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Abstract—A comprehensive framework to engineering device evaluate the accuracy of empirical models and/or to discriminate
modeling, which we call generalized space mapping (GSM) is between them. Intuitively meaningful quantitative measures of

introduced in this paper. GSM permits many different practical — 44e| accuracy can be developed through careful interpreta-
implementations. As a result, the accuracy of available empirical tions of GSM

models of microwave devices can be significantly enhanced. We R .
present three fundamental illustrations: a basic space-mapping  Significant enhancement of the accuracy of available em-
super model (SMSM), frequency-space-mapping super model pirical models of microwave devices can be realized. Three

(FSMSM) and multiple space mapping (MSM). Two variations  fundamental cases are presented: space-mapping super model
of MSM are presented: MSM for device responses and MSM for (SMSM), which maps designable device parameters, a basic

frequency intervals. We also present novel criteria to discriminate - -
between coarse models of the same device. The SMSM, FSMSM’frequency—space mapping super model (FSMSM), which

and MSM concepts have been verified on several modeling prob- maps the frequency variable as well as the designable device
lems, typically utilizing a few relevant full-wave electromagnetic parameters and MSM. We present two variations of MSM:

simulations. This paper presents four examples: a microstrip line, multiple space mapping for device responses (MSMDR) and

a microstrip right-angle bend, a microstrip step junction, and a  ,iinle space mapping for frequency intervals (MSMFI). In

microstrip shaped T-junction, yielding remarkable improvement L . .

within regions of interest. MSMDR, we divide the set of _deV|ce responses mtq a number
of sub-responses and establish a separate mapping for each

sub-response. In MSMFI, we divide the frequency range of

interest into a number of intervals and establish a separate

mapping for each interval. Two algorithms to implement

. INTRODUCTION MSMDR and MSMFI are also presented.

E GENERALIZE the space mapping (SM) [1], the fre- TWO model types are usually defined in the SM process [1]:

guency space mapping (FSM) [2] and the multiple Spa@e“coarse” model, typically an empirical model, and a “fine”
mapping (MSM) [3] concepts to build a new engineering ddnodel, typically a full-wave electromagnetic (EM) simulator.
vice modeling framework. This framework is flexible enougfEmpirical models of microwave devices behave well in cer-
to permit a number of implementable special cases. The imp&tln parameter and frequency regions. They are computationally
tant observation that we make is that the methodology clos§'y fast and are preferred for initial design purposes over ac-
follows sound engineering design practice. Our contribution §/rate, but CPU intensive full-wave EM simulators.
a mathematical formulation suitable for device modeling and a The basic SMSM, FSMSM, and MSM concepts have been
clear practical interpretation. We refer to the concept generical@lidated on a number of modeling problems, typically utilizing
as the generalized space-mapping (GSM) concept. a few relevant full-wave EM simulations. This paper presents

The mathematical formulation of the GSM framework is nd@ur illustrations: a microstrip line, microstrip right-angle bend,

complicated. It is expected to be useful in assisting designerdgrostrip step junction, and a microstrip-shaped T-junction,
yielding remarkable improvement within the regions of interest.

Index Terms—Empirical models, frequency mapping, modeling,
passive devices, space mapping.
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where{e, B, s, 6, t, o} are the parameters characterizing the
@ — R (x,) mappingP. The constant vectoks s, ¢ aren-dimensional B is
fine model : ;
x; », ann xn matrix, and, ¢ are scalar. In (2), we notice that we map
the inverse of the frequency (which is proportional to the wave-
length) instead of the frequency itself. This has produced better
results in all the models we considered than mapping the fre-

