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Abstract—We propose, for the first time, neural space-mapping
(NSM) optimization for electromagnetic-based design. NSM
optimization exploits our space-mapping (SM)-based neuromod-
eling techniques to efficiently approximate the mapping. A novel
procedure that does not require troublesome parameter extraction
to predict the next point is proposed. The initial mapping is es-
tablished by performing upfront fine-model analyses at a reduced
number of base points. Coarse-model sensitivities are exploited
to select those base points. Huber optimization is used to train,
without testing points, simple SM-based neuromodels at each
NSM iteration. The technique is illustrated by a high-temperature
superconducting quarter-wave parallel coupled-line microstrip
filter and a bandstop microstrip filter with quarter-wave resonant
open stubs.

Index Terms—Design automation, EM optimization, microwave
circuits, microstrip filters, neural-network applications, neural
space mapping, neural modeling, optimization methods, space
mapping.

I. INTRODUCTION

A RTIFICIAL neural networks (ANNs) are suitable models
for microwave circuit yield optimization and statistical de-

sign [1], [2]. Neuromodels are computationally much more effi-
cient than electromagnetic (EM) or physical models and can be
more accurate than empirical physics-based models. Once they
are trained with reliable learning data, obtained by either EM
simulation or by measurement, the neuromodel can be used for
efficient and accurate optimization within the region of training.
This has been the conventional approach to optimization of mi-
crowave structures using ANNs [3].

The principal drawback of this ANN optimization approach
is the cost of generating sufficient learning samples, since the
simulations/measurements must be performed for many com-
binations of different values of geometrical, material, process,
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and input signal parameters over a large region. Additionally,
it is well known that the extrapolation ability of neuromodels
is poor, making unreliable any solution predicted outside the
training region. Introducing knowledge, as in [4], can alleviate
these limitations.

A powerful new method for optimization of microwave
circuits based on space-mapping (SM) technology and ANNs
is presented. An innovative strategy is proposed to exploit the
SM-based neuromodeling techniques [5] in an efficient neural
space-mapping (NSM) optimization algorithm, including
frequency. NSM requires a reduced set of upfront learning
base points. A “coarse” or empirical model is used not only as
source of knowledge that reduces the amount of learning data
and improves the generalization performance of the SM-based
neuromodel, but also as a means to select the initial learning
base points through sensitivity analysis. A novel procedure that
does not require troublesome parameter extraction to predict
the next point is presented. Huber optimization is used to train
the SM-based neuromodels at each iteration. The SM-based
neuromodels are developed without using testing points: their
generalization performance is controlled by gradually in-
creasing their complexity starting with a three-layer perceptron
with zero hidden neurons. NSM optimization is illustrated by a
high-temperature superconducting (HTS) quarter-wave parallel
coupled-line microstrip filter and a bandstop microstrip filter
with quarter-wave resonant open stubs.

II. SM CONCEPTINCLUDING FREQUENCY

SM is a powerful concept for circuit design and optimization
that combines the computational efficiency of “coarse” models
with the accuracy of “fine” models. The coarse models are typi-
cally equivalent-circuit models, which are computationally very
efficient, but often have a limited validity range for their param-
eters, beyond which the simulation results may become inaccu-
rate. On the other hand, fine models can be provided by an EM
simulator, or even by direct measurements: they are very accu-
rate, but CPU intensive. SM establishes a mathematical link be-
tween the coarse and fine models. It directs the bulk of CPU in-
tensive evaluations to the coarse model, while preserving the ac-
curacy and confidence offered by the fine model. The SM tech-
nique was originally developed by Bandleret al. [6].

In the SM technique with frequency dependence, the oper-
ating frequency is also included in the mapping function. This
allows us to simulate the coarse model at a different frequency

.
Let the vectors and represent the design parameters

of the coarse and fine models, respectively, and and
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Fig. 1. NSM optimization.

represent the corresponding model responses (e.g.,
and might contain the real and imaginary parts of ).
is much faster to calculate, but less accurate than.

The aim of SM optimization, including frequency, is to find
an appropriate mapping from the fine-model input space to
the coarse-model input space

(1)

such that

(2)

Once a mapping valid in the region of interest is found, the
coarse model can be used for fast and accurate simulations in
that region.

III. NSM OPTIMIZATION

AN OVERVIEW

Fig. 1 shows the flow diagram of NSM optimization. Here, we
explain the overall operation of NSM optimization; a detailed
description of the main blocks is presented in the following sec-
tions.

We start by finding the optimal solution that yields the de-
sired response using the coarse model. We selectadditional
points following an -dimensional star distribution [5], [7] cen-
tered at , as shown in Fig. 2, where is the number of de-
sign parameters . The percentage of deviation
from for each design parameter is determined according to
the coarse-model sensitivities. The larger the sensitivity of the
coarse-model response with respect to a certain parameter, the
smaller the percentage of variation of that parameter. We assume
that the coarse-model sensitivities are similar to those of the fine
model.

