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José Ernesto Rayas-S´anchez,Senior Member, IEEE,

and Qi-Jun Zhang,Senior Member, IEEE

Abstract—For the first time, we present modeling of mi-
crowave circuits using artificial neural networks (ANN’s) based
on space-mapping (SM) technology. SM-based neuromodels de-
crease the cost of training, improve generalization ability, and
reduce the complexity of the ANN topology with respect to
the classical neuromodeling approach. Five creative techniques
are proposed to generate SM-based neuromodels. A frequency-
sensitive neuromapping is applied to overcome the limitations of
empirical models developed under quasi-static conditions. Huber
optimization is used to train the ANN’s. We contrast SM-based
neuromodeling with the classical neuromodeling approach as well
as with other state-of-the-art neuromodeling techniques. The SM-
based neuromodeling techniques are illustrated by a microstrip
bend and a high-temperature superconducting filter.

Index Terms—CAD, design automation, microstrip filters, mi-
crowave circuits, neural network applications, neuromodeling,
neural space mapping, optimization methods, space mapping.

I. INTRODUCTION

A POWERFUL new concept in neuromodeling of mi-
crowave circuits based on space-mapping (SM) tech-

nology is presented. The ability of artificial neural networks
(ANN’s) to model high-dimensional and highly nonlinear
problems is exploited in the implementation of the SM con-
cept. By taking advantage of the vast set of empirical models
already available, SM-based neuromodels decrease the number
of electromagnetic (EM) simulations for training, improve
generalization ability, and reduce the complexity of the ANN
topology with respect to the classical neuromodeling approach.

The following five innovative techniques are proposed to
create SM-based neuromodels for microwave circuits:

1) space-mapped neuromodeling (SMN);
2) frequency-dependent space-mapped neuromodeling

(FDSMN);
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3) frequency space-mapped neuromodeling (FSMN);
4) frequency-mapped neuromodeling (FMN);
5) frequency partial-space-mapped neuromodeling

(FPSM).

Except for SMN, all these approaches establish a frequency-
sensitive neuromapping to expand the frequency region of
accuracy of the empirical models already available for mi-
crowave components that were developed using quasi-static
analysis. We contrast our approach with the classical neu-
romodeling approach, as well as with other state-of-the-art
neuromodeling techniques.

Huber optimization is used to efficiently train the ANN’s
as a powerful alternative to the popular backpropagation
algorithm [1]. The SM-based neuromodeling techniques are
illustrated by two case studies: a microstrip right-angle bend
and a high-temperature superconducting (HTS) quarter-wave
parallel coupled-line microstrip filter.

II. SM CONCEPT

SM is a novel concept for circuit design and optimiza-
tion, which combines the computational efficiency of coarse
models with the accuracy of fine models. The coarse models
are typically empirical equivalent-circuit engineering models,
which are computationally very efficient, but often have a
limited validity range for their parameters, beyond which the
simulation results may become inaccurate. On the other hand,
detailed or “fine” models can be provided by an electromag-
netic (EM) simulator or even by direct measurements: they
are very accurate, but central processing unit (CPU) intensive.
The SM technique establishes a mathematical link between
the coarse and the fine models, and directs the bulk of CPU
intensive evaluations to the coarse model, while preserving the
accuracy and confidence offered by the fine model. The SM
technique was originally developed by Bandleret al. [2].

Let the vectors and represent the design parameters
of the coarse and fine models, respectively, and and

the corresponding model responses.is much faster
to calculate, but less accurate than.

As illustrated in Fig. 1, the aim of SM optimization is to
find an appropriate mapping from the fine model parameter
space to the coarse model parameter space

(1)
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Fig. 1. Illustration of the aim of SM.

such that

(2)

Once the mapping is found, the coarse model can be used
for fast and accurate simulations.

III. N EUROMODELING MICROWAVE CIRCUITS

The ability to learn and generalize from data, the nonlinear
processing nature, and the massively parallel structure make
the ANN particularly suitable in modeling high-dimensional
and highly nonlinear problems, as in the case of microwave
circuits.

The size of an ANN model does not grow exponentially
with dimension and, in theory, can approximate any degree
of nonlinearity to any desired level of accuracy, provided a
deterministic relationship between input and target exists [3].
The most widely used ANN paradigm in the microwave arena
[1] is the multilayer perceptron (MLP), which is usually trained
by the well-established backpropagation algorithm.