guency directly. It can be also justified by the fact that, in most

frequenc e, microwave structures, shrinking the structure would lead to a
quency: coase | _p R ~R, shift of its spectral characteristics to higher frequencies (shorter
L_3| space mapping » model
@, wavelengths).
The mapping parameters in (2) can be evaluated by solving
Fig. 1. FSMSM concept. the optimization problem
: T T ... T TH 3)
min [&4 [&4 Chr
o c,B,s st o Ler 2 vl
i R . . . . .
fine model 7 Cr) subject to suitable constraints, whéirg is a suitable normyN
Xy is the total number of fine-model simulations, aids an error
vector given by
v er =R;(x;,, w;) — Rz, we) (4a)
x, T T _
space e [w? wl” = Ples,, w) (4b)
mapping model e .
with
Fig. 2. SMSM concept. i=1,..., Bp (5a)
j=1,..., F, (5b)
X; —> k=j+(—-1)F (5¢)
coazisel >R = Rf ( ) P
@—y MmO where B, is the number of base points a{l is the number
of frequency points per frequency sweep. The total number of
fine-model simulations iV = B, F,,. The constraints we im-
(a) pose on the mapping parameters are that the mapping param-
|_ : . —\—; o _l eters should be as close as possible to the parameters corre-
Xf——» ‘y sponding to a unit mapping. = z; andw, = w, which corre-
f - - C )
0 | . requeney’ coarse | lp g <R, spondsto¢=0, B=1,s=0,6=0,t=0, o = 1}. These
pace mapping » model | . .
[\ ) o, constraints are justified by the fact that the coarse model carries
. - - | considerable physical characteristics of the fine model. There-
fore, the optimum values of the mapping parameters should not
(b) severely deviate from the values corresponding to a unit map-

ping. To include these constraints, the objective function in (3)

Fig. 3. C del. (b) Enh d del. . o
ig (a) Coarse model. (b) Enhanced coarse mode is modified as follows:

this scheme FSMSM, as illustrated in Fig. 1. A special case gf, =i [ClT g - oey ¢ s T Ab] Aby
FSMSM is to map only the fine-model parameters and leave the =~ -
frequency variable unchanged. We call this the SMSM, as illus- Abf Ao 6} H (6)
trated in Fig. 2. Once FSMSM or SMSM are established, the
enhanced coarse model (see Fig. 3) can be utilized for analysfsere the error vectors , e, ..., ex are defined by (4a), the
or design purposes. We will compare the FSMSM and SMSictorsAby, Abs, ..., Ab, are the columns of the matrixB
in one of the examples. given by

The mapping relating the fine-model parameters and fre-
guency to the coarse-model parameters and frequency is given AB=B-1 ()
by and Ao is defined by

(el w.]" =Pz, ). (1) Ao=o-1. (8)

Or, in matrix form, assuming a linear mapp|ng The numerical values of the mapplng parameters in (2) can

give the designer physically based intuitive information on the
[ x, } B [c} [B s} [ xy } @ entire modeling process. The deviation of the optimal values of

wit 6 7 o |wt these parameters from those corresponding to a unit mapping
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Fig. 5. MSMFL.
Fig. 4. MSMDR.

all responses. It then assigns this mapping to the set of sub-re-
indicates the degree of proximity between the coarse and fisgonses satisfying a specified accuracy. It repeats the previous
models. This important feature can be used to compare betwstgps recursively on the remaining responses (which do not sat-
two coarse models. The coarse model with less deviation shoisify the required accuracy). The algorithm stops when all re-
be more accurate. Letbe the deviation of the mapping paramsponses are exhausted. The following steps summarize the al-
eters from the parameters corresponding to a unit mapping, igarithm implementing MSMDR.

Step 1) Initializei = 1 and letR contain all responses.

B=[f & & AT AT ... AR As 6]TH Step 2) Establishe_lmappir}g,bysolving (6), targeting all
responses imR.
C) Step 3) Assign the mapping; to the set of sub-responses
) R; C R that satisfies the error criterigR; —
whereAb;, Aby, ..., Ab, andAcs are defined by (7) and (8), R.|| < e wheree is a small positive number and
respectively. Therefore, based on the valugipive can dis- R;., R., are the fine and the coarse model sub-re-
criminate between various coarse models of the same device. sponses, respectively.