The fine-model response at the optimal coarse-model so-
lution is then calculated. If is approximately equal to the
desired response, the algorithm ends, otherwise we develop an
SM-based neuromodel over the fine-model points.

Once an SM-based neuromodel with small learning errors is
available,we use it as an improved coarse model, optimizing its
parameters to generate the desired response. The solution to this
optimization problem becomes the next point in the fine-model
parameter space, and it is included in the learning set.

We calculate the fine-model response at the new point, and
compare it with the desired response. If it is still different, we re-
train the SM-based neuromodel over the extended set of learning
samples and the algorithm continues. If not, the algorithm ter-
minates.
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Fig. 2. Three-dimensional star distribution for the initial base points.

IV. COARSEOPTIMIZATION

During the coarse optimization phase of NSM optimization,
we want to find the optimal coarse-model solutionthat gen-
erates the desired response over the frequency range of interest.
The vector of coarse-model responsesmight contain dif-
ferent responses of the circuit

(3)

where each individual response has been sampled atfre-
quency points

(4)

The desired response is expressed in terms of specifica-
tions. The problem of circuit design using the coarse model can
be formulated as [8]

(5)

where is a suitable objective function. For example,could
be a minimax objective function expressed in terms of upper and
lower specifications for each response and frequency sample. A
rich collection of objective functions, for different design con-
straints, is formulated by Bandleret al. in [8].

V. TRAINING THE SM-BASED NEUROMODEL DURING NSM
OPTIMIZATION

At the th iteration, we want to find the simplest neuromap-
ping such that the coarse model using that mapping approx-
imates the fine model at all the learning points. This is realized
by solving the optimization problem

(6)

with

(7a)

(7b)

(7c)

(7d)

(7e)

where is the number of training base points for the input
design parameters and is the number of frequency points per

Fig. 3. Space-mapped neuromapping.

Fig. 4. Frequency-dependent space-mapped neuromapping.

frequency sweep. It is seen that the total number of learning
samples at theth iteration is .

Equation (7b) is the input–output relationship of the ANN
that implements the mapping at theth iteration. Vector con-
tains the internal parameters (weights, bias, etc.) of the ANN.
The paradigm chosen to implementis a three-layer percep-
tron.

All the SM-based neuromodeling techniques proposed in [5]
can be exploited to efficiently solve (6). In the space-mapped
neuromodeling (SMN) approach, only the design parameters are
mapped, as illustrated in Fig. 3, and both models use the same
frequency

(8)

In the frequency-dependent space mapped neuromodeling
(FDSMN) approach, illustrated in Fig. 4, both coarse and fine
models are simulated at the same frequency, but the mapping
from the fine to the coarse parameter space is dependent on the
frequency

(9)

The frequency space-mapped neuromodeling (FSMN) tech-
nique (see Fig. 5) establishes a mapping not only for the design
parameters, but also for the frequency variable, such that the
coarse model is simulated at a different frequency to match the
fine-model response

(10)
For those cases where the shapes of the fine- and coarse-

model responses are nearly identical, but shifted in frequency,
the frequency mapped neuromodeling technique (see Fig. 6)
simulates the coarse model with the same physical parameters
used by the fine model, but at a different frequency to align both
responses

(11)

Finally, the frequency partial-space mapped neuromodeling
(FPSMN) technique maps only some of the design parameters
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Fig. 5. Frequency space-mapped neuromapping.

Fig. 6. Frequency-mapped neuromapping.

Fig. 7. Frequency partial-space mapped neuromapping.

and the frequency (see Fig. 7), making an even more efficient
use of the implicit knowledge in the coarse model

(12)

Note that the “design” parameters of the coarse model do not
change with frequency only in the SMN and FM neuromap-
pings.

The starting point for the first training process is a unit map-
ping, i.e., , for
and , where contains the internal param-
eters of the ANN that give a unit mapping. The SM-based neu-
romodel is trained in the next iterations using the previous map-
ping as the starting point.

The complexity of the ANN (the number of hidden neurons
and the SM-based neuromodeling technique) is gradually in-
creased according to the learning error, starting with a linear
mapping (three-layer perceptron with zero hidden neurons). In
other words, we use the simplest ANN that yields an acceptable
learning error , defined as

(13)

where is obtained from (7) using the current optimal values
for the ANN internal parameters .

In our implementation, the neuromapping for the first itera-
tion is approximated using the FMN technique so that any pos-
sible severe misalignment in frequency between the coarse- and

fine-model responses is first alleviated. The physical parameters
are then gradually mapped, following an FPSMN technique.