ANN models are computationally more efficient than EM or
physics-based models and can be more accurate than empirical
models. It has been demonstrated [4], [5] that ANN’s are
suitable models for microwave circuit yield optimization and
statistical design.

For microwave problems, the learning data is usually
obtained by either EM simulation or by measurement.
Large amounts of learning data are typically needed to
ensure model accuracy. This is very expensive since the
simulation/measurements must be performed for many
combinations of different values of geometrical, material,
process, and input signal parameters. This is the principal
drawback of classical ANN modeling. Without sufficient
learning samples, the neural models may not be reliable.

A popular alternative to reduce the dimension of the learning
set is to carefully select the learning points using the design
of experiments (DoE) methodology. Another way to speed
up the learning process is proposed in [1] by means of
preliminary neural clusterization of similar responses using
the self-organizing feature map (SOM) approach.

Innovative strategies have been proposed to reduce the
learning data needed and to improve the generalization ca-
pabilities of an ANN by incorporating empirical models: the
hybrid EM-ANN modeling approach, the prior knowledge
input (PKI) modeling method, and the knowledge-based ANN
(KBNN) approach.

In the hybrid EM-ANN modeling approach [6], the dif-
ference in -parameters between the available coarse model

Fig. 2. EM-ANN neuromodeling concept [6].

Fig. 3. PKI neuromodeling concept [6].

Fig. 4. KBNN neuromodeling concept [7].

and fine model is used to train the corresponding ANN,
as illustrated in Fig. 2, reducing the number of fine model
simulations due to a simpler input–output relationship.

For the PKI method [6], the coarse model output is used
as input for the ANN in addition to the other inputs (physical
parameters and frequency). The ANN is trained such that its
response is approximately equal to the fine model response,
as illustrated in Fig. 3. The PKI approach has shown better
accuracy than the EM-ANN approach, but it requires a more
complex ANN.

In the KBNN approach [7], the microwave empirical or
semianalytical information is incorporated into the internal
structure of the ANN, as illustrated in Fig. 4. KBNN’s are
nonfully connected networks, with a layer assigned to the mi-
crowave knowledge in the form of single or multidimensional
functions. Since these empirical functions are used for some
neurons instead of standard activation functions, KBNN’s do
not follow a regular MLP and are trained using methods other
than the conventional backpropagation.

IV. SM-BASED NEUROMODELING

We propose innovative schemes to combine SM technology
and ANN for the modeling of high-frequency components. The
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Fig. 5. SMN concept.

Fig. 6. FDSMN concept.

Fig. 7. FSMN concept.

Fig. 8. FMN concept.

fundamental idea is to construct a nonlinear multidimensional
vector mapping function from fine to coarse input space
using an ANN. This can be done in a variety of ways, to make
better use of the coarse-model information for developing the
neuromodel. The implicit knowledge in the coarse model not
only allows us to decrease the number of learning points
needed, but also to reduce the complexity of the ANN and
to improve the generalization performance.

In the SMN approach, the mapping from the fine to the
coarse parameter space is implemented by an ANN. Fig. 5
illustrates the SMN concept. We have to find the optimal set of
the internal parameters of the ANN, such that the coarse model

Fig. 9. FPSMN concept.

Fig. 10. Three-dimensional star distribution for the learning base points.

Fig. 11. Implementing the frequency-dependent neuromapping with a
three-layer perceptron, as in Fig. 6.

TABLE I
REGION OF INTEREST FOR THEMICROSTRIPRIGHT-ANGLE BEND

response is as close as possible to the fine model response for
all the learning points.

The mapping can be found by solving the optimization
problem

(3)

where vector contains the internal parameters of the neural
network (weights, bias, etc.) selected as optimization variables,
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(a) (b)

Fig. 12. Comparison betweenem and Gupta model of a right-angle bend. (a) Error injS11j with respect toem. (b) Error in jS21j with respect toem.

(a) (b)

Fig. 13. Comparison betweenem and SMN model of a right-angle bend. (a) Error injS11j with respect toem. (b) Error in jS21j with respect toem.

is the total number of learning samples, andis the error
vector given by

(4a)

(4b)

with

(5a)

(5b)

(5c)

where is the number of training base points for the input
design parameters and is the number of frequency points
per frequency sweep. It is seen that the number of learning
samples is . The specific characteristics of depend
on the ANN paradigm chosen whose internal parameters are
in .