The smaller the value ¢, the closer the coarse model is to the step 4) Replace bRR — R; and increment.

amples. We have to emphasize that MSMDR needs the same number

of fine-model simulations (EM simulations) required to estab-
. MSM lish a single mapping targeting all responses. However, it can
c)gramatically improve the coarse models, as we will see in the

MSM was introduced in [3]. We present two variations
8xamples.

MSM for device modeling. We refer to them as MSMDR an
MSMFI. In MSMDR, we divide the device response vector _
R (in both models) intoL subsets of responses (or vectorsp. MSMFI Algorithm

Ri, i =1,2, ..., L. Anindividual mapping is established for the MSMFI algorithm is similar to the MSMDR algorithm.
each. ;ubset of responses, as |IIL!strated in F_|g. 4. In MSMig<t it establishes a mapping targeting all resporfaés the

we divide the frequency range of interest intb intervals and \,hole frequency rang@min < w < wmax. It then assigns this
evaluate a separate mapping for each interval, as illustraigdyning to the frequency interval;, < w < w, (wherew;

in Fig. 5 (the switch in Fig. 5 is controlled by the frequencye|ongs to the frequency range of interest) in which the set of
variable). The important questions are how we divide theggsponseg satisfies a certain specified accuracy. It repeats the
responses into a set of sub-responses and how we divide $h&;ious steps recursively until covering the whole frequency
frequency range into a set of intervals. There was no guiflghge. The following steps summarize the MSMFI algorithm.
in [3] regarding the answer to these questions. The following Step 1) Initializei = 1 and let the frequency interval —
algorithms implement MSMDR and MSMFI. P antn; @ ’ _] q y N

) Step 2) Establish a mappir®;, by solving (6), in the fre-
A. MSMDR Algorithm quency range defined ky.
The MSMDR algorithm divides the device responses in an it- Step 3) Assign the mapping?; to the frequency interval
erative manner while establishing a separate mapping for each Q; C Q in which the error criterig|lR; — R.|| <
set of sub-responses. First, it establishes a mapping targeting ¢ is satisfied, where is a small positive number
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and By, R, are the fine- and the coarse-model re-
sponses, respectively.

xf2
o
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Fig. 6. Distribution of the base points in the region of interest for a
three-dimensional space [5].

ZO( Wt’ Hc’ src)

Step 4) Replac& by © — €2, and increment.

Step 5) If€2 is not empty go to Step 2), otherwise stop.

We have to emphasize that MSMFI costs the same number of
fine-model simulations (EM simulations) required to establish (b)
a single mapping for the whole frequency range.

Fig. 7. Microstrip line models. (a) Fine model. (b) Coarse model.

IV. | MPLEMENTATION OF GSM

V. EXAMPLES
The optimization problem in (6) is solved using the Huber

optimizer [4] implemented in OSA90/hopeThe norm used in ~ We present four typical modeling problems: a microstrip line,

(6) is also a Huber norm [4]. The Huber norm of an error vectdpicrostrip right-angle bend, microstrip step junction, and mi-
e=[e1 ea ... ¢ isdefined by [4] crostrip-shaped T-junction. To display the results in a compact

way, we define the errd;; as the modulus of the difference be-
tween the scattering paramefg’;r computed by the fine model

He) = ; plei) (10)  and the scattering paramets; computed by the coarse model
_|cf ¢
where Eij; = |8, -85
() {63/2, if |e;] < (1) ; 3 ; 3
;) = . — _ c _ c
’ ofeil —o?/2, |l > o = (e s] - rels5]) "+ (1 [s] - s
(13)

whereq is a positive constant. The objective function in (6) is

the Huber norm of the vectergiven by wherei — 1.9 Mandj = 1,2 M (M is the

S D S S A S N AN 4 number of ports of the microwave device). The erfy is a
¢ [el e o e s L measure of both the error in the magnitude and the phase of the
AW Ao 6}T . (12) scattering parametefy;. We refer to;; simply as the error in
" the scattering parametéy;.

