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An Aggressive Approach to Parameter Extraction
Mohamed H. Bakr,Student Member, IEEE, John W. Bandler,Fellow, IEEE,and Natalia Georgieva,Member, IEEE

Abstract— A novel aggressive parameter-extraction (APE)
algorithm is presented. Our APE algorithm addresses the
optimal selection of parameter perturbations used to increase
trust in parameter-extraction uniqueness. The uniqueness of
the parameter-extraction problem is crucial especially in the
space-mapping approach to circuit design. We establish an
appropriate criterion for the generation of these perturbations.
The APE algorithm classifies possible solutions for the parameter
extraction problem. Two different approaches for obtaining
subsequent perturbations are utilized based on a classification of
the extracted parameters. The examples include the parameter
extraction of a decomposed electromagnetic model of a high-
temperature superconducting filter. The parameter extraction
of an empirical model of a double-folded stub filter is also
carried out.

Index Terms—Design automation, electromagnetic simulation,
microstrip filters, optimization methods, parameter extraction,
space mapping, waveguide filters.

I. INTRODUCTION

PARAMETER extraction is important in device modeling
and characterization. It also plays a crucial role in space-

mapping (SM) technology [1]–[3]. Optimization approaches to
parameter extraction often yield nonunique solutions. In SM
optimization, this nonuniqueness may lead to divergence or
oscillatory behavior.

We present an “aggressive” approach to parameter ex-
traction. While generally applicable, the new algorithm is
discussed here in the context of SM technology. We assume the
existence of a “fine” model that generates the target response
and a “coarse” model whose parameters are to be extracted.

Several authors have addressed nonuniqueness in parameter
extraction. For example, Bandleret al. [4] proposed the
idea of making unknown perturbations to a certain system
whose parameters are to be extracted. Bandleret al. [5] later
suggested that multipoint extraction (MPE) be used to match
the first-order derivatives of the two models to ensure a
global minimum. The perturbations used in that approach are
predefined and arbitrary. The optimality of the selection of
those perturbations was not addressed. Recently, a recursive
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MPE technique was suggested by Bakret al.[3]. This approach
employs a mapping between the two models to enhance
uniqueness.

Our algorithm aims at minimizing the number of pertur-
bations used in the MPE process by utilizing perturbations
that significantly improve the uniqueness in each iteration.
Consequently, we designate this as an aggressive parameter-
extraction (APE) algorithm. Each perturbation requires an
additional fine-model simulation that could be very central
processing unit (CPU) intensive. We classify the different
solutions returned by the MPE process and, based on this
classification, a new perturbation that is likely to sharpen the
result is suggested.

II. PARAMETER EXTRACTION

The objective of parameter extraction is to find a set of
parameters of a model whose response matches a given set of
measurements. It can be formulated as

(1)

where is the vector of given measurements, is the
vector of circuit response, and is the vector of extracted
parameters. In the context of SM, the fine-model response

, typically from an electromagnetic simulator, at a certain
point supplies the target response . Fig. 1 illustrates
the single-point extraction (SPE) for the two-dimensional
case. An MPE procedure [5] was suggested to improve the
uniqueness of the step. The vector of extracted coarse model
parameters should satisfy

(2)

where

(3)

and

(4)

The set of perturbations in the coarse-model space is rep-
resented by , where and

. is the corresponding perturbation in the
fine-model space. The perturbations and in this
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Fig. 1. Illustration of the SPE procedure.

Fig. 2. Illustration of the MPE procedure.

Fig. 3. Illustration of the relationship between the generated setsV (i), the fine-model pointsxxx(i)em, and the extracted coarse-model pointsxxx
e(i)
os generated

by the APE algorithm.

MPE procedure are related by

(5)

It follows that the solution of (2) simultaneously matches the
responses of a set of corresponding points in both spaces.

Bakr et al. [3] suggested that the perturbations utilized in
(2)–(4) should satisfy

(6)

The matrix approximates the mapping between the two
spaces. In the context of SM, (6) is superior to (5), as it
integrates the available mapping into the MPE procedure.

It is also suggested in [3] that the parameter-extraction step
terminates if the vector of extracted parameters approaches a
limit.

The perturbations used in [3] are not guaranteed to result in
significant improvement in the uniqueness of the extracted pa-
rameters. A large number of additional fine-model simulations
may be needed to ensure the uniqueness of the step.

For both (5) and (6), the set of fine-model points utilized
in MPE is

(7)

Fig. 2 illustrates the MPE procedure.
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Fig. 4. The flowchart of the APE algorithm.

