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Space-Mapping Optimization of Microwave Circuits
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Abstract—A powerful new space-mapping (SM) optimization al-
gorithm is presented in this paper. It draws upon recent develop-
ments in both surrogate model-based optimization and modeling
of microwave devices. SM optimization is formulated as a general
optimization problem of a surrogate model. This model is a convex
combination of a mapped coarse model and a linearized fine model.
It exploits, in a novel way, a linear frequency-sensitive mapping.
During the optimization iterates, the coarse and fine models are
simulated at different sets of frequencies. This approach is shown
to be especially powerful if a significant response shift exists. The
algorithm is illustrated through the design of a capacitively loaded
10 : 1 impedance transformer and a double-folded stub filter. A
high-temperature superconducting filter is also designed using de-
coupled frequency and SMs.

Index Terms—Design automation, EM optimization, microwave
circuits, microstrip filters, optimization methods, space mapping,
superconducting filters, surrogate models.

I. INTRODUCTION

I N THIS paper, we present a novel space mapping (SM)
algorithm for microwave circuit optimization [1]. It inte-

grates, for the first time, two distinct optimization approaches:
SM optimization [2]–[4] and surrogate model-based optimiza-
tion [5]–[7]. Both approaches aim at efficiently optimizing
an accurate and time-intensive “fine” model, e.g., a full-wave
electromagnetic (EM) simulator. SM exploits the existence of a
less accurate, but fast “coarse” model. It formulates the design
problem as a system of nonlinear equations. On the other
hand, surrogate-based optimization, new to the microwave
arena, exploits an approximate model in iteratively solving the
original design problem. This model may be a less accurate
physically based model or algebraic model [6].
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Our algorithm combines both approaches. The original
design problem is iteratively solved using a surrogate model.
This model is a convex combination of a mapped coarse model
(MCM) and a linearized fine model (LFM). The accuracy of
the surrogate model is improved in every iteration using the
generated fine-model simulations.

Recent developments in space mapping-based neuromod-
eling (SMN) [8] and generalized space-mapping (GSM)
modeling [9] exploit frequency-sensitive mappings. This
approach is reported to improve the accuracy of SM-based
models. We integrate this concept, in a novel way, with SM
optimization. In each iteration, a linear frequency-sensitive
mapping is exploited in constructing the MCM. Here, the
coarse and fine models are simulated over different frequency
ranges. This approach efficiently handles significant frequency
shifts.

The established frequency-sensitive mapping obtains an esti-
mate of the derivatives of the mapped coarse-model responses.
These derivatives are expressed in terms of the coarse-model
derivatives and mapping parameters. We show that this expres-
sion is a generalized form for frequency-sensitive mappings of
the lemma utilized in [4]. It can be used to approximate the
fine-model derivatives in the region of interest.

A number of examples are successfully solved. They include
a capacitively loaded two-section 10 : 1 impedance transformer
[10], a double-folded stub (DFS) filter [11] and a high-temper-
ature superconducting (HTS) filter [12]. Decoupled frequency
and SMs are utilized in the optimization of the HTS filter. This
approach shows the feasibility of utilizing different types of fre-
quency-sensitive mappings in the optimization loop.

II. SM OPTIMIZATION VERSUSSURROGATE-BASED

OPTIMIZATION

We denote the fine-model responses at a point
and frequency by . These responses may
include the real and imaginary parts of , etc. The vector

denotes the responses at all thesimulation
frequencies where . The original design problem is

(1)

where is the objective function and is the optimal fine-
model design. Solving (1) using direct optimization methods,
e.g., [13], is prohibitive due to the intensive simulation time of
the fine model.

SM optimization exploits the existence of a fast, but
less accurate, “coarse” model of the circuit. We denote by
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and a coarse-model point and the
corresponding coarse-model response vector, respectively. The
coarse-model responses at a frequencyare similarly denoted
by .