The Huber norm is robust against large errors and flexible o

with respect to small variations in the data [4]. The set of bade Microstrip Line

points {zs,, i = 1,2,..., B,} in the region of interest is In this example, we compare between SMSM and FSMSM.
taken as in [5] (see Fig. 6). According to this distribution, thBoth modeling approaches are used to enhance the transmis-
number of base points Bn + 1, wheren is the number of sion-line model of a microstrip line. The fine model is analyzed
fine-model parameters. The starting values for the mappibg Sonnet Software’em simulato? and the coarse model is a
parameters{c, B, s, 6, t, o} are {0, 1,0, 0,0, 1}, which built-in element of OSA90/hope. The fine and coarse models are
correspond to the unit mapping, = zy andw. = w. The showninFig.7. ThestructureinFig.7(a)was parameterized using
software tools needed for the implementation of GSM are @eometry Capture [6] implemented in Empip&he fine- and
optimizer (a Huber optimizer [4] is recommended), a suitablgarse-model parameters are givenagy=[L W H &,]%,
circuit simulator which can handle simple matrix operationg;, = [L. W, H. ¢,.]*. The region of interest is given

and a suitable full-wave EM simulator. _ ,
2em, version 4.0b, Sonnet Software Inc., Liverpool, NY 1998.

10SA90/hope, version 4.0, Agilent EEsof EDA (formerly Optimization Sys- 3Empipe, version 4.0, Agilent EEsof EDA (formerly Optimization Systems
tems Associates Inc.), Santa Rosa, CA 1997. Associates Inc.), Santa Rosa, CA 1997.
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Fig. 8. Error inS2; with respect toem by: (a) the microstrip transmission-line model, (b) the microstrip transmission-line SMSM, and (c) the microstrip
transmission-line FSMSM.

TABLE | TABLE I
REGION OF INTEREST FOR THEMICROSTRIPLINE EXAMPLE SMSM AND FSMSM MAPPING PARAMETERS FOR THEMICROSTRIP
TRANSMISSION LINE

Parameter ~ Minimum value Maximum value

SMSM FSMSM
W 10 mil 30 mil
L 40 mil 60 mil 1.015 -0.002 —0.007-0.022 1.026 —0.005 0.006 -0.021
-0. . .02 .02 -0. . -0. X
I% 10 mil 20 mil B 0.001 0992 0.020 0.023 0.009 0965 -0.011 0.017
-0.008 0.001 0.985 0.027 -0.002 0004 0979 0.022
&r 8 10 0.009 —0.004 0.044 1.028 0.019 -0.001 0.020 1.025

¢ [-0.011 -0.008 0.012 —0.036] [-0.013 0.001 0.011 —0.010)
in Table I. The frequency range is 20-30 GHz with a stef .
of 2 GHz (F, = 6). The characteristic impedanc&, of the 0 (fixed) [-0.006 0 0002 -0.002]
transmission line is computed in terms of the widih, the ‘

0 (fixed) 0
substrate heigh#d., and the relative dielectric constasf. fred

using the quasi-static model in [7]. Only nine poinB,(= 9)in =~ * ! (fixed) 1.033
the region of interest were used to develop SMSM or FSMSM s 0 (fixed) 0.001

We developed SMSM and FSMSM for the microstrip line,
and the corresponding mapping parameters for each case are

given in Table Il. Notice that, in case of SMSM, the mappingrror inSs; defined by (13) for the microstrip transmission-line

parameters, 6, t, o are fixed, and in the case of FSMSM, thenodel is shown in Fig. 8(a). Fig. 8(b) and (c) show the error
computed value of is 0, which means that the coarse-modeh S5, by the microstrip transmission-line SMSM and by the

frequency does not depend on the fine-model parametersnicrostrip transmission-line FSMSM, respectively. The error
only depends on the fine-model frequency). The microstrigdf the microstrip transmission-line FSMSM is approximately
transmission-line SMSM and FSMSM were tested at 50 urfour times less than the corresponding error of the microstrip
formly distributed random points in the region of interest. Thigansmission-line SMSM. The time taken by the EM solver
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TABLE IV
FSMSM MAPPING PARAMETERS FOR THEMICROSTRIPRIGHT-ANGLE BEND

