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Abstract. The space mapping technique is intended for optimization of engineering models which involve very
expensive function evaluations. It is assumed that two different models of the same physical system are available:
Besides the expensive model of primary interest (denoted the fine model), access to a cheaper (coarse) model is
assumed which may be less accurate.

The main idea of the space mapping technique is to use the coarse model to gain information about the fine
model, and to apply this in the search for an optimal solution of the latter. Thus the technique iteratively establishes
a mapping between the parameters of the two models which relate similar model responses. Having this mapping,
most of the model evaluations can be directed to the fast coarse model.

In many cases this technique quickly provides an approximate optimal solution to the fine model that is suffi-
ciently accurate for engineering purposes. Thus the space mapping technique may be considered a preprocessing
technique that perhaps must be succeeded by use of classical optimization techniques. We present an automatic
scheme which integrates the space mapping and classical techniques.
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1. Introduction

When engineers encounter a mathematical problem which they cannot solve, it is common
practice to consider another formulation which is solvable and intends to contribute to the
original problem solution.

The space mapping technique, which was introduced by Bandler et al. (1994), is based
on this principle. It is an optimization technique for engineering design in the following
situation: Assume the performance of some physical object depends on a number of param-
eters. We search for an optimal parameter setting and during the search procedure we need
to find model responses corresponding to some intermediate sets of parameters. This may
for instance be based on function evaluations requested by a mathematical optimization
algorithm. These evaluations are assumed to be so expensive that traditional optimization
becomes unrealistic in practice. Even cases where function evaluations involve physical
experiments may occur. Therefore, the aim is to make a shortcut using a cheaper, but pre-
sumably less accurate, model of the same physical system, in order to gain information
about the optimal parameter setting of the original model.
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Thus we assume two different models are available:

1. An accurate but expensive model, represented by a residual function f : �( f ) → R
m ,

which must be minimized as indicated below. Here �( f ) ⊆ R
n , and m ≥ n. This model

is denoted the fine model. Gradients of f are assumed not to be available.
2. A cheap (i.e., fast) model, represented by a residual function c : �(c) → R

m , which
must be minimizable in the same sense as f . Here �(c) ⊆ R

n , and m ≥ n. This model
is denoted the coarse model. Gradients of c are assumed to be available.

In this context a residual function is the difference between a response function, orig-
inating from a model, and some predefined specifications. A response function may for
instance be model responses at a specific set of sample points t ( j), j = 1, . . . , m, hence
f (x), c(z) are vector functions with elements f ( j)(x) = ϕ(t ( j); x), c( j)(z) = σ(t ( j); z)
being the difference between the model response and the specification at a given sample
point t ( j). We wish to find an optimal set of parameters x∗ ∈ �( f ) which makes the fine
model response meet the specifications as well as possible, hence minimizing the fine model
residual function f

x∗ ∈ arg min
x∈�( f )

H( f (x)) (1)

with respect to some merit function H , e.g., a norm in R
m . Since the fine model is considered

too expensive for direct optimization, we want to use the coarse model to gain information
about the fine model.

The general idea of how this is achieved can be illustrated by the following simple
example:

Consider an archery contest, and assume for simplicity that the archer has a steady hand:
he always shoots in exactly that direction he has planned. The goal of course is to hit the
bull’s-eye y∗, hence y∗ represents the given set of specifications. The shooting situation is
simulated with a coarse model which hits the spot the archer is pointing at, not taking forces
like wind and gravity into account.

We represent the points y in the target plane as vectors in R
2. The coarse objective function

is a vector function c : �(c) → R
2, where �(c) ⊆ R

2 is the set of possible directions from
the archer to the target. Let z ∈ �(c) be a direction pointing to the spot y(c) at the target.
Then the objective c(z) is the difference between y(c) and the target, i.e., c(z) = y(c) − y∗.
The fine model is a representation of the actual shot towards the target, i.e., in this case the
fine model represents physical experiments. The fine objective function is a vector function
f : �( f ) → R

2, �( f ) ⊆ R
2. For a direction x ∈ �( f ) the objective f (x) is the difference

between the spot y( f ) at the target which is hit and the target, i.e., f (x) = y( f ) − y∗. We
wish to find a direction x∗ ∈ �( f ) such that ‖ f (x∗)‖ = 0.

At first the archer aims at y∗, i.e., he optimizes the coarse model by finding the direction
z∗ ∈ �(c) which points at y∗. This can be formulated as follows,

z∗ = arg min
z∈�(c)

H(c(z)) (2)

for some norm H. In this case ‖c(z∗)‖ = 0.
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Figure 1. “Calculation” of the first shot f (x0), x0 = z∗. In the next shot the archer will aim at (y∗ − f (x0)) + y∗.

After taking aim the archer fires the shot in the direction chosen, hence we “calculate”
f (x0) for x0 = z∗, as illustrated in figure 1.

Since the coarse model does not take the influence of wind and gravity into account, the
arrow may fail to hit y∗, which in mathematical terms means that x∗ = z∗.