Once the mapping is found, i.e., once the ANN is trained,
a space-mapped neuromodel for fast accurate evaluations is
immediately available.

A. Including Frequency in the Neuromapping

Many of the empirical models already available for mi-
crowave circuits were developed using methods for quasi-
static analysis: they usually yield good accuracy over a limited

TABLE II
REGION OF INTEREST FOR THEHTS FILTER

range of low frequencies. A method to directly overcome this
limitation is by establishing a frequency-sensitive mapping
from the fine to the coarse input spaces. This is realized by
considering frequency as an extra input variable of the ANN
that implements the mapping.

In the FDSMN approach, illustrated in Fig. 6, both coarse
and fine models are simulated at the same frequency, but the
mapping from the fine to coarse parameter space is dependent
on the frequency. The mapping is found by solving the same
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(a) (b)

Fig. 14. Comparison betweenem and FDSMN model of a right-angle bend. (a) Error injS11j with respect toem. (b) Error in jS21j with respect toem.

(a) (b)

Fig. 15. Comparison betweenem and FSMN model of a right-angle bend. (a) Error injS11j with respect toem. (b) Error in jS21j with respect toem.

(a) (b)

Fig. 16. Comparison betweenemand classical neuromodel of a right-angle bend. (a) Error injS11j with respect toem. (b) Error injS21j with respect toem.

optimization problem stated in (3), but substituting (4) by

(6a)

(6b)

With a more comprehensive domain, the FSMN technique
establishes a mapping not only for the design parameters, but
also for the frequency variable, such that the coarse model is
simulated at a mapped frequency to match the fine model

response. This is realized by adding an extra output to the
ANN that implements the mapping, as shown in Fig. 7. The
mapping is found by solving the same optimization problem
stated in (3), but interchanging (4) by

(7a)

(7b)
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(a) (b)

(c) (d)

Fig. 17. Different neuromodeling approaches for the right-angle bend. (a) SMN. (b) FDSMN. (c) FSMN. (d) Classical neuromodeling.

It is not uncommon to find microwave problems where the
coarse model behaves almost as the fine model does, but with
a shifted frequency response, i.e., the shapes of the responses
are nearly identical, but shifted. For those cases, a good
alignment between both responses is achieved by simulating
the coarse model at a different frequency. The FMN technique
implements this strategy, as shown in Fig. 8, by simulating
the coarse model with the same physical parameters used
by the fine model, but at a mapped frequencyto align
both responses. The mapping is found by solving the same
optimization problem stated in (3), but replacing (4) by

(8a)

(8b)

Mapping the whole set of physical parameters, as in the
SMN, FDSMN, and FSMN techniques, might lead to sin-
gularities in the coarse model response during training. This
problem is overcome by establishing a partial mapping for the
physical parameters, making even more efficient use of the
implicit knowledge in the coarse model. Mapping only some
of the physical parameters can be enough to obtain acceptable
accuracy in the neuromodel for many microwave problems.
This allows us a significant reduction in the ANN complexity
with respect to the SMN, FDSMN, and FSMN techniques
and a significant reduction in the training time because less
optimization variables are used. FPSMN is illustrated in Fig. 9.
The mapping for this technique is found by solving the same
optimization problem stated in (3), but replacing (4) by

(9a)

(9b)

Fig. 18. HTS quarter-wave parallel coupled-line microstrip filter.

where vector contains a suitable subset of the design
parameters at the th training base point.

Finally, there can be microwave problems where the com-
plete set of responses contained in is difficult to approxi-
mate using the coarse model with a single ANN. In those cases,
the learning task can be distributed among a number of ANN’s,
which, in turn, divides the output space into a set of subspaces.
The corresponding ANN’s can then be trained individually to
match each response (or subset of responses) contained in.
This implies the solution of several independent optimization
problems instead of a single one.

B. Starting Point and Learning Data Samples

The starting point for the optimization problem stated in (3)
is the initial set of internal parameters of the ANN that
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Fig. 19. Typical responses of the HTS filter usingem (�) and OSA90/hope model(�) before any neuromodeling at three learning and three testing points.