III. T HE SELECTION OF PERTURBATIONS

The vector of coarse-model responsesused to match the
two models is given by

...
(8)

The dimensionality of is , where
and is the dimensionality of both and . Vector

is labeled locally unique [6] if there exists an open
neighborhood of containing no other point such that

. Otherwise, it is labeled locally nonunique.
It was shown in [6] that the local uniqueness condition is
equivalent to the condition that the Jacobian ofhas rank ,
where is the number of parameters.

To achieve local uniqueness, it was suggested in the context
of system identification [4] that increasing the number of
perturbations enhances the possibility that the Jacobian matrix

of becomes full rank. The perturbations suggested in [4]
were unidentified perturbations and, thus, result in an increase
in the number of the optimizable parameters. However, it was
pointed out that the improvement in the rank ofoutweighs
the increase in the number of parameters.

In a later work, the idea of using known perturbations
to achieve global uniqueness of parameter extraction was
introduced [5]. By global uniqueness, we mean that there exists
only one minimum for the MPE problem.

Assume that a locally nonunique minimum is obtained
using the current set of coarse-model perturbations. Here,
the rank of the Jacobian of is , where and is
the number of parameters. We suggest a perturbationthat
attempts to increase the rank of the Jacobian of the responses
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Fig. 5. The responses of the given fine-model point (o) and the coarse-model
response (—) at the pointxxxe(1)os for the 10 : 1 impedance transformer.

Fig. 6. The contours ofQ(xxx; V (1)) for the 10 : 1 impedance transformer.

corresponding to the augmented set at by at
least one. This is achieved by imposing the condition that
the gradients of of the coarse-model responses in the
new response vector be normal to a linearly
independent set of gradients of cardinalityof the responses
in the vector at the point . We denote the set of linearly
independent gradients by where

(9)

We denote the set of the gradients of the newly selected
responses in by , where

(10)

Each of these gradients is approximated by

(11)

where is the gradient of theth response at the point
and is the corresponding Hessian. The imposed condition
on the perturbation is that

and (12)

Using (11) and (12), the perturbation is obtained by
solving the system of linear equations

(13)

where the matrix is given by

(14)

and the vector is given by

...

...

(15)

A complete derivation of (13) is given in the Appendix. It
should be noted that the system of linear equations (13) may
be an over-determined, under-determined, or well-determined
system of equations depending onand . The pseudoinverse
of the matrix obtains the solution with minimum norm
in all cases. The fact that this solution is a minimum length
solution is of importance since (13) is based on a linear
approximation of the gradients, which can only be trusted
within a certain trust region. If the perturbation is outside
this trust region, it is rescaled.

If the minimum obtained by the MPE is locally unique,
we still have to ensure that this is the true solution to the
extraction problem. The following lemma leads to a robust
way to weaken any other existing locally unique minimum.

Lemma: Assume that there exist two locally unique minima
and for the MPE problem obtained using least

squares optimization and a set of perturbations. A possible
perturbation that can be added to the set and can be
used to weaken one of these minima as a solution for the MPE
is in the direction of an eigenvector for the matrix
where and are the Hessian matrices for theobjective
function at the points and , respectively.

Proof: We denote by , the value of the
objective function of the MPE problem at a coarse-model point

using a set of fine-model points, where is given by (7).
The quadratic approximations of in a neighborhood
centered at the two locally unique minima and ,
respectively, are given by

(16)

(17)

The perturbation that results in the maximum difference
between the two quadratic models (16) and (17) for a specific
trust region is obtained by formulating the Lagrangian

(18)

Taking the derivative with respect to gives

(19)
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(a) (b)

Fig. 7. The fine-model response (o) and the corresponding coarse-model response (—): (a) at the first point and (b) at the second point utilized in the
DPE for the 10 : 1 impedance transformer.

Fig. 8. The contours ofQ(xxx; V (2)) for the 10 : 1 impedance transformer.

It follows that is an eigenvector of the matrix .
provides a direction that maximizes the difference between

the quadratic models. In other words, it provides a perturbation
that maximizes the contrast between the changes of the coarse
model responses at these two minima. It follows that the true
minimum is the one whose response changes match better
the changes of the fine-model responses obtained using the
fine-model perturbation corresponding to .

