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Abstract—For the first time, we present modeling of mi- 3) frequency space-mapped neuromodeling (FSMN);

crowave circuits using artificial neural networks (ANN's) based 4) frequency-mapped neuromodeling (FMN);

on space-mapping (SM) technology. SM-based neuromodels de- 5) frequency partial-space-mapped neuromodeling
crease the cost of training, improve generalization ability, and (FPSM)

reduce the complexity of the ANN topology with respect to
the classical neuromodeling approach. Five creative techniques Except for SMN, all these approaches establish a frequency-

are proposed to generate SM-based neuromodels. A frequency-sensitive neuromapping to expand the frequency region of
sensitive neuromapping is applied to overcome the limitations of accuracy of the empirical models already available for mi-

empirical models developed under quasi-static conditions. Huber ts that d | d usi i_stati
optimization is used to train the ANN'’s. We contrast SM-based crowave components that were developed using quasi-static

neuromodeling with the classical neuromodeling approach as well @nalysis. We contrast our approach with the classical neu-
as with other state-of-the-art neuromodeling techniques. The SM- romodeling approach, as well as with other state-of-the-art
based neuromodeling techniques are illustrated by a microstrip neuromodeling techniques.
bend and a high-temperature superconducting filter. Huber optimization is used to efficiently train the ANN’s
Index Terms—CAD, design automation, microstrip filters, mi- as a powerful alternative to the popular backpropagation
crowave circuits, neural network applications, neuromodeling, algorithm [1]. The SM-based neuromodeling techniques are
neural space mapping, optimization methods, space mapping. jjjystrated by two case studies: a microstrip right-angle bend
and a high-temperature superconducting (HTS) quarter-wave
|. INTRODUCTION parallel coupled-line microstrip filter.

POWERFUL new concept in neuromodeling of mi-
crowave circuits based on space-mapping (SM) tech-
nology is presented. The ability of artificial neural networks . SM CONCEPT

(ANN’'s) to model high-dimensional and highly nonlinear SM is a novel concept for circuit design and optimiza-

problems is exploited in the implementation of the SM cony,, “\yhich combines the computational efficiency of coarse
cept. By taking advantage of the vast set of empirical modeig, je|s with the accuracy of fine models. The coarse models
already avallable,_SM-baseo_I neur(_)models dec_re_ase _the nu”?;psrtypically empirical equivalent-circuit engineering models,
of elect_ron_]agnet_lc_: (EM) simulations for tralr_ung, IMPrOV&hich are computationally very efficient, but often have a
generalization ability, and reduce the complexity of the AN itaq validity range for their parameters, beyond which the
topology with respect to the classical neuromodeling approagyy, jation results may become inaccurate. On the other hand,
The following five innovative techmques are_pro_posed tQetailed or “fine” models can be provided by an electromag-
create SM-based neuromodels for microwave circuits: e (EM) simulator or even by direct measurements: they

1) space-mapped neuromodeling (SMN); are very accurate, but central processing unit (CPU) intensive.
2) frequency-dependent space-mapped neuromodelifige SM technique establishes a mathematical link between
(FDSMN); the coarse and the fine models, and directs the bulk of CPU
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such that Fig. 2. EM-ANN neuromodeling concept [6].
R. (P(zf)) ~ Ry(xy). @) g
L A R
Once the mapping is found, the coarse model can be used X fine L
. . x »  model
for fast and accurate simulations. Iz
[Il. N EUROMODELING MICROWAVE CIRCUITS | ANN ~R,
The ability to learn and generalize from data, the nonlinear e coarse Rc,
processing nature, and the massively parallel structure make model
the ANN particularly suitable in modeling high-dimensional w
and highly nonlinear problems, as in the case of microwa¥. 3. PKI neuromodeling concept [6].
circuits.
The size of an ANN model does not grow exponentially freq R
with dimension and, in theory, can approximate any degree 1 ﬁ'(‘jel !
of nonlinearity to any desired level of accuracy, provided a Xy e
deterministic relationship between input and target exists [3]. P
The most widely used ANN paradigm in the microwave arena empirical
[1] is the multilayer perceptron (MLP), which is usually trained L.»] input | /| functions NJoutput R ~R,
by the well-established backpropagation algorithm. | layer layer |1
ANN models are computationally more efficient than EM or ;\ |
physics-based models and can be more accurate than empirical ; w? o '

models. It has been demonstrated [4], [5] that ANN's are _
suitable models for microwave circuit yield optimization anéfig- 4. KBNN neuromodeling concept [7].