The first step in all SM-based optimization algorithms ob-
tains the optimal coarse-model design. The corresponding
response is denoted by . SM aims at establishing a
mapping between the two spaces [2]

(2)

such that

(3)

over a region in the parameter space. SM optimization obtains
a space-mapped design whose response matches. is a
solution of the nonlinear system

(4)

where is approximated through a parameter-extraction
(PE) procedure.

Previous SM optimization algorithms [2]–[4] solve (4) iter-
atively. Let be the th iterate. Aggressive space mapping

(ASM) [2] predicts a new iterate by uti-
lizing the quasi-Newton iteration

(5)

is an approximation to the Jacobian ofwith respect to
at . It is updated at the end of every iteration using Broyden’s
update [14].

The trust region aggressive space mapping (TRASM) algo-
rithm [3] minimizes using least squares within a
trust region. Theth iteration of the algorithm is given by

(6)

Parameter is selected such that , where is the
size of the trust region. The new iterates are accepted only if they
are descent directions for . TRASM also utilizes a recursive
multipoint extraction procedure to enhance the uniqueness of
PE.

Hybrid aggressive space mapping (HASM) [4] addresses the
problem of a poor coarse model. It adopts a two-phase approach.
The first phase exploits a TRASM strategy. The second phase
minimizes through direct least-squares op-
timization. A relationship relates the available mapping to the
first-order derivatives of the responses of both models [4]. It is
used for switching between the two phases.

Alternatively, an expensive model can be optimized indirectly
by using a surrogate model [5]–[7]. This surrogate model may
be a less accurate physics-based model or a polynomial approx-
imation of the fine model [6]. We denote the surrogate model in
the th iteration by . The th iteration step is
obtained by solving

(7)

where is the value of the objective func-

tion evaluated using the surrogate model at the point .

The point is then validated using fine-model sim-
ulation. It is accepted if it improves the fine-model objective
function. Otherwise, the accuracy of should be im-
proved. Different strategies can be utilized for improving the
surrogate model accuracy. One strategy utilizes only the valida-
tion fine-model simulations. Additional fine simulations may be
generated to improve the surrogate model in certain directions
of the parameter space.

III. SURROGATEMODEL

In the th iteration, our algorithm utilizes a surrogate model
expressed as a convex combination of an LFM and an MCM

. It is given by

(8)

is an approximation to the Jacobian of fine-model

responses at and . The parameter
determines which model is favored. If , the surrogate
model becomes an MCM. If , the surrogate model be-
comes an LFM. , the surrogate model exploits
both approximations. The LFM part in (8) ensures that the al-
gorithm will work if the coarse model is poor or even wrong.

The MCM utilizes the linear frequency SM

(9)

where

(10)

The parameters , , ,
, , and are the mapping pa-

rameters. is the th simulation frequency, .
Here, a fine-model point and frequency correspond to a
coarse-model point and coarse-model frequency

. Notice that (10) defaults to the frequency-insen-
sitive mapping utilized by the ASM, TRASM, and HASM algo-
rithms if , , and .

The advantage of utilizing (10) is illustrated by Fig. 1. It is
required to extract the coarse pointcorresponding to a given
fine point . Previous SM-based algorithms utilize the PE pro-
cedure

(11)

Fig. 1(a) also shows the coarse-model response at the starting
point for (11). The PE optimizer may not have enough in-
formation to align the almost disjoint responses. However,
the responses align perfectly if a frequency transformation

is applied to the coarse-model frequency axis.
This implies that the two models are simulated at different
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(a)

(b)

Fig. 1. Illustration of the frequency-sensitive mapping concept. (a) A
significant frequency band shift exists between fine- and coarse-model
responses at the initial iteration. (b) The coarse-model frequency is transformed
such that both responses match.

frequencies. Fig. 1(b) shows the aligned responses. It follows
that (10) allows another degree of freedom in aligning the
coarse and fine models.