(a) (b)

Fig. 20. Coarse model error with respect toem before any neuromodeling. (a) In the learning set. (b) In the testing set.

is chosen assuming that the coarse model is actually a good
model and, therefore, the mapping is not necessary. In other
words, is chosen such that the ANN implements a unit
mapping and/or . This is applicable to
the five proposed SM-based neuromodeling techniques.

The ANN must be trained to learn the mapping between
the coarse and fine input spaces within the region of interest.
In order to keep a reduced set of learning data samples, an

-dimensional star distribution for the base learning points is
considered in this paper, as in [8] (see Fig. 10). It is seen that
the number of learning base points for a microwave circuit
with design parameters is .

Since we want to maintain a minimum number of learning
points (or fine evaluations), the complexity of the ANN is
critical. It is well known that too small an ANN cannot ap-
proximate the desired input–output relationship, while ANN’s
with too many internal parameters perform correctly on the
learning set, but give poor generalization ability. We have to
use the simplest ANN that gives adequate training error and
acceptable generalization performance.

C. Mapping with a Three-Layer Perceptron

A possible scheme to implement the mapping using a three-
layer perceptron with hidden neurons, for both the SMN
approach as well as the FDSMN approach, is illustrated in
Fig. 11. Here, the total number of optimization variables for
(3) is , where is the number of physical

parameters to be mapped andis the number of hidden
neurons. The adaptation of this paradigm to all the other three
cases is realized by considering an additional output for the
mapped frequency and disabling the corresponding inputs
and/or outputs.

In this work, we considered sigmoid functions as well
as hyperbolic tangent functions to implement the nonlinear
activation functions for the neurons in the hidden layer.

V. CASE STUDIES

A. Microstrip Right-Angle Bend

Consider a microstrip right-angle bend with the following
input parameters: conductor width , substrate height ,
substrate dielectric constant, and operating frequency .
Three neuromodels exploiting SM technology are developed
for the region of interest shown in Table I.

Gupta’s model [9], consisting of a lumpedLC circuit whose
parameter values are given by analytical functions of the
physical quantities , , and is taken as the “coarse”
model and implemented in OSA90/hope.1 Sonnet’sem2 is used

1OSA90/hope Version 4.0, formerly Optimization Systems Associates Inc.,
Dundas, Ont., Canada, now HP EEsof Division, Hewlett-Packard Company,
Santa Rosa, CA.

2em Version 4.0b, Sonnet Software Inc., Liverpool, NY.
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Fig. 21. Typical responses of the HTS filter usingem (�) and FMN model(�) at the same three learning and three testing points as in Fig. 19.

(a) (b)

Fig. 22. FMN model error with respect toem. (a) In the learning set. (b) In the testing set.

as the fine model. To parameterize the structure, the Geometry
Capture [10] technique available in Empipe3 is utilized.

The coarse and fine models are compared in Fig. 12 using
50 random test base points with uniform statistical distribution
within the region of interest ( , test samples).
Gupta’s model, in this region of physical parameters, yields
acceptable results for frequencies less than 10 GHz.

With a star distribution for the learning base points
, 147 learning samples are used for

three SM-based neuromodels, and the corresponding ANN’s
were implemented and trained within OSA90/hope. Huber op-
timization was employed as the training algorithm, exploiting
its robust characteristics for data fitting [11].

Fig. 13 shows the results for the SMN model implemented
with a three-layer perceptron with three input neurons, six
hidden neurons, and three output neurons (3LP:3-6-3). An
FDSMN model is developed using a 3LP:4-7-3, and the
improved results are shown in Fig. 14. In Fig. 15, the results
for the FSMN model with a 3LP:4-8-4 are shown, which are
even better (as expected). To implement the FSMN approach,
an OSA90 child program is employed to simulate the coarse
model with a different frequency variable using Datapipe. It
is seen that the FSMN model yields excellent results for the
whole frequency range of interest, overcoming the frequency
limitations of the empirical model by a factor of four.

3Empipe Version 4.0, formerly Optimization Systems Associates Inc.,
Dundas, Ont., Canada, now HP EEsof Division, Hewlett-Packard Company,
Santa Rosa, CA.