Gupta’s model [8] Jansen’s model [9]
1291  0.207 0.189 2.768 0.314 0.276
B 0.067 0.613 ~0.094 -0.042 1282 0318
0.092 -0.066 0.918 -0.018 -0.013 0.421
c [0.094 —0.174 0.123)" [0.048 -0.012 0.031]7
s [0.109 —0.296 0.183] [0.001 -0.053 0.250]"
¢ [-0.001 - 0.002 ~0.002]" [-0.001 - 0.002 - 0.001)7
¢ 3.269 2.343
P 0.019 0.015
(®)
Fig. 9. Microstrip right-angle bend. (a) Fine model. (b) Coarse model. 05
g T
TABLE Il
REGION OFINTEREST FOR THEMICROSTRIPRIGHT-ANGLE BEND
Parameter ~ Minimum value Maximum value -
[
w 20 mil 30 mil 8
H 8 mil 16 mil 2
£, 8 10 @
and the Huber optimizer is 90 and 30 s, respectively, on an HP
C200-RISC workstation.
B. Microstrip Right-Angle Bend frequency (GHz)
In this example, we compare between two coarse models for
the microstrip right-angle bend. The first coarse model is taken
from [8] and is referred to as Gupta’s model. The second coarse
model is taken from [9] and is referred to as Jansen’s model.
Both coarse models provide empirical formulas for It@cir-
cuitin Fig. 9. The fine model is analyzed by Sonnet Software’s -
em, as shown in Fig. 9(a). The fine- and coarse-model param- 2
etersare givenby, = [W H e.]", z. = [W, H. &.]". s
The region of interest is given in Table Ill. The frequency range =
is 1-31 GHz with a step of 2 GHZ], = 16). The number of 02
base points in the region of interest is seveh & 7). o1
The FSMSM was developed for the two coarse models, and i
the corresponding mapping parameters are given in Table IV. 0 s 0 5 > = 5
The enhanced Gupta’'s and Jansen’s models were tested at 50
random points in the region of interest. The errofin by the frequency (GHz)
Gupta’'s and Jansen’s models is shown in Fig. 10. The error in (b)
S11 by the enhanced Gupta’s and Jansen’s models is shown in
Fig. 11. Fig. 10. Error inSy, of the microstrip right-angle bend with respecteta

It is difficult to compare between the two coarse modeky: (a) Gupta’s model [8] and (b) Jansen’s model [9].
since Jansen’s model is more accurate at lower frequencies (see