Linear adaptive frequency-space mapping (LAFSM) is a spe-
cial case of NSM optimization, corresponding to the situation
when the number of hidden neurons of the ANN is zero at all
iterations.

VI. SM-BASED NEUROMODEL OPTIMIZATION

At the th iteration of NSM optimization, we use an
SM-based neuromodel with small learning error as an im-
proved coarse model, optimizing its parameters to generate
the desired response. We denote the SM-based neuromodel
response as , defined as

(14)

where

(15)

with

(16)

(17)

The solution to the following optimization problem becomes
the next iterate:

(18)

with defined as in (5). If an SM neuromapping is used to
implement (see Fig. 3), the next iterate can be obtained in
a simpler manner by solving

(19)

VII. NSM A LGORITHM

Step 0) Find by solving (5).
Step 1) Choose following a star distribution

around .
Step 2) Initialize .
Step 3) Stop if

.
Step 4) Initialize , where

Step 5) Find by solving (6).
Step 6) Calculate using (13).
Step 7) If , increase the complexity of and

go to Step 5.
Step 8) If an SM neuromapping is used to implement ,

solve (19), otherwise solve (18).
Step 9) Set ; go to Step 3.
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Fig. 8. HTS quarter-wave parallel coupled-line microstrip filter.

VIII. HTS M ICROSTRIPFILTER

We apply NSM optimization to an HTS quarter-wave parallel
coupled-line microstrip filter [9], illustrated in Fig. 8. , ,
and are the lengths of the parallel coupled-line sections and

, , and are the gaps between the sections. The width
is the same for all the sections, as well as for the input and output
microstrip lines (MSLs), of length . A lanthanum–aluminate
substrate with thickness and dielectric constant is used.

The specifications are in the passband and
in the stopband, where the stopband includes fre-

quencies below 3.967 GHz and above 4.099 GHz, and the pass-
band lies in the range (4.008 and 4.058 GHz). The design param-
eters are . We take mil,

mil, mil, and loss tangent
; the metallization is considered lossless.

Sonnet’sem1 driven by Empipe2 was employed as the
fine model, using a high-resolution grid with a 1 mil
1 mil cell size. OSA90/hope3 built-in linear elements MSL,
two-conductor symmetrical coupled microstrip lines (MSCLs),
and open circuit (OPEN) connected by circuit theory over the
same microstrip substrate definition (MSUB) are taken as the
“coarse” model.

The following optimal coarse-model solution is found, as in
[10]:
(mils). The coarse- and fine-model responses at the optimal
coarse solution are shown in Fig. 9.

The initial points are chosen by performing sensitivity
analysis on the coarse model: a 3% deviation fromfor ,

, and is used, while a 20% is used for , , and .
The corresponding fine and coarse-model responses at these 13
star-distributed learning points are shown in Fig. 10.

Fig. 11 shows the evolution of the learning errors at the
points as we increase the complexity of the neuromapping

1em, version 4.0b, Sonnet Software Inc., Liverpool, NY, 1997.
2Empipe, version 4.0, Optimization Systems Associates Inc. (now Agilent

EEsof EDA), Dundas, ON, Canada, 1997.
3OSA90/hope, version 4.0, Optimization Systems Associates Inc. (now Agi-

lent EEsof EDA), Santa Rosa, CA, 1997.

Fig. 9. Coarse- and fine-model responses at the optimal coarse solution:
OSA90/hope(�) andem(�).

(a)

(b)

Fig. 10. Coarse- and fine-model responses at the initial2n + 1 base points
around the optimal coarse solution. (a) OSA90/hope. (b)em.

during the first iteration. All ANNs used in this paper are imple-
mented and trained in OSA90/hope, using Huber optimization,
as in [5]. It is seen that mapping the frequency has a dramatic
effect on the alignment of the responses, and a simple frequency
partial-space mapped neuromapping is needed. The final map-
ping is implemented with a three-layer perceptron with seven
inputs (six design parameters and the frequency), five hidden
neurons, and three output neurons (, , and ).

As indicated in Step 8, we calculate the next point by
optimizing the coarse model with the mapping found. The
next point predicted is

(mils), which matches the desired re-
sponse with excellent accuracy, as seen in Fig. 12. As a final
test, both the FPSMN model and fine model are simulated at
the NSM solution using a very fine frequency sweep, with
a frequency step of 0.005 GHz. The NSM solution satisfies the
specifications, as shown in Fig. 13. A detailed illustration of
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(a) (b)

(c) (d)

Fig. 11. Learning errors at initial base points. (a) At the starting point. (b) Mapping! with a 3LP : 7-3-1. (c) Mapping! andL with a 3LP : 7-4-2. (d) Mapping
!, L , andS with a 3LP : 7-5-3.

