation calculated in (23) is more computationally
efficient than that of (19).
It follows that A« is an eigenvector of the matrid; — Ho. There is one substantial difficulty in the exact evaluation of
Az provides a direction that maximizes the difference betwedime perturbation given by (19). Once a locally uniqgue minimum
the quadratic models. In other words, it provides a perturbatiegn reached, the Hessian &} at this point can be obtained
that maximizes the contrast between the changes of the coavbde no information is available about the Hessian at the
model responses at these two minima. It follows that the tra¢her locally uniqgue minima that may exist. In such a case,
minimum is the one whose response changes match betteleasonable assumption is to taldle = I, the identity ma-
the changes of the fine-model responses obtained using tifiie or alternatively take/,s(x¢,?)" J,s(x%,?) as the identity
fine-model perturbation corresponding Aor. matrix in (23). This assumption implies that no information
A similar result to that obtained in (19) can be obtainei$ available about the curvature of the objective function at
using a different approach. Assume that a perturbatioAsf the other minima. It follows thafAx is an eigenvector of the

is sought. This perturbation results in a perturbation of theatrix J,,(z¢, )T J,s(x¢h).
coarse model responses at the two minima by The perturbation given by (23) is a suggested perturbation in
the coarse-model space. The new fine-model point that should
AR; =J,4(z51 ) Ax (20) be added to the séf is z.,, + Az, WwhereAz.,, is obtained

and by solving the system of linear equations

ARy =J,.(25,%) A (21) Az = BAx,,,. (24)
whereJ,s(x,5) is the Jacobian of the coarse-model respon3de relation (24) is used if some information is available about

R,,. We impose the condition that the difference between tliee mapping between the two spaces. However, in most cases,
£2 norms of these two response perturbations be maximize¢ make the assumption th& = I.
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Fig. 9. The fine-model response (0) and the corresponding coarse-model response (—): (a) at the first point, (b) at the second point, and (c) at the third
point utilized in the three-point parameter extraction for the 10:1 impedance transformer.
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Fig. 10. The contours of(z, V) for the 10:1 impedance transformer. Fig. 12. The fine-model response (0) and the corresponding coarse-model

response (—) at the point utilized in the SPE for the HTS filter. Note that

L only points in the range from 3.967 to 4.099 GHz were actually used.
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initially selected as the candidate eigenvector. The suggested
perturbation in this case is
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Fig. 11. The HTS filter [9].

The scheme that we utilized for the selection of points in
(23) is as follows. First, the eigenvalue problem is solved.
The eigenvectos™) with the largest eigenvalue in modulus is

Ax,, =

(25)

el

whereé is the current size of the trust region. This perturbation
is tested to see whether it belongs to the current set of
perturbations. It follows thaf\z,, is rejected if the condition

AzT Az

T ST (26)
| Az,s ||2

> (1—e).

is satisfied for a perturbationz’? € Vp, wheree > 0 is a
small number. In this case, the alternative perturbation

(27)
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Fig. 13. The fine-model response (0) and the corresponding coarse-model response (—): (a) at the first point and (b) at the second point utilized in the
DPE for the HTS filter. Note that only points in the range from 3.967 to 4.099 GHz were actually used.

is tested against the condition (26). If it also fails, we switch TABLE |

to the eigenvector with second Iargest eigenvalue in ModuluBHE VARIATION OF THE EXTRACTED PARAMETERS FOR THE10:1 IMPEDANCE
and repeat steps (25)—(27). This is repeated until either a TRANSFORMER WITH THE NUMBER OF Fine-MopeL Points
perturbation is found such that (26) is not satisfied or all the oy @ .
eigenvectors are exhausted for perturbations of leigtm Parameter Xos Xos Xos

this case, the trust region siZas scaled byx where« > 1.0.

. . . . : Z 3.62043 3.47160 3.60357
The perturbation is then taken in the direction of eigenvector Z; 724147 743214 735052
with largest eigenvalue in modulus. i
IV. THE APE ALGORITHM Fig. 3 illustrates the relationship between the generated sets

In this section, we present the APE algorithm for the MPE ”, the fine-model pointsz(,, and the extracted coarse-
process. This algorithm is based on the two methods discusseedel pointSvZS). A flowchart of the APE algorithm is shown
in the previous section, and is given by the following stepsin Fig. 4. The current implementation of the algorithm is in