statistical design. ) , )
J d fine model is used to train the corresponding ANN,

For microwave problems, the learning data is usualfy ™ A . !
obtained by either EM simulation or by measuremen S illustrated in Fig. 2, reducing the number of fine model

Large amounts of learning data are typically needed %mulatirc]ms due toszimplerhinput—output Zjel?tlonshlp_. q
ensure model accuracy. This is very expensive since thd 0f the PKI method [6], the coarse model output is use
simulation/measurements must be performed for mafly MPUt for the ANN in addition to the other inputs (physical
combinations of different values of geometrical, materigParameters and frequencly). Thel ANl\:]lsfFralneddsulch that its
process, and input signal parameters. This is the princip&FPONSe IS approximately equal to the fine model response,

drawback of classical ANN modeling. Without sufficienf> illustrated in Fig. 3. The PKI approach _has shown better
learning samples, the neural models may not be reliable. accuracy than the EM-ANN approach, but it requires a more

A popular alternative to reduce the dimension of the Iearnir?é)mplﬁx ANN. h h ) irical
set is to carefully select the learning points using the design!”, e KBNN approach [7], the microwave empirical or
of experiments (DoE) methodology. Another way to spe mianalytical |nformat|on_|s mcorpo_rate_d into the internal
up the learning process is proposed in [1] by means Btlr“]?tlljlre of the ':NN’ as Illlustra;;[edlm Fig. 4 K%NN share'
preliminary neural clusterization of similar responses usirﬂfn ully connected networks, with a layer assigned to the mi-
the self-organizing feature map (SOM) approach. Crowave kn(_)wledge in the f(_Jr_m of smgle or multidimensional

Innovative strategies have been proposed to reduce {chtlons. Since these empirical functions are used for some
learning data needed and to improve the generalization Qeurons instead of standard activation functions, KBNN’s do
pabilities of an ANN by incorporating empirical models: thé‘hOt folkl]ow a regulgr MILP aEd are tral_ned using methods other
hybrid EM-ANN modeling approach, the prior knowledgé an the conventional backpropagation.
input (PKI) modeling method, and the knowledge-based ANN
(KBNN) approach. IV. SM-BASED NEUROMODELING

In the hybrid EM-ANN modeling approach [6], the dif- We propose innovative schemes to combine SM technology
ference inS-parameters between the available coarse moaaid ANN for the modeling of high-frequency components. The
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R
f coarse Rc ~ Rf TABLE |
model — REGION OF INTEREST FOR THEMICROSTRIP RIGHT-ANGLE BEND
Parameter ~ Minimum value  Maximum value
Fig. 8. FMN concept. W 20 mil 30 mil
H 8 mil 16 mil
& 8 10

fundamental idea is to construct a nonlinear multidimensional
vector mapping function” from fine to coarse input space
using an ANN. This can be done in a variety of ways, to make
better use of the coarse-model information for developing the ) ] ]
neuromodel. The implicit knowledge in the coarse model nBESPONSe is as close as possible to the fine model response for
only allows us to decrease the number of learning poinfid_the learning points. _ S
needed, but also to reduce the complexity of the ANN and The mapping can be found by solving the optimization
to improve the generalization performance. problem

In the SMN approach, _thg mapping from the fine to j[he min [[[¢f & ... 7 (3)
coarse parameter space is implemented by an ANN. Fig. 5 w
illustrates the SMN concept. We have to find the optimal set afhere vectorw contains the internal parameters of the neural
the internal parameters of the ANN, such that the coarse modetwork (weights, bias, etc.) selected as optimization variables,

freq 1 GHz 41 GHz
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Fig. 13. Comparison betweesm and SMN model of a right-angle bend. (a) Error| 81| with respect teem (b) Error in|S21| with respect toem