A similar result to that obtained in (19) can be obtained
using a different approach. Assume that a perturbation of
is sought. This perturbation results in a perturbation of the
coarse model responses at the two minima by

(20)

and

(21)

where is the Jacobian of the coarse-model response
. We impose the condition that the difference between the

norms of these two response perturbations be maximized

subject to certain trust region size. Therefore, the following
Lagrangian can be formed:

(22)

Using a similar approach to that used in deriving (19), it can
be shown that the perturbation is obtained by solving the
eigenvalue problem

(23)

The two perturbations (19) and (23) can be shown to be almost
identical by writing the Hessian matrix of in terms
of the Jacobian of the coarse-model responses [7]. However,
the perturbation calculated in (23) is more computationally
efficient than that of (19).

There is one substantial difficulty in the exact evaluation of
the perturbation given by (19). Once a locally unique minimum
is reached, the Hessian of at this point can be obtained
while no information is available about the Hessian at the
other locally unique minima that may exist. In such a case,
a reasonable assumption is to take , the identity ma-
trix or alternatively take as the identity
matrix in (23). This assumption implies that no information
is available about the curvature of the objective function at
the other minima. It follows that is an eigenvector of the
matrix .

The perturbation given by (23) is a suggested perturbation in
the coarse-model space. The new fine-model point that should
be added to the set is where is obtained
by solving the system of linear equations

(24)

The relation (24) is used if some information is available about
the mapping between the two spaces. However, in most cases,
we make the assumption that .
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(a) (b)

(c)

Fig. 9. The fine-model response (o) and the corresponding coarse-model response (—): (a) at the first point, (b) at the second point, and (c) at the third
point utilized in the three-point parameter extraction for the 10 : 1 impedance transformer.

Fig. 10. The contours ofQ(xxx; V (3)) for the 10 : 1 impedance transformer.

Fig. 11. The HTS filter [9].

The scheme that we utilized for the selection of points in
(23) is as follows. First, the eigenvalue problem is solved.
The eigenvector with the largest eigenvalue in modulus is

Fig. 12. The fine-model response (o) and the corresponding coarse-model
response (—) at the point utilized in the SPE for the HTS filter. Note that
only points in the range from 3.967 to 4.099 GHz were actually used.

initially selected as the candidate eigenvector. The suggested
perturbation in this case is

(25)

where is the current size of the trust region. This perturbation
is tested to see whether it belongs to the current set of
perturbations. It follows that is rejected if the condition

(26)

is satisfied for a perturbation , where is a
small number. In this case, the alternative perturbation

(27)
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(a) (b)

Fig. 13. The fine-model response (o) and the corresponding coarse-model response (—): (a) at the first point and (b) at the second point utilized in the
DPE for the HTS filter. Note that only points in the range from 3.967 to 4.099 GHz were actually used.

is tested against the condition (26). If it also fails, we switch
to the eigenvector with second largest eigenvalue in modulus
and repeat steps (25)–(27). This is repeated until either a
perturbation is found such that (26) is not satisfied or all the
eigenvectors are exhausted for perturbations of length. In
this case, the trust region sizeis scaled by where .
The perturbation is then taken in the direction of eigenvector
with largest eigenvalue in modulus.

IV. THE APE ALGORITHM

In this section, we present the APE algorithm for the MPE
process. This algorithm is based on the two methods discussed
in the previous section, and is given by the following steps.

1) Given , , and . Initialize , where
and set .

2) The set contains the points used for the MPE in the
th iteration. The index is equal to , the cardinality

of .
3) Apply MPE using the set to get .
4) The point is the solution to the MPE problem

obtained using the set .
5) If the Jacobian of at has full rank, go to Step 4.
6) Obtain a new perturbation using (13), use (24) to

get and let , where
. Set and go to Step 1.

7) The perturbation is rescaled to satisfy the trust region
condition .

8) If is equal to one, go to Step 6.
9) If is approaching a limit, stop.
10) Obtain a new perturbation using (23) and use (24)

to get . Update and let
, where . Set

and go to Step 1.
11) In Step 6, the eigenvalue problem is solved and the

perturbation is selected according to the scheme
discussed in the previous section. This scheme may
result in updating the trust region size. The algo-
rithm terminates if the vector of extracted coarse-
model parameters obtained usingfine-model points
is close enough in terms of some norm to the vector of
extracted parameters obtained using fine-model
points.

TABLE I
THE VARIATION OF THE EXTRACTED PARAMETERS FOR THE10 : 1 IMPEDANCE

TRANSFORMER WITH THE NUMBER OF FINE-MODEL POINTS

Fig. 3 illustrates the relationship between the generated sets
, the fine-model points , and the extracted coarse-

model points . A flowchart of the APE algorithm is shown
in Fig. 4. The current implementation of the algorithm is in
MATLAB. 1

V. EXAMPLES

A. 10 : 1 Impedance Transformer

The first example is the well-known 10 : 1 impedance trans-
former [8]. The parameters for this problem are the character-
istic impedance of the two transmission linesand while
the two lengths of the transmission lines are kept fixed at their
optimal values (quarter-wavelength). The coarse model utilizes
nonscaled parameters, while a “fine” model scales each of the
two impedances by a factor of 1.6.