1) Givenz.,, 6, andn. Initialize V) = {z{L)1, where MATLAB. *

xgi,i = Z., and seti = 1.
2) The sef’ (¥ contains the points used for the MPE in the

ith iteration. The indexis equal to V' (9|, the cardinality A. 10:1 Impedance Transformer

of V. ) ‘ @ The first example is the well-known 10: 1 impedance trans-
3) Apply MPE using the sev' (") to geta:.”. former [8]. The parameters for this problem are the character-
4) The pointzi'” is the solution to the MPE problemistic impedance of the two transmission linés and Z, while

obtained using the sat®. the two lengths of the transmission lines are kept fixed at their
5) If the Jacobian of at ;. has full rank, go to Step 4. optimal values (quarter-wavelength). The coarse model utilizes
6) Obtain a new perturbatiothz using (13), use (24) to nonscaled parameters, while a “fine” model scales each of the

get Az.,,, and let V@D = v® y {201 where two impedances by a factor of 1.6.

xgj,f” =%, + Az.,,. Seti =i+ 1 and go to Step 1.  Itis required in this synthetic problem to extract the coarse-
7) The perturbation\z is rescaled to satisfy the trust regiormodel parameters whose response matches the fine-model

V. EXAMPLES

condition ||Az|| = 6. response at the point [2.2628 4.5259]This point is the
8) If [V(@] is equal to one, go to Step 6. optimal coarse-model design according to the specifications
9) If 228 is approaching a limit, stop. in [8].

10) Obtain a new perturbatiodz using (23) and use (24) The two models are matched using the reflection coefficients
to get Az.n,. Update§ and let V(+D) = y(@ y at 11 equally spaced frequencies in the frequency range

{z_gz;i;l)}' wherezr) =z, + Az, Seti =i+ 1 0.(?) GHz < f < 1.5 GHz. The fine-model refp?nse at
and go to Step 1. (), and the coarse-model response at the pefiit’ are

11) In Step 6, the eigenvalue problem is solved and t§OWn in Fig. 5. The contours ap(xz, V")) are shown in
perturbationAz is selected according to the Schemglg. 6. It is .clear from this f|ggre that there exist thrge locally
discussed in the previous section. This scheme m#fjidue minima for the extraction problem. The algorithm then
result in updating the trust region size. The a|gog_enerates a second perturbation using (23). TheV§&t is
rithm terminates if the vector of extracted coarsed!Ven by
model parameters obtained usindine-model points (2 _ {[2.26277 4.52592]F, [1.49975 4'76634]T}'
is close enough in terms of some norm to the vector of
extracted parameters obtained using 1 fine-model (28)
points. 1IMATLAB Version 5.0, The Math Works Inc., Natick, MA, 1997.
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Fig. 14. The fine-model response (0) and the corresponding coarse-model response (—): (a) at the first point, (b) at the second point, and (c) at the third
point utilized in the three-point parameter extraction for the HTS filter. Note that only points in the range from 3.967 to 4.099 GHz were actually used.

TABLE 1l TABLE 111
MATERIAL AND PHYSICAL PARAMETERS FOR THE COARSE AND FINE THE OPTIMAL COARSEMODEL DESIGN FOR THEHTS HLTER
MoODELS OF THEHTS HRLTER
Parameter Value
Model Parameter Coarse Model Fine Model
L 181.00

substrate difalectric constant 23.425 23.425 L, 201.59
substrate thickness (mil) 19.9516 19.9516 180.9
shielding cover height (mil) 100 250 Ls 97
conducting material thickness 0 0 S 20.12
substrate dielectric loss tangent 0 0 S 67.89
resistivity of metal (Qm) 0 0 2 ’
magnetic loss tangent 0 0 83 66.85
surface reactance (€)/sq) 0 0 - -
x-grid cell size (mil) 2.00 1.00 all values are in mils
y-grid cell size (mil) 1.75 1.75

as the termination condition is satisfied. The variation of the

The fine-model response for every pointii® and the coarse €Xtracted coarse-model point with | is given in Table I.

response at the corresponding extracted coarse-model point are ) ) )
shown in Fig. 7. The contours of this double-point extractio- The High-Temperature Superconducting Filter:
(DPE) are shown in Fig. 8. It is clear that there still exist two The fine model for the high-temperature superconducting

locally unique minima. Using (23), we have (HTS) filter [9] (Fig. 11) is simulated as a whole using
@) - _ T Sonnet'sem.? The “coarse” model is a decomposed Sonnet
V= {[2'26277 4525927, [1.49975 4.76634]", version of the fine model. This model exploits a coarser grid

than that used for the fine model. The physical parameters of
the coarse and fine models are given in Table II.