[ is the total number of learning samples, andis the error TABLE I
vector given by REGION OF INTEREST FOR THEHTS RLTER
ex = Ry(x ., freq;) — Ro(a., freg;) (4a) Parameter ~ Minimum value ~ Maximum value
x, =P(xy,) (4b) w 7 mil 7 mil
) H 20 mil 20 mil
with & 23.425 23.425
. loss tang 3%107° 3x107°
i=1,---,B, (5a) Lo 50 mil 50 mil
j=1,-,F, (5b) L 175 mil 185 mil
) . L, 190 mil 210 mil
k=j+F(i—1) (5¢) L 175 mil 185 mil
. - . . S1 18 mil 22 mil
where B, is the number of training base points for the input s, 75 mil 85 mil
design parameters ar¥d, is the number of frequency points S, 70 mil 90 mil
per frequency sweep. It is seen that the number of learning Sfreq 3.901 GHz 4.161 GHz

samples i$ = B, I',. The specific characteristics #f depend

on the ANN paradigm chosen whose internal parameters are

in w. range of low frequencies. A method to directly overcome this
Once the mapping is found, i.e., once the ANN is traine@imitation is by establishing a frequency-sensitive mapping

a space-mapped neuromodel for fast accurate evaluation$rdén the fine to the coarse input spaces. This is realized by

immediately available. considering frequency as an extra input variable of the ANN
. _ _ that implements the mapping.
A. Including Frequency in the Neuromapping In the FDSMN approach, illustrated in Fig. 6, both coarse

Many of the empirical models already available for miand fine models are simulated at the same frequency, but the
crowave circuits were developed using methods for quastapping from the fine to coarse parameter space is dependent
static analysis: they usually yield good accuracy over a limitexh the frequency. The mapping is found by solving the same
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optimization problem stated in (3), but substituting (4) by

(6a)
(6b)

e =Ry(zy,, freas) — Ruloe, frea;)
L :P(""'fi ) fTe(Jj)'

With a more comprehensive domain, the FSMN technique

establishes a mapping not only for the design parameters,

also for the frequency variable, such that the coarse model is

simulated at a mapped frequengy to match the fine model
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response. This is realized by adding an extra output to the
ANN that implements the mapping, as shown in Fig. 7. The
mapping is found by solving the same optimization problem
stated in (3), but interchanging (4) by

€ :Rf($f7af7CQJ) - Rc(-'l"ca f(‘)

HECE)

but (73)

(7b)
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It is not uncommon to find microwave problems where the
coarse model behaves almost as the fine model does, but with
a shifted frequency response, i.e., the shapes of the responses
are nearly identical, but shifted. For those cases, a good
alignment between both responses is achieved by simulating
the coarse model at a different frequency. The FMN technique
implements this strategy, as shown in Fig. 8, by simulating
the coarse model with the same physical parameters used
by the fine model, but at a mapped frequengyto align
both responses. The mapping is found by solving the same
optimization problem stated in (3), but replacing (4) by

(73 :Rf(-""fmeeq]') _Rc(-""fmfc) (8a)
fc = P("l"fi ) fTqu). (8b)

Mapping the whole set of physical parameters, as in the
SMN, FDSMN, and FSMN techniques, might lead to SinEig. 18. HTS quarter-wave parallel coupled-line microstrip filter.
gularities in the coarse model response during training. This _ _ )
problem is overcome by establishing a partial mapping for tigere =7 vector contains a suitable subset of the design
physical parameters, making even more efficient use of tR@rameters;. at theith training base point.
implicit knowledge in the coarse model. Mapping only some Finally, there can be microwave prob!ems where the com-
of the physical parameters can be enough to obtain acceptdtifde set of responses containedin is difficult to approxi-
accuracy in the neuromodel for many microwave problemd\ate using the coarse model with a single ANN. In those cases,
This allows us a significant reduction in the ANN complexityh€ learning task can be distributed among a number of ANN's,
with respect to the SMN, FDSMN, and FSMN technique@hiCh’ in turn, divides the output space into a set of subspaces.
and a significant reduction in the training time because le§8€ corresponding ANN's can then be trained individually to
optimization variables are used. FPSMN is illustrated in Fig. §1atch each response (or subset of responses) contaidgd in
The mapping for this technique is found by solving the samidis implies the solution of several independent optimization
optimization problem stated in (3), but replacing (4) by ~ Problems instead of a single one.