Fig. 10) and Gupta’s model is slightly more accurate at high8r5, respectively. We notice that the valuesin both cases is
frequencies. However, after developing FSMSM for eadmpproximately the same, which means that the accuracy of both
coarse model, we can compare between the two coarse modelsrse models with respect to the fine model is comparable.
according to the criteria in Section Il. The valuesiogiven by The time taken by the EM solver and Huber optimizer is 6 min
(9) for the enhanced Gupta’'s and Jansen’s models are 3.4 and 40 s, respectively, on an HP C200-RISC workstation.
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003 TABLE V
REGION OFINTEREST FOR THEMICROSTRIPSTEP JUNCTION
0025
Parameter Minimum value Maximum value
0@ . .
S / Wy 20 mil 40 mil
2 . .
£ oos f 10 mi 20 mi
= —— 8 10
[83) 001 &y
S—
0005 TABLE VI
MSMDR MAPPING PARAMETERS FOR THEMICROSTRIPSTEP JUNCTION
0
1 6 11 16 21 % 3 Target responses are Target responses are
frequency (GHz) {Im[S1], Im{Sy], Im[S5], Re[Sx])} {Re[Su], Re[Sx]}
(a) 0.764 0.033 -0.062 0.074 3.071 -0.008 -0.010 —0.004
o B 0.191 0.632  0.255 -0.502 0.008 0.202 0.032 0.004
-0.023 0.116 1485 0.018 -0.001 0.001 1.152 0.000
0.676 -0.365 —-0.111 0.177 -0.077 ~-0.118 —0.002 1.241
0015 ¢ [0.002 -0.002 0.002 -0.006]" [-0.001 0.001 0.000 -0.003]"
fg s [-0.003 0004 -0.001 ~0.002] 0
= 001 r r
e t [-0.001 0.000 -0.005 0.000] [-0.001 0000 -0.007 0.003]
-
o i 1.546 5.729
0006
) 0.113 0.065
o! TABLE VII
REGION OF INTEREST FOR THEMICROSTRIPSHAPED T-JUNCTION
frequency (GHz)
(b Parameter  Minimum value Maximum value
h 15 mil 25 mil
Fig.11. ErrorinSy; of the microstrip right-angle bend with respectia by: x 5 mil 15 mil
(a) the enhanced Gupta’s model [8] and (b) the enhanced Jansen’s model [9]. y § mil 15 mil
£ 8 10

r

The required accuracy i8;; < 0.03,¢ = 1,2andy = 1, 2
where E;; is defined by (13). Fig. 13(a) shows the error in
S11 before applying any modeling technique, while Fig. 13(b)
shows it after developing a single mapping for all responses.
The results obtained by a single mapping do not satisfy the
required accuracy.

The MSMDR algorithm (in Section 1) was applied to align
the two models. The algorithm divided the responses into two
groups {[m[Sll], IIH[Sgl], IIH[SQQ], Re[Sgl]}, and Re[Sll],

, , ) Re[S22]} and developed a separate mapping for each group
C. Microstrip Step Junction of responses. The corresponding mapping parameters for each

In this example we demonstrate the MSMDR. The fingroup are given in Table VI. Fig. 13(c) shows the erroiSin
model of the microstrip step junction (Fig. 12) is analyzedt the base points after applying the MSMDR algorithm. We
by Sonnet Software’ssm. The coarse model is a built-in notice that the specified accuracy is achieved.
element of OSA90/hope. The fine- and coarse-model pa-The enhanced coarse model of the step junction was tested at
rameters are given by, = (W, W, H e, ¥, 2. = 50 uniformly distributed random points. The errorsin and
[Wie Wi H. e..]%. The region of interest is given in S»; by the coarse model are shown in Fig. 14(a) and (b), re-
Table V. The frequency range is 2-40 GHz with a step of spectively. The errors it%;; and.S; by the enhanced coarse
GHz (¥, = 20). The number of base points in the regioomodel are shown in Fig. 15(a) and (b), respectively. The his-
of interest is nine B, = 9). There are six responses to beéograms of the error i¥»; at 40 GHz (which is the maximum
matched: the real and imaginary partsSef, S»;, andSs2. We  error in the frequency range 2—40 GHz) by the coarse model and
will show that one mapping targeting all these responses is gt the enhanced coarse model are shown in Fig. 16(a) and (b),
sufficient to achieve the required accuracy at the base poimsspectively. The mean and standard deviation for the two cases

Fig. 12. Microstrip step junction.