Utilizing a frequency sensitive mapping also enables indirect
estimation of the fine-model derivatives. Using (9), the Jacobian
of the mapped coarse-model responses

at a point and frequency is given by

(12)

For the case of the linear frequency-sensitive mapping (10), (12)
becomes

(13)

Equation (13) utilizes only coarse-model derivatives in esti-
mating the MCM derivatives. It defaults to the lemma utilized
by the HASM algorithm [4]

(14)

for the case of a linear frequency-insensitive mapping
and .

The MCM should approximate the fine model over a region of
fine-model parameters and frequency. The mapping parameters
are thus obtained through the optimization procedure

(15)

(16)

where is a set of fine-model points whose cardinality is
. is constructed through an iterative process.

Initially, we set . The two conditions

and (17)

are checked , the set of simulated fine-model points
up to the th iteration. The first condition ensures better coverage
by the points in . The second condition rejects points outside
an neighborhood of . We denote as the extraction radius.
A point is added to if (17) is satisfied.

If the th iteration is unsuccessful, the MCM should be
improved. This is important to guarantee a successful iteration
in the th iteration. However, no improvement is possible if (17)
results in . In this case, an additional perturbation

is generated by the algorithm. is obtained by solving

(18)

where

and

(19)

The set contains perturbations of lengthin the direction of
the eigenvectors of the matrix . A similar approach is
utilized by the aggressive parameter extraction (APE) [15] al-
gorithm. These perturbations capture the functional behavior of
the fine model within the considered region. is a perturba-
tion in that maximizes the coverage of theneighborhood.
The point is then simulated and added to . The
construction of is illustrated in Fig. 2.

IV. A LGORITHM

The th iteration of the algorithm proceeds as follows. First,
the set is constructed. The mapping parameters are then
estimated using the optimization procedure (15) and (16). The
suggested step is obtained by solving (7), where the surro-
gate model is given by (8). Notice that (7) utilizes only coarse-
model simulations and can be solved using traditional optimiza-
tion methods.

If the response is good enough, we may be satisfied with
a design for which . In this case, we select as
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(a)

(b)

(c)

(d)

Fig. 2. Illustration of the selection of the PE points. (a) At the(i � 1)th
iteration, we have the pointxxx and the setV . (b) A new point is
generated by the algorithm that does not satisfy the success criterion. (c)xxx

becomesxxx , the previous perturbationhhh is excluded fromV , and the
algorithm generates an alternative perturbation. (d) The setV is used to
extract new mapping parameters and predict a successful iterate.

. However, if the optimality of the design is the
main concern, may be selected as the generalized minimax
objective function [13].

The optimizer utilized in solving (7) may require first-order
derivatives in addition to the surrogate model responses. The
surrogate model Jacobian is given by

(20)

is the Jacobian of the mapped coarse-model
responses at all frequencies. Using (13), it is given by (21),
shown at the bottom of the page.

The step obtained through (7) is accepted if it improves
the fine-model objective function. Otherwise, it is rejected. The

parameters , , and are updated in every iteration.

Broyden’s formula [14] is used to update . Initially, we set

, the Jacobian of the coarse-model response at.
The trust region size is updated based on the ratio between
the actual reduction in and the predicted reduction. The
ratio

(22)

is thus evaluated at the end of each iteration. If , the
surrogate model has good accuracy and we set ,

. If , we set ,
. Otherwise, we set . is updated to favor

the more accurate model, either the LFM or the MCM. It is
initialized by . The utilized update is

(23)

if . Otherwise, we set . The vec-
tors and

define the
prediction error using the MCM and LFM, respectively. The
update (23) assigns higher weight to the more accurate model.
It should be noted that the LFM starts with low accuracy.
However, Broyden’s update iteratively improves the accuracy
of this model. Our algorithm terminates if consecutive
unsuccessful iterations are carried out or if becomes suf-
ficiently small. Fig. 3 illustrates one iteration of the algorithm.

The algorithm can be summarized by the following steps.