It is required to extract the coarse-model parameters corre-
nding to the fine-model parameters given in Table Ill. The
es in this table are the optimal coarse-model design ob-

[3.020 24 4.26855]T}. (29)

The fine-model response for each point in the B& and
the coarse-model response at the corresponding extrac%gﬁ
. S yalu
coarse-model point are shown in Fig. 9. The contours 0
Q(x, V®) are shown in Fig. 10. The algorithm terminates 2em, Sonnet Software Inc., Liverpool, NY, 1997.
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Fig. 15. The fine-model response (0) and the corresponding coarse-model response (—): (a) at the first point, (b) at the second point, (c) at the third
point, and (d) at the fourth point utilized in the four-point parameter extraction for the HTS filter. Note that only points in the range from 3.967 to

4.099 GHz were actually used.

TABLE IV
THE FINE-MODEL POINTS USED IN THE APE ALGORITHM FOR THE HTS RLTER

Parameter x0 x2 x4 x5
Ly 181.00 182.55 181.34 179.86
L, 201.59 205.64 205.38 197.74
L; 180.97 183.36 184.20 178.08
S 20.12 20.05 20.07 20.46
AV 67.89 68.40 68.08 67.35
S; 66.85 67.25 66.98 66.46

all values are in mils

tained using the minimax optimizer in OSA90/hépecording

to specifications given in [9]. We utilize the responses at 15
discrete frequencies in the range [3.967 GHz, 4.099 GHz] in
the parameter-extraction process.

The algorithm first started by applying SPE whéré)
contains only the point given in the first column of Table IV.
The pointzigl) is given in Table V. Fig. 12 shows the fine-
mc(Jld)eI response ax'l) and the coarse-model response at
Tos .

The algorithm detected that this extracted point is a locally

TABLE V

THE VARIATION IN THE EXTRACTED PARAMETERS FOR THEHTS RLTER WITH

THE NUMBER OF FINE-MODEL POINTS

Parameter xe X3 x2& AR
L 188.31 179.99 176.67 178.50
L, 197.69 204.52 208.52 206.78
Ls 189.72 181.23 178.00 179.09
S 19.34 17.13 17.21 18.99
S, 52.67 63.44 56.52 57.99
S5 52.06 53.18 53.47 56.77

all values are in mils

TABLE VI
THE OPTIMAL COARSEMODEL DESIGN FOR THEDFS HLTER

Parameter Value
L 66.73
L, 60.23
S 9.59

all values are in mils

unigue minimum. A new fine-model point is then generate&, solving the eigenvalue problem (23). A DPE step is then

- (2) . . .
30SA90/hope Version 4.0, formerly Optimization Systems Associates In&?‘med out. Th_e set’ includes the points gIV. @) .
second and third columns of Table IV. The poinf;~ is

Dundas, Ont., Canada, now HP EEsof Division, Santa Rosa, CA.

en in the
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TABLE VII
THE FINE-MODEL PoINTS USED IN THE APE ALGORITHM FOR THE DFS HLTER

Parameter  x$) X XG0 X X8 kB L XD KD
L 66.73 6772 6132  66.15 70.60 6766 62.82 6580 66.57
L 6023 63.58 6413 5633 5948 64.10 60.88 5636 59.85
s 959 927 948 971 971 966 950 952 1026

all values are in mils

TABLE VI
THE VARIATION IN THE EXTRACTED PARAMETERS FOR THEDFS HLTER WITH THE
NumBER OF FINE-MODEL POINTS

Parameter  x&" X2 B4 SO 4 U4 A1 SO B OB 4 S 4
L 58.01 67.05 66.11 6436 5646 66.10 5650 56.39 56.59
L 38.40 40.47 4040 4328 4294 4202 42.81 43.00 43.02
S 3.24 6.86 6.64 8.83 18.10 7.99 18.25 17.93 17.87

all values are in mils

w, ¥ (. { }
2T al 24l al
4 [ L S
w, = Cn == Cn
T
: — o I
b Lo — I I sl 2al al

Fig. 16. The DFS filter [1]. ~Cn ~Cnm
given in Table V. Fig. 13 shows the fine-model responses N oW, —IA:/I

at the two utilized fine-model points and the responses at ,

the corresponding extracted coarse-model points, respectivEf§, 17~ The coarse model of the DFS filter.

Again, the algorithm detected that the extracted point is locally

unique and a new fine-model point is generated and addee coarse model exploits the microstrip line and microstrip
to the set of points. The same steps were then repeated fgunction models available in OSA90/hope. The coupling
three- and four-point parameter extraction. The points utilizésétween the folded stubs and the microstrip line is simulated
are given in Table IV. The results are shown in the fourthsing equivalent capacitors. The values of these capacitors is
and fifth columns of Table V. It is clear that the extractegetermined using Walker's formulas [11]. Jansen’s microstrip
parameters are approaching a limit. The fine-model responggsd model [12] is used to model the folding effect of the
and the responses at the corresponding extracted coarse-mgg@. The coarse model is shown in Fig. 17.

points for the last two iterations are shown in Figs. 14 and |t js required in this example to extract the coarse-model
15, respectively. Fig. 15(a) demonstrates that a good magé}ameters corresponding to the fine-model parameters given

between the responses of both models over a wider rang&pfraple V. This vector is the optimal design of the coarse
frequencies than that used for parameter extraction is achievgeggel obtained by minimax optimization.