It is required in this synthetic problem to extract the coarse-
model parameters whose response matches the fine-model
response at the point [2.2628 4.5259]. This point is the
optimal coarse-model design according to the specifications
in [8].

The two models are matched using the reflection coefficients
at 11 equally spaced frequencies in the frequency range

GHz GHz. The fine-model response at
and the coarse-model response at the point are

shown in Fig. 5. The contours of are shown in
Fig. 6. It is clear from this figure that there exist three locally
unique minima for the extraction problem. The algorithm then
generates a second perturbation using (23). The set is
given by

(28)
1MATLAB Version 5.0, The Math Works Inc., Natick, MA, 1997.
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(a) (b)

(c)

Fig. 14. The fine-model response (o) and the corresponding coarse-model response (—): (a) at the first point, (b) at the second point, and (c) at the third
point utilized in the three-point parameter extraction for the HTS filter. Note that only points in the range from 3.967 to 4.099 GHz were actually used.

TABLE II
MATERIAL AND PHYSICAL PARAMETERS FOR THECOARSE AND FINE

MODELS OF THE HTS FILTER

The fine-model response for every point in and the coarse
response at the corresponding extracted coarse-model point are
shown in Fig. 7. The contours of this double-point extraction
(DPE) are shown in Fig. 8. It is clear that there still exist two
locally unique minima. Using (23), we have

(29)

The fine-model response for each point in the set and
the coarse-model response at the corresponding extracted
coarse-model point are shown in Fig. 9. The contours of

are shown in Fig. 10. The algorithm terminates

TABLE III
THE OPTIMAL COARSE-MODEL DESIGN FOR THEHTS FILTER

as the termination condition is satisfied. The variation of the
extracted coarse-model point with is given in Table I.

B. The High-Temperature Superconducting Filter:

The fine model for the high-temperature superconducting
(HTS) filter [9] (Fig. 11) is simulated as a whole using
Sonnet’s .2 The “coarse” model is a decomposed Sonnet
version of the fine model. This model exploits a coarser grid
than that used for the fine model. The physical parameters of
the coarse and fine models are given in Table II.

It is required to extract the coarse-model parameters corre-
sponding to the fine-model parameters given in Table III. The
values in this table are the optimal coarse-model design ob-

2
ememem, Sonnet Software Inc., Liverpool, NY, 1997.
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(a) (b)

(c) (d)

Fig. 15. The fine-model response (o) and the corresponding coarse-model response (—): (a) at the first point, (b) at the second point, (c) at the third
point, and (d) at the fourth point utilized in the four-point parameter extraction for the HTS filter. Note that only points in the range from 3.967 to
4.099 GHz were actually used.

TABLE IV
THE FINE-MODEL POINTS USED IN THE APE ALGORITHM FOR THE HTS FILTER

tained using the minimax optimizer in OSA90/hope3 according
to specifications given in [9]. We utilize the responses at 15
discrete frequencies in the range [3.967 GHz, 4.099 GHz] in
the parameter-extraction process.

The algorithm first started by applying SPE where
contains only the point given in the first column of Table IV.
The point is given in Table V. Fig. 12 shows the fine-
model response at and the coarse-model response at

.
The algorithm detected that this extracted point is a locally

unique minimum. A new fine-model point is then generated

3OSA90/hope Version 4.0, formerly Optimization Systems Associates Inc.,
Dundas, Ont., Canada, now HP EEsof Division, Santa Rosa, CA.

TABLE V
THE VARIATION IN THE EXTRACTED PARAMETERS FOR THEHTS FILTER WITH

THE NUMBER OF FINE-MODEL POINTS

TABLE VI
THE OPTIMAL COARSE-MODEL DESIGN FOR THEDFS FILTER

by solving the eigenvalue problem (23). A DPE step is then
carried out. The set includes the points given in the
second and third columns of Table IV. The point is
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TABLE VII
THE FINE-MODEL POINTS USED IN THE APE ALGORITHM FOR THE DFS FILTER

TABLE VIII
THE VARIATION IN THE EXTRACTED PARAMETERS FOR THEDFS FILTER WITH THE

NUMBER OF FINE-MODEL POINTS

Fig. 16. The DFS filter [1].