e =Ry(zy, freq;) — Re(x,, =, fc) (%9a) B. Starting Point and Learning Data Samples
[wi} = P(zy,, freq) (9b) The starting point for the optimization problem stated in (3)
fe is the initial set of internal parameters of the ANNY that
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Fig. 20. Coarse model error with respectem before any neuromodeling. (a) In the learning set. (b) In the testing set.

is chosen assuming that the coarse model is actually a ggatameters to be mapped andis the number of hidden
model and, therefore, the mapping is not necessary. In otimeurons. The adaptation of this paradigm to all the other three
words, w1 is chosen such that the ANN implements a unitases is realized by considering an additional output for the
mappingP(x. = z; and/or f. = freg). This is applicable to mapped frequency. and disabling the corresponding inputs
the five proposed SM-based neuromodeling techniques. and/or outputs.

The ANN must be trained to learn the mapping betweenIn this work, we considered sigmoid functions as well
the coarse and fine input spaces within the region of intereas hyperbolic tangent functions to implement the nonlinear
In order to keep a reduced set of learning data samples, ativation functions for the neurons in the hidden layer.
n-dimensional star distribution for the base learning points is
considered in this paper, as in [8] (see Fig. 10). It is seen that
the number of learning base points for a microwave circuit V. CASE STUDIES
with n design parameters 8, = 2n + 1.

Since we want to maintain a minimum number of learnin
points (or fine evaluations), the complexity of the ANN i
critical. It is well known that too small an ANN cannot ap- Consider a microstrip right-angle bend with the following
proximate the desired input—output relationship, while ANN’mput parameters: conductor widtfV, substrate height,
with too many internal parameters perform correctly on theubstrate dielectric constant, and operating frequencfregq.
learning set, but give poor generalization ability. We have tbhree neuromodels exploiting SM technology are developed
use the simplest ANN that gives adequate training error aful the region of interest shown in Table I.
acceptable generalization performance. Gupta’s model [9], consisting of a lumpé&d circuit whose

parameter values are given by analytical functions of the
physical quantitiesW, H, and ¢, is taken as the “coarse”
C. Mapping with a Three-Layer Perceptron model and implemented in OSA90/hobSonnet'sen? is used

A possible scheme to implement the mapping using a three-

layer percepiron with: hidden neurons, for b(.)th. the SMN_ 10SA90/hope Version 4.0, formerly Optimization Systems Associates Inc.,
approach as well as the FDSMN apprO.aCh.v IS |”U_Strated MHlindas, Ont., Canada, now HP EEsof Division, Hewlett-Packard Company,
Fig. 11. Here, the total number of optimization variables fdsanta Rosa, CA.

(3) is 2h(n + 1) + n, wheren is the number of physical 2em Version 4.0b, Sonnet Software Inc., Liverpool, NY.

. Microstrip Right-Angle Bend
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as the fine model. To parameterize the structure, the Geometrfo compare these results with those from a classical neu-
Capture [10] technique available in Empige utilized. romodeling approach, an ANN was developed ushgu-

The coarse and fine models are compared in Fig. 12 usimpodeler* Training the ANN with the same 147 learning
50 random test base points with uniform statistical distributicsamples, the best results were obtained for a 3LP:4-15-4
within the region of interestf, = 21, 1050 test samples). trained with the conjugate gradient and quasi-Newton methods.
Gupta’s model, in this region of physical parameters, yield3ue to the small number of learning samples, this approach did
acceptable results for frequencies less than 10 GHz. not provide good generalization capabilities, as illustrated in

With a star distribution for the learning base poiliits = Fig. 16. To produce similar results to those in Fig. 15 using the
3,B, = 7), 147 learning sample§ = 147) are used for same ANN complexity, the learning samples have to increase
three SM-based neuromodels, and the corresponding ANNfem 147 to 315.
were implemented and trained within OSA90/hope. Huber op-Fig. 17 summarizes the different neuromodeling approaches
timization was employed as the training algorithm, exploitingpplied to this case study.
its robust characteristics for data fitting [11].