Step 1) Given , , , , , and
.

Step 2) Construct .
Step 3) Apply the optimization procedure (15) and (16) to

obtain the mapping parameters.
Step 4) Obtain the suggested step by solving (7).
Step 5) If , set

else .

Step 6) Update and .
Step 7) If the stopping criterion is satisfied stop.
Step 8) Set and go to Step 2.

A flowchart of the algorithm is shown in Fig. 4.

V. EXAMPLES

A. Capacitively Loaded 10 : 1 Impedance Transformer

We consider the design of a capacitively loaded 10 : 1
impedance transformer [10]. The proposed fine and coarse
models are shown in Figs. 5 and 6, respectively. The values

(21)
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Fig. 3. Illustration of theith iteration of the algorithm.

Fig. 4. Flowchart of the algorithm.

Fig. 5. Fine model of the capacitively loaded 10 : 1 impedance transformer.

Fig. 6. Coarse model of the capacitively loaded 10 : 1 impedance transformer.

of the capacitances that we use are given in Table I. Design
specifications are

for GHz GHz (24)

The electrical lengths of the two transmission lines at 1.0 GHz
are selected as designable parameters. The characteristic imped-
ances are kept fixed at the optimal values given in Table II. Both

TABLE I
FINE-MODEL CAPACITANCES FOR THECAPACITIVELY LOADED

IMPEDANCE TRANSFORMER

TABLE II
CHARACTERISTIC IMPEDANCES FOR THECAPACITIVELY LOADED

IMPEDANCE TRANSFORMER

TABLE III
INITIAL AND FINAL DESIGNS FOR THECAPACITIVELY LOADED

IMPEDANCE TRANSFORMER

models make use of the ideal transmission-line model avail-
able in OSA90/hope.1 Eleven frequency points are simulated
per sweep. We utilized the real and imaginary parts of in
the optimization procedure (15) and (16). The initial trust re-
gion size and extraction radius are and

, respectively. The algorithm executed five it-
erations. Only the first two are successful. The total number of
fine-model simulations is seven. The initial and final designs
are given in Table III. The corresponding responses are shown
in Figs. 7 and 8, respectively. The final mapping is given by

(25)

The value of in every iteration is shown in Fig. 9.

B. DFS Filter

The DFS fine model utilizes Sonnet’sem2 through Empipe
(see Fig. 10). The coarse model, shown in Fig. 11, exploits

1OSA90/hope and Empipe, version 4.0, Optimization Systems Associates
Inc., Dundas, ON, Canada (now Agilent Technologies, Santa Rosa, CA), 1997.

2Sonnet Software Inc., Liverpool, NY, 1997.
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Fig. 7. Optimal coarse-model response (—) and the fine-model response (�)
at the starting point for the capacitively loaded 10 : 1 impedance transformer.

Fig. 8. Optimal coarse-model response (—) and the fine-model response (�)
at the final design for the capacitively loaded 10 : 1 impedance transformer.

Fig. 9. Value ofU in each iteration for the 10 : 1 impedance transformer.

the microstrip line and microstrip T-junction models available
in OSA90/hope. The coupling between the folded stubs and
microstrip line is simulated using equivalent capacitors. The
values of these capacitors are determined using Walker’s
formulas [16]. Jansen’s microstrip bend model [17] is used to
model the folding effect of the stub.

The design specifications are

dB for GHz and GHz

dB for GHz GHz (26)

, , and are selected as designable parameters.and
are fixed at 4.8 mil. Only 11 frequency points are utilized

per sweep. The mapping parameters are obtained using the real
and imaginary parts of . The initial trust region size and ex-
traction radius are and .
The width is scaled by a factor of 6.0 to make the problem
better conditioned.

The design procedure is carried out with the interpolation op-
tion of Empipe disabled. Here, every iterate is snapped to the
nearest on-grid point. Our algorithm carried out only 16 itera-
tions. A total of 18 calls to Empipe (18em simulations) were

Fig. 10. DFS filter.