(a)

(b)

Fig. 12. em (�) and FPSM 7-5-3(�) model responses at the next point
predicted after the first NSM iteration. (a)jS j in decibels. (b)jS j.

the passband using an even finer frequency sweep is shown in
Fig. 14. The HTS filter is optimized in only one NSM iteration.

IX. BANDSTOPMICROSTRIPFILTER WITH OPENSTUBS

NSM optimization is applied to a bandstop microstrip filter
with quarter-wave resonant open stubs, illustrated in Fig. 15.
and are the open stub lengths and and are the

(a)

(b)

Fig. 13. em (�) and FPSMN 7-5-3(�) model responses, using a fine
frequency sweep, at the next point predicted after the first NSM iteration. (a)
jS j in decibels. (b)jS j.

corresponding widths. An alumina substrate with thickness
mil, width mil, and dielectric constant

is used for a 50- feeding line.
The specifications are in the stopband and

in the passband, where the stopband lies between
9.3–10.7 GHz, and the passband includes frequencies below
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Fig. 14. em(�) and FPSMN 7-5-3(�)model responses in the passband, using
a fine frequency sweep, at the next point predicted after the first NSM iteration.

Fig. 15. Bandstop microstrip filter with quarter-wave resonant open stubs.

8 GHz and above 12 GHz. The design parameters are
.

Sonnet’sem driven by Empipe was employed as the fine
model, using a high-resolution grid with a 1 mil1 mil cell size.
As a coarse model, we use simple transmission lines for mod-
eling each microstrip section (see Fig. 16) and classical formulas
[11] to calculate the characteristic impedance and effective di-
electric constant of each transmission line. It is seen that

, and .
We use OSA90/hope built-in transmission-line elements (TRL).

The following optimal coarse-model solution is found
for , , and of quarter-wave lengths at 10 GHz:

(mils). The coarse-
and fine-model responses at the optimal coarse solution are
shown in Fig. 17.

The initial points are chosen by performing sensi-
tivity analysis on the coarse model: a 50% deviation from
for , , and is used, while a 15% deviation is used
for and . A simple FM neuromapping (see Fig. 6) with
two hidden neurons (3LP : 6-2-1,) was used to match the re-
sponses at the learning base points. The FM neuromodel and
fine-model responses at the optimal coarse solution are shown in
Fig. 18. Optimizing the FM neuromodel to satisfy the specifica-
tions (Step 8 of the NSM algorithm), the next iterate is

(mils). The coarse- and
fine-model responses at this point are shown in Fig. 19.

Fig. 16. Coarse model of the bandstop microstrip filter with open stubs.

Fig. 17. Coarse- and fine-model responses at the optimal coarse solution:
OSA90/hope(�) andem(�).

Fig. 18. FM (3LP : 6-2-1,!) neuromodel(�) and the fine-model(�)
responses at the optimal coarse solution.

Fig. 19. Coarse-(�) and fine-model(�) responses at the next point predicted
by the first NSM iteration.

We performed a second NSM iteration. is included in
the learning base points. Now, an FPSM neuromapping with
three hidden neurons is needed to match the points:
only and are mapped (3LP : 6-3-2, ). Fig. 20
shows the FPSM neuromodel and fine-model responses at

. Optimizing the FPSM neuromodel, the next iterate is

(mils). The
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Fig. 20. FPSM (3LP : 6-3-2,!,W ) neuromodel(�) and the fine-model(�)
responses at the point predicted by the first NSM iteration.

Fig. 21. Coarse-(�) and fine-model(�) responses at the next point predicted
by the second NSM iteration.

Fig. 22. Fine-model response(�) at the next point predicted by the second
NSM iteration and optimal coarse response(�), using a fine frequency sweep.

coarse- and fine-model responses at are shown in Fig. 21.
As final test, using a fine frequency sweep, we show in
Fig. 22 the fine-model response at and the optimal coarse
response. The bandstop microstrip filter is optimized in two
NSM iterations.

X. CONCLUSION

In this paper, we have presented an innovative algorithm for
EM optimization based on SM technology and ANNs. NSM op-
timization exploits our SM-based neuromodeling techniques to
efficiently approximate the mapping from the fine to the coarse
input space. NSM does not require parameter extraction to pre-
dict the next point. An initial mapping is established by per-
forming upfront fine-model analysis at a reduced number of
base points. The coarse-model sensitivities are exploited to se-
lect those base points. Huber optimization is used to train simple
SM-based neuromodels at each iteration. The SM-based neuro-
models are developed without using testing points: their gen-
eralization performance is controlled by gradually increasing

their complexity starting with a three-layer perceptron with zero
hidden neurons. An HTS quarter-wave parallel coupled-line mi-
crostrip filter and a bandstop microstrip filter with quarter-wave
resonant open stubs illustrate our optimization technique.
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