74 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 1, JANUARY 2001

0.08 0.09
0.08
0.07
/ 0.07 /
0.06 / 005 /
= &
g 0% 2 005 //
5 0.04 5
S 0.04
£ £
T 003 7// " 003
0.02 / 0.02
0.01 — 0.01 —=
0, 15 21 305 20 03 115 21 305 20
frequency (GHz) frequency (GHz)
(@) (b)
0.02 1
0.015

001 /
Y
0.005

—— *
0 2 11.5 21 30.5 40
frequency (GHz)

(©)

Errorin Sn

Fig. 13. ErrorinS;; of the microstrip step junction with respectdm: (a) before applying any modeling technique, (b) after applying FSMSM, and (c) after
applying the MSMDR algorithm.
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Fig. 14. Error of the microstrip step-junction coarse model with respeatitan: (a) 51, and (b)Sz;.

are also shown in Fig. 16(a) and (b). The time taken by the Epénsate discontinuities. It was recently compared in [11]
solver and by the Huber optimizer is 19 and 2.5 min, respewith the other T-junction configurations in the literature. The
tively, on an HP C200-RISC workstation. T-junction is symmetric in the sense that all input lines have
the same widthw. The fine model is analyzed by Sonnet
Software’sem and the coarse model is composed of empir-
In this example, we consider a shaped T-junction [séeal models of simple microstrip elements [see Fig. 17(b)]
Fig. 17(a)]. This T-junction was introduced in [10] to comof OSA90/hope. The fine- and coarse-model parameters

D. Microstrip-Shaped T-Junction
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Fig. 19. Error of the shaped T-junction coarse model with respeatitan: (a) S1; and (b)S22.

are given byzy = [w h w; w2 z y &', z. = 50random points were generated in the region of interest. The
[we he wWie W Te Yo Eorlt. coarse-model errors ifl;; andS»» defined by (13) are shown in

The region of interest is given in Table VIl and the frequendlyig. 19(a) and (b), respectively. The enhanced coarse-model er-
range used is 2—20 GHz with a step of 2 GH% (= 10). The rorsinS;; andSs, are shown in Fig. 20(a) and (b), respectively.
width w of the input lines is determined in terms bfande,.  The time taken by the EM solver and by the Huber optimizer is
so that the characteristic impedance of the input lines i€50 11 and 23 min, respectively, on an HP C200-RISC workstation.
The widthw; is taken as 1/3 of the widthv. The widthw, is The enhanced coarse model for the shaped T-Junction can
obtained so that the characteristic impedance of the microstoip utilized in optimization. For example, the T-junction is op-
line after the step connected to port 2 is twice the characteridiimized here to achieve the minimum possible mismatch at the
impedance of the microstrip line after the step connected to ptirtee ports. The optimization variables arandy, the other pa-
1 [see Fig. 17(b)]. The number of base points in the region tEmeters are kept fixed(= 24 mil, A = 25 mil, ande,. = 9.9)
interestis 9.8, = 9). [11]. The specifications [11] args11| < 1/3, |See| < 1/3

The MSMFI algorithm (in Section Ill) was applied to enhancén the frequency range of 2 —16 GHz. The minimax optimizer
the accuracy of the T-Junction coarse model. The algorithm - OSA90/hope reached the solutien= 2.1 mil andy =
vided the total frequency range into two intervals: 2—16 GHz ardd.1 mil, which agrees with the solution obtained in [11]. The
16-20 GHz. The corresponding mapping parameters for eanhgnitude ofS;; andS», obtained by Sonnet Softwareésn,
interval are given in Table VIII. Fig. 18(a) and (b) sholfs,| the coarse model and the enhanced coarse model are shown in
and| S22 | by Sonnet Software'an, the T-junction coarse model Fig. 21(a) and (b). We notice a good agreement between the
and the T-junction enhanced coarse model at two test pointgé@sults obtained by the enhanced coarse model and by Sonnet
the region of interest. To perform a more comprehensive teSpftware’sem.
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TABLE VIl
MSMFI MAPPING PARAMETERS FOR THEMICROSTRIPSHAPED T-JUNCTION
2 GHzto 16 GHz 16 GHz to 20 GHz
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VI. CONCLUSIONS

The powerful GSM approach to microwave device modeli
has beenintroduced in this paper. Three derivative concepts h
beenillustrated: the SMSM concept, FSMSM concept,and M
concept. Twovariationsof MSMare also presented: MSMDR a
MSMFI. Our approach typically uses only a few EM simulationf
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