After failing a shot any good archer would adjust the sight in order to obtain a better
result with the next shot. The natural adjustment would be to “mirror the error”. If, for
instance, the first shot has hit too low on the right side of y∗, then the next aim should be
directly opposite: upwards on the left side of y∗. In our notation the second shot would
aim at (y∗ − f (x0)) + y∗. Thus, if we let z0 be the direction which points at f (x0) (i.e.,
c(z0) = f (x0)), then c(z∗) = y∗ implies that the direction of the second shot becomes
x1 = (z∗ − z0) + z∗. Since x0 = z∗ this is the same as the tentative iterate x̃1 suggested by
the first space mapping iteration (see (7) and (8) below where B0 = I ).

Essentially this way of a coarse model interacting with a fine model (or as here: the
physical reality) has been used in engineering practice for decades.

The idea of the space mapping technique is to establish a connection between the coarse
and the fine models, through a parameter mapping, and to utilize this mapping for finding an
optimal set of parameters for the fine model. In other words we are interested in establishing
a parameter mapping p : �( f ) → �(c) which yields an approximation of the form

f (x) � c(p(x)), (3)

where the mapping function p relates similar responses in the following sense: For x ∈ �( f )

we obtain z = p(x) ∈ �(c) as a solution to the subproblem

z ∈ arg min
ẑ∈�(c)

‖ f (x) − c(ẑ)‖, (4)
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Figure 2. The mapping function relating the fine and the coarse model spaces, shown here for the two-dimensional
case, [z(1) z(2)]T = p([x (1) x (2)]T ).

for some specific norm. In the present paper we assume that this optimal solution is unique.
For the problem of multiple solutions we refer to Bakr et al. (2000b). The concept of the
mapping function is illustrated in figure 2 for the two-dimensional case.

If the approximation (3) is close then the composite function c ◦ p is applicable as a
surrogate for f . Hence the optimal solution of c ◦ p can be expected to be close to the
optimal solution of f . In other words we might optimize c ◦ p rather than f which is
expected to be easier under the condition that c and f have similar structures: Then we
expect p to be a well behaved function, and since c is cheap to calculate, the composite
function c ◦ p may be easier to optimize than f . This way of replacing f by c ◦ p is the
basis of the space mapping technique.

Note for the subproblem (4) that for a given x , a calculation of p(x) involves one evalua-
tion of f succeeded by an optimization in the coarse model space �(c). Hence an evaluation
of the mapping function is at least as expensive as an evaluation of the fine model.

The space mapping technique assumes the two models are related in such a way that (3)
is a close approximation. Hence c ◦ p is optimized in the effort of finding a solution to (1)
and for this we apply classical optimization techniques. The problem formulation is

x̄ ∈ arg min
x∈�( f )

H(c(p(x))), (5)

where x̄ may be close to x∗ if c ◦ p is close to f . Observe that if the optimal solution z∗ of
H ◦ c is unique then the solution of (5) is equivalent of solving the system of n non-linear
equations

p(x) = z∗ (6)

for x . In other words x̄ = p−1(z∗).
In the first space mapping paper Bandler et al. (1994) estimate the mapping p on the basis

of some predefined weighted fundamental functions and evaluations of f at a selected set of
base points in �( f ). Bandler et al. (1995) formulated the problem as solving (6) for x using
Broyden’s method for non-linear equations (Broyden, 1965). Bakr et al. (1998) introduced
a trust-region methodology to enhance the global convergence properties. The details of
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these different approaches are described in the review paper by Bakr et al. (2000b). Recent
results of combining space mapping and direct optimization in the field of microwave circuit
design are described in Bakr et al. (2000a)

2. Space mapping details

In our formulation the space mapping intends to solve (5) by iteration. At the kth iteration
the mapping function p as defined in (4) is replaced by a local estimate pk , and then the
optimal solution of H ◦ c ◦ pk is the next iterate. The question is how to find a good
approximation pk . In this presentation we choose to iteratively approximate p by a first
order approximation, with the Jacobian matrix approximated using Broyden’s rank one
update formula.

Let the kth iterate be xk and assume zk = p(xk) has been found by (4). Letting the kth
Jacobian approximation be Bk , the corresponding linearization is

pk(x) = Bk(x − xk) + zk . (7)

The (k + 1)th tentative iterate is:

x̃k+1 ∈ arg min
x∈�( f )

H(c(pk(x)). (8)

In case of multiple optimal solutions we choose the one having the shortest distance to the
previous iterate xk . If H( f (x̃k+1)) < H( f (xk)) then the next iterate xk+1 is chosen as x̃k+1,
otherwise xk+1 = xk .

Now z̃k+1 = p(x̃k+1) is found by (4) and finally the Jacobian approximation is updated
by Broyden’s formula:

Bk+1 = Bk + z̃k+1 − zk − Bkhk

hT
k hk

hT
k , (9)

where hk = x̃k+1 − xk . Notice that the update is always performed, independently of the
acceptance of the tentative point x̃k+1.