given in Table V. Fig. 13 shows the fine-model responses
at the two utilized fine-model points and the responses at
the corresponding extracted coarse-model points, respectively.
Again, the algorithm detected that the extracted point is locally
unique and a new fine-model point is generated and added
to the set of points. The same steps were then repeated for
three- and four-point parameter extraction. The points utilized
are given in Table IV. The results are shown in the fourth
and fifth columns of Table V. It is clear that the extracted
parameters are approaching a limit. The fine-model responses
and the responses at the corresponding extracted coarse-model
points for the last two iterations are shown in Figs. 14 and
15, respectively. Fig. 15(a) demonstrates that a good match
between the responses of both models over a wider range of
frequencies than that used for parameter extraction is achieved.

C. Double-Folded Stub Filter

We consider the design of the double-folded stub (DFS)
microstrip structure shown in Fig. 16 [1]. Folding the stubs
reduces the filter area with respect to the conventional double-
stub structure [10]. The filter is characterized by five param-
eters: , , , , and . , , and are chosen as
optimization variables. and are fixed at 4.8 mil. The
fine model is simulated by HP HFSS4 through HP Empipe3D.5

4HP HFSS Version 5.2, HP EEsof Division, Santa Rosa, CA, 1998.
5HP Empipe3D Version 5.2, HP EEsof Division, Santa Rosa, CA, 1998.

Fig. 17. The coarse model of the DFS filter.

The coarse model exploits the microstrip line and microstrip
T-junction models available in OSA90/hope. The coupling
between the folded stubs and the microstrip line is simulated
using equivalent capacitors. The values of these capacitors is
determined using Walker’s formulas [11]. Jansen’s microstrip
bend model [12] is used to model the folding effect of the
stub. The coarse model is shown in Fig. 17.

It is required in this example to extract the coarse-model
parameters corresponding to the fine-model parameters given
in Table VI. This vector is the optimal design of the coarse
model obtained by minimax optimization.

The algorithm started by applying SPE using the fine-model
point given in Table VI. Fig. 18 shows the fine-model response
at and the coarse-model response at the point . The
algorithm detected that the extracted parameters are locally
unique. A new fine-model point is generated using (23) and
added to the set of fine-model points used for the MPE. The
algorithm needed nine iterations to trust the extracted coarse-
model parameters. The fine-model points utilized are given in
Table VII and the extracted coarse-model points are given in
Table VIII. Fig. 19 shows the fine-model response at and
the coarse-model response at the point .
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Fig. 18. The fine-model response (o) and the corresponding coarse-model
response (—) at the pointxxxe(1)os for the DFS filter.

Fig. 19. The fine-model response (o) and the corresponding coarse-model
response (—) at the pointxxxe(9)os for the DFS filter.

Fig. 20. The variation ofQ(xxx; V (i)) for the DFS filter at the pointxxxe(1)os

(— �—) and at the pointxxxe(9)os (— o —) with the number of points utilized
for parameter extraction.

Table VIII shows the large relative change in parameter
values between the first set of extracted parameters and
the trusted set of parameters . If the step taken by any
SM optimization algorithm utilizes , the algorithm would

have probably failed.

Fig. 20 shows the change of , and
with . The value of

remains almost constant and small in value. On the other
hand, the value of increases significantly with
each new point added to the set of utilized fine-model points
signaling a false minimum.

VI. CONCLUSIONS

An APE algorithm has been proposed. Our APE algorithm
addresses the optimal selection of parameter perturbations used
to improve the uniqueness of a multipoint parameter-extraction
procedure. New parameter perturbations are generated based
on the nature of the minimum reached in the previous iteration.
We consider possibly locally unique and locally nonunique
minima. The suggested perturbations in each of these two cases
are obtained either by solving a system of linear equations
or by solving an eigenvalue problem. The APE algorithm
continues until the extracted coarse-model parameters can be
trusted. The algorithm is successfully demonstrated through
the parameter extraction of microwave filters and impedance
transformers.

APPENDIX

Let the two sets and be defined as in (9) and (10),
respectively. We impose the condition that every gradient on
the set should be orthogonal to all gradients in the set.
It follows that

and (30)

However, each gradient in the set can be approximated by

(31)

where is the gradient of theth response at the point
and is the corresponding Hessian. It follows that the

condition (30) can be restated as

(32)

Equation (32) is a linear equation in unknowns (the com-
ponents of ). There are such linear equations.
Putting these equations into a matrix form, we have

(33)

where the th row of the matrix is

(34)

where . Similarly, the th component
of the vector is

(35)

Thus, (13) follows.
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