The algorithm started by applying SPE using the fine-model
C. Double-Folded Stub Filter point given in Table VI. Fig. 18 shows the fine-model response
We consider the design of the double-folded stub (DF®)z'% and the coarse-model response at the peift. The
microstrip structure shown in Fig. 16 [1]. Folding the stubalgorithm detected that the extracted parameters are locally
reduces the filter area with respect to the conventional doublgtique. A new fine-model point is generated using (23) and
stub structure [10]. The filter is characterized by five paranadded to the set of fine-model points used for the MPE. The
eters:Wy, Wy, S, Ly, and L. Ly, Lo, and S are chosen as algorithm needed nine iterations to trust the extracted coarse-
optimization variablesWW,; and W, are fixed at 4.8 mil. The model parameters. The fine-model points utilized are given in
fine model is simulated by HP HFSSrough HP Empipe3D. Table VII and the extracted coarse-model points are given in
4HP HFSS Version 5.2, HP EEsof Division, Santa Rosa, CA, 1998.  rable VIII. Fig. 19 shows the fine-model reSponS@gﬁ and
SHP Empipe3D Version 5.2, HP EEsof Division, Santa Rosa, CA, 1998.the coarse-model response at the pajiff).
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1.00 Fig. 20 shows the change of(z5"”, V) and
\ /\ Qs V@) with [V®|. The value of Q(z:”, V)
075 remains almost constant and small in value. On the other
hand, the value of)(z5{", V@) increases significantly with
_ each new point added to the set of utilized fine-model points
& 050 / signaling a false minimum.

0.25 VI. CONCLUSIONS
\ ’\/ An APE algorithm has been proposed. Our APE algorithm

addresses the optimal selection of parameter perturbations used
to improve the uniqueness of a multipoint parameter-extraction
procedure. New parameter perturbations are generated based
Fig. 18. The fine-model response (o) and the corresponding coarse-mqgflthe nature of the minimum reached in the previous iteration.

3 10 12 14 16 18 20
frequency (GHz)

response (—) at the point,"’ for the DFS filter. We consider possibly locally unique and locally nonunique
minima. The suggested perturbations in each of these two cases
1.00 _ are obtained either by solving a system of linear equations
or by solving an eigenvalue problem. The APE algorithm
continues until the extracted coarse-model parameters can be
0.7 trusted. The algorithm is successfully demonstrated through
; the parameter extraction of microwave filters and impedance
B 050 \ transformers.
0.25 \ APPENDIX
\ / Let the two setsS and S, be defined as in (9) and (10),
0 SN L, respectively. We impose the condition that every gradient on
8 10 12 14 16 18 20 the setS, should be orthogonal to all gradients in the Set
frequency (GHz) It follows that

Fig. 19. The fine-model response (0) and the corresponding coarse-model T () ) )
response (—) at the point:l” for the DFS filter. 9,97 =0 VgW’ e Sandvg,’ €5S,. (30)

However, each gradient in the s&t can be approximated by

g = ¢ + GV Ax, i=k+1, -, n (31)

where g is the gradient of theith response at the point
z¢, andG is the corresponding Hessian. It follows that the
condition (30) can be restated as
gIT g = — gDTGD AL, G=1, -, ks
i=k+1, . n (32)

O, )

Equation (32) is a linear equation i unknowns (the com-
ponents ofAz). There arek(n — k) such linear equations.
Putting these equations into a matrix form, we have

BAz = —¢ (33)
i where themth row of the matrixB is
. I (i) ) . e(1) . . ]
Fig. 20. The vanatlor.1 ogg)z, Vi) for the DFS filter at the .pom:t:o.s. BT :g(J)TG'(z)7 i=k+1, -, n;
(—=*—) and at the pointz,s ' (— 0 —) with the number of points utilized )
for parameter extraction. 7=1 -k (34)

wherem = (i — k — 1)k + j. Similarly, themth component
Table VIII shows the large relative change in parametef the vectore is
values between the first set of extracted paramet%&l% and
the trusted set of parametet§§9). If the step taken by any
SM optimization algorithm utilizeg<{", the algorithm would

1=g(j)Tg(i), i=k+1 -,nj=1,, k.
(35)

Cpn,

have probably failed. Thus, (13) follows.
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