To compare these results with those from a classical neu-
romodeling approach, an ANN was developed usingNeu-
roModeler.4 Training the ANN with the same 147 learning
samples, the best results were obtained for a 3LP:4-15-4
trained with the conjugate gradient and quasi-Newton methods.
Due to the small number of learning samples, this approach did
not provide good generalization capabilities, as illustrated in
Fig. 16. To produce similar results to those in Fig. 15 using the
same ANN complexity, the learning samples have to increase
from 147 to 315.

Fig. 17 summarizes the different neuromodeling approaches
applied to this case study.

B. HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

Fig. 18 illustrates an HTS quarter-wave parallel coupled-
line microstrip filter to be modeled in the region of interest
shown in Table II. , , and are the lengths of the
parallel coupled-line sections and, , and are the gaps
between the sections. The width is the same for all the
sections as well as for the input and output microstrip lines
of length . A lanthanum-aluminate substrate with thickness

and dielectric constant is used. The metallization is
considered lossless. Two SM-based neuromodels are devel-
oped in the region of interest, taking as design parameters

.

4NeuroModelerVersion 1.0, Carleton Univ., Ottawa, Ont., Canada.
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Fig. 23. Typical responses of the HTS filter usingem (�) and FPSMN model(�) at the same three learning and three testing points as in Fig. 19.

(a) (b)

Fig. 24. FPSMN model error with respect toem. (a) In the learning set. (b) In the testing set.

It has been already shown [12] that the responses of this
narrow bandwidth filter are very sensitive to dimensional
changes. Sonnet’sem driven by Empipe was employed as the
fine model, using a high-resolution grid with a 1 mil1 mil
cell size.

Sections of OSA90/hope built-in linear elements microstrip
line (MSL) and two-conductor symmetrical coupled microstrip
lines (MSCL) connected by circuit theory over the same mi-
crostrip substrate definition (MSUB) are taken as the “coarse”
model.

Typical responses of the coarse and fine models before any
neuromodeling are shown in Fig. 19, using a frequency step of
0.02 GHz . About 10 h of CPU simulation time was
needed for a single-frequency sweep on an HP C200-RISC
workstation. Following a multidimensional star distribution

, 13 learning base points are used . To
evaluate the generalization performance, seven testing base
points not seen in the learning set are used.

The coarse and fine models before neuromodeling are
compared in Fig. 20, at both the learning and testing sets,
showing very large errors in the coarse model with respect
to em due to a shifting in its frequency response, as seen in
Fig. 19.

To explore the effects of simulating the coarse model at a
mapped frequency, an FMN model (see Fig. 8) implemented
with a 3LP:7-5-1 is developed using Huber optimization. The
FMN approach yields good frequency alignment between both
responses, as shown in Fig. 21. The corresponding training and
generalization errors are shown in Fig. 22.

Excellent results are obtained for the FPSMN modeling
approach (see Fig. 9), taking and

and using a 3LP:7-7-3 trained with Huber op-
timization. As illustrated in Fig. 23, an outstanding agreement
between the fine model and FPSMN model is achieved. The
learning and generalization performance is shown in Fig. 24.

As a final test, both the FPSMN model and fine model
are simulated at three different base points using a very
fine frequency sweep, with a frequency step of 0.005 GHz.
Remarkable matching is obtained, as illustrated in Fig. 25.

VI. CONCLUSIONS

We present novel applications of SM technology to the neu-
romodeling of microwave circuits. Five powerful techniques to
generate SM-based neuromodels are described and illustrated:
SMN, FDSMN, FSMN, FMN, and FPSMN. These techniques
exploit the vast set of empirical models already available,
decrease the number of fine model evaluations needed for
training, improve generalization ability, and reduce the com-
plexity of the ANN topology with respect to the classical
neuromodeling approach. Frequency-sensitive neuromapping
is demonstrated to be a clever strategy to expand the usefulness
of empirical models that were developed using quasi-static
analysis. FMN is presented as an effective method to align
frequency-shifted responses. By establishing a partial mapping
for the physical parameters, a more efficient use of the implicit
knowledge in the coarse model is achieved. As an original
alternative to the classical backpropagation algorithm, Huber
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Fig. 25. Comparison between the HTS filter response usingem (�) and
FPSMN model(�) at some learning and testing points using a fine frequency
sweep.

optimization is employed to efficiently train the neuromapping,
exploiting its robust characteristics for data fitting.
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