.F'g' 13 shows the results for the SMN model |mplementeéi_ HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter
with a three-layer perceptron with three input neurons, sIX
hidden neurons, and three output neurons (3LP:3-6-3). AnFig. 18 illustrates an HTS quarter-wave parallel coupled-
FDSMN model is developed using a 3LP:4-7-3, and tHine microstrip filter to be modeled in the region of interest
improved results are shown in Fig. 14. In Fig. 15, the resufg§own in Table Il.L,, L, and L3 are the lengths of the
for the FSMN model with a 3LP:4-8-4 are shown, which arBarallel coupled-line sections aifd, 52, and S are the gaps
even better (as expected). To implement the FSMN approabgtween the sections. The widt is the same for all the
an OSA90 child program is employed to simulate the coar§gctions as well as for the input and output microstrip lines
model with a different frequency variable using Datapipe. af length L. A lanthanum-aluminate substrate with thickness
is seen that the FSMN model yields excellent results for tfé and dielectric constant,. is used. The metallization is
whole frequency range of interest’ overcoming the frequen@9n8idered lossless. Two SM-based neuromodels are devel-
limitations of the empirical model by a factor of four. oped in the region of interest, taking as design parameters

Try = [L1 LQ L3 Sl SQ Sg]T.

3Empipe Version 4.0, formerly Optimization Systems Associates Inc.,
Dundas, Ont., Canada, now HP EEsof Division, Hewlett-Packard Company,
Santa Rosa, CA. “NeuroModelerVersion 1.0, Carleton Univ., Ottawa, Ont., Canada.
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It has been already shown [12] that the responses of thisExcellent results are obtained for the FPSMN modeling
narrow bandwidth filter are very sensitive to dimensionapproach (see Fig. 9), takingg = [Li. Si.]* and zF =
changes. Sonnetsmdriven by Empipe was employed as the¢L, L3 S, S3]* and using a 3LP:7-7-3 trained with Huber op-
fine model, using a high-resolution grid with a 1 mdl1 mil  timization. As illustrated in Fig. 23, an outstanding agreement
cell size. between the fine model and FPSMN model is achieved. The

Sections of OSA90/hope built-in linear elements microstrigarning and generalization performance is shown in Fig. 24.
line (MSL) and two-conductor symmetrical coupled microstrip As a final test, both the FPSMN model and fine model
lines (MSCL) connected by circuit theory over the same mare simulated at three different base points using a very
crostrip substrate definition (MSUB) are taken as the “coarsgfie frequency sweep, with a frequency step of 0.005 GHz.
model. Remarkable matching is obtained, as illustrated in Fig. 25.

Typical responses of the coarse and fine models before any
neuromodeling are shown in Fig. 19, using a frequency step of
0.02 GHz(F,, = 14). About 10 h of CPU simulation time was VI. CONCLUSIONS
needed for a single-frequency sweep on an HP C200-RISOwe present novel applications of SM technology to the neu-
workstation. Following a multidimensional star distributiorromodeling of microwave circuits. Five powerful techniques to
(n = 6), 13 learning base points are us@d= 182). To generate SM-based neuromodels are described and illustrated:
evaluate the generalization performance, seven testing bgsgN, FDSMN, FSMN, FMN, and FPSMN. These techniques
points not seen in the learning set are used. exploit the vast set of empirical models already available,

The coarse and fine models before neuromodeling afecrease the number of fine model evaluations needed for
compared in Fig. 20, at both the learning and testing setsaining, improve generalization ability, and reduce the com-
showing very large errors in the coarse model with respesiexity of the ANN topology with respect to the classical
to em due to a shifting in its frequency response, as seen nieuromodeling approach. Frequency-sensitive neuromapping
Fig. 19. is demonstrated to be a clever strategy to expand the usefulness

To explore the effects of simulating the coarse model ataf empirical models that were developed using quasi-static
mapped frequency, an FMN model (see Fig. 8) implementedalysis. FMN is presented as an effective method to align
with a 3LP:7-5-1 is developed using Huber optimization. Thigequency-shifted responses. By establishing a partial mapping
FMN approach yields good frequency alignment between bdibr the physical parameters, a more efficient use of the implicit
responses, as shown in Fig. 21. The corresponding training &mbwledge in the coarse model is achieved. As an original
generalization errors are shown in Fig. 22. alternative to the classical backpropagation algorithm, Huber
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