Fig. 11. Coarse model of the DFS filter.

TABLE IV
INITIAL AND FINAL DESIGNS FOR THEDFS FILTER

Fig. 12. Optimal coarse-model response (—) and the fine-model response (�)
at the starting design for the DFS filter.

Fig. 13. Optimal coarse-model response (—) and the fine-model response (�)
at the final design for the DFS filter.

needed. The initial and final designs are given in Table IV. The
corresponding responses are shown in Figs. 12 and 13. The
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Fig. 14. Value ofU at every iteration for the DFS filter.

Fig. 15. HTS filter.

value of in each iteration is shown in Fig. 14. The final map-
ping parameters are

(27)

C. HTS Filter

We also consider the design of an HTS filter [12]. This filter
is shown in Fig. 15. The design specifications are

for GHz and GHz

for GHz GHz (28)

The designable parameters are, , , , , and . We
take mil and mil. The coarse model ex-

Fig. 16. Coarse model of the HTS filter.

TABLE V
MATERIAL AND PHYSICAL PARAMETERS FOR THEHTS FILTER

TABLE VI
INITIAL AND FINAL DESIGNS FOR THEHTS FILTER

ploits the empirical models of microstrip lines, coupled lines,
and open stubs available in OSA90/hope (see Fig. 16). The fine
model employs Sonnet’sem through Empipe. We utilized the
real and imaginary parts of both and in the optimiza-
tion procedure (15) and (16). The initial trust region size is

. The neighborhood is selected as an-di-
mensional box. This takes into account that the response is more
sensitive to the lengths than the widths. The interpolation option
of Empipe is disabled to make the optimization time reasonable.

Here, we fix . The rest of the mapping pa-
rameters are obtained using (15) and (16). This implies that
the frequency and SMs are decoupled. This approach reduces
the number of optimizable parameters in (15) and (16). Con-
sequently, it makes the extraction of the mapping parameters
better conditioned. This approach is motivated by the fact that
previous examples have effectively decoupled mappings (

and ).
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Fig. 17. Optimal coarse-model response (—) and the fine-model response (�)
at the initial design for the HTS filter.

Fig. 18. Optimal coarse-model response (—) and the fine-model response (�)
at the final design for the HTS filter.

The HTS design is carried out assuming lossless substrate di-
electric. A relatively coarse grid size is used. The material and
physical parameters values used in both OSA90/hope andem
are shown in Table V. The fine model is simulated at 16 fre-
quency points per sweep. Starting from the snapped optimal
coarse design, the final design is reached in seven iterations
only. A total of seven fine-model simulations are used. The ini-
tial and final designs are given in Table VI. The corresponding
responses are shown in Figs. 17 and 18, respectively. The value
of in each iteration is shown in Fig. 19.

Fig. 20 illustrates the fine-model response at the end of the
first iteration. It is seen that the fine-model response is well
aligned in the proper band using only one fine-model simula-
tion. This illustrates the power of the algorithm in handling sig-

Fig. 19. Value ofU at every iteration for the HTS filter.

Fig. 20. Optimal coarse-model response (—) and the fine-model response (�)
at the end of the first iteration for the HTS filter.

nificant frequency shifts. The final mapping is given by (29),
shown at the bottom of the page.

VI. CONCLUSION

In this paper, we have presented a breakthrough algorithm
for efficient optimization of microwave circuits. The algorithm
integrates, for the first time, SM optimization with surrogate
model optimization. It exploits a surrogate model in the form
of a convex combination of an MCM and LFM. The MCM uti-
lizes a novel frequency SM. During optimization, the coarse
and fine models are simulated over different frequency ranges.
This approach is shown to be powerful, especially if signifi-
cant response shift exists. It also enables indirect estimation of
the derivatives of fine-model responses. The algorithm is suc-

(29)
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cessfully illustrated through the design of microwave filters and
transformers.
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