Initially the optimal solution z∗ of H ◦ c is found and used as the first iterate: x0 = z∗.
This can be interpreted as an assumption that p is close to the identity mapping:

f (x) � c(p(x)) � c(Ix) (10)

where I = I (n). It corresponds to the initial aim at the bull’s eye in the archery example of
the previous section.

The motivation for the initial choice of the Jacobian approximation is another intuition
used in the archery example: To mirror the error. This intuition is based on the assumption
that the difference between the two model functions is close to a parameter translation:

f (x) � c(p(x)) � c(Ix + C0) (11)
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where C0 is a constant, i.e., p1(x) = Ix + C0. Since p(x0) = z0 we obtain C0 = z0 − Ix0,
and thus (11) suggests that p0(x) is given by (7) with k = 0 and B0 = I (n). Hence the
traditional choice of B0 in Broyden’s method is motivated by the archer’s simplification
(11).

The validity of the mapping approximation pk is confined to a trust region of size δk ,
hence the feasible set at iteration k is

x ∈ �(pk ) ≡ {x̃ | ‖x̃ − xk‖ ≤ δk} ∩ �( f ), (12)

for some specific norm, thus (8) is replaced by

x̃k+1 ∈ arg min
x∈�(pk )

H(c(pk(x)). (13)

The update of the trust region size δk follows the classical scheme: Significant improve-
ment in the objective compared to the predicted improvement by the approximation is
rewarded by enlarging the trust region, whereas insufficient improvement leads to decreas-
ing the trust region size, see Moré (1982) for a thorough treatment of this subject.

For many engineering purposes this formulation yields sufficiently accurate results. How-
ever, the convergence of the approach depends on the similarity between the two models.
Now, assume the sequence {xk} generated using (13) converges to the solution x̄ of (6), then
z∗ = p(x̄). If x̄ = x∗ then z∗ = p(x∗); if, however, the response of the coarse model is less
accurate than that of the fine model then we cannot expect z∗ and x∗ to correspond. Hence
in general we must expect x̄ = x∗.

In case of convergence the typical performance we have noticed is a decrease of ‖xk −x∗‖
as long as this distance is of a larger order of magnitude than ‖x̄ − x∗‖. Finally, as xk

approaches x̄ , ‖xk − x∗‖ starts to increase.
This observation indicates that the space mapping technique may be considered a good

preprocessing process, but not a method for obtaining an accurate solution. If the latter is
required then another (i.e., locally convergent) method of optimization will be necessary in
the final stages. A switch of method should ideally take place when the distance ‖xk − x∗‖
has reached the same order of magnitude as ‖x̄−x∗‖. The combined strategy of the following
section represents some early attempts to reach this ideal goal.

3. Combining with classical methods

This section demonstrates how the space mapping technique can be combined with classical
methods of optimization, based on local Taylor type approximations.

Assume the space mapping technique has been used for a number of iterations. Hence
a number of fine model evaluations f (xk) have been calculated. On the basis of these we
build an approximation of the Jacobian of f using, for instance, Broyden’s formula:

Dk+1 = Dk + f (xk+1) − f (xk) − Dkhk

hT
k hk

hT
k , (14)
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where hk = xk+1 − xk . The initial Jacobian approximation is related to the Jacobian of the
mapped coarse model at x0:

D0 = ∇x=x0 [c(p(x))] = ∇z=z0 [c(z)] · ∇x=x0 p(x)
(15)

≈ ∇z=z0 [c(z)] · ∇x=x0 p1(x) = ∇z=z0 [c(z)]

where the “≈” is probably not very precise but in accordance with the intuition (11) used
when we start the space mapping. This yields a local linearization of the fine model

lk(x) = Dk(x − xk) + f (xk). (16)

Traditionally we would minimize H ◦ f iteratively using (16) as a basis for finding the
(k + 1)th tentative iterate:

x̃k+1 ∈ arg min
x∈�(lk )

H(lk(x)), (17)

where �(lk ) is some trust region to be updated during the iteration. The next iterate is xk+1 =
x̃k+1 if the objective H ◦ f is improved, otherwise xk+1 = xk . Under mild conditions this
iteration yields convergence to a stationary point x∗ (see (1)) of f , see e.g., Madsen (1986).

In the present context we use a combination of (16) and the space mapping model c ◦ pk

of f : At the kth iteration the combined surrogate for f is

sk(x) = ωk · c(pk(x)) + (1 − ωk) · lk(x), (18)

where ωk ∈ [0; 1]. Thus the (k + 1)th tentative iterate is:

x̃k+1 ∈ arg min
x∈�(sk )

H(sk(x)). (19)

where �(sk ) is a trust region to be updated during the iteration. In case of multiple solutions
we choose the one closest to xk . The next iterate is xk+1 = x̃k+1 if the objective H ◦ f is
improved, otherwise xk+1 = xk .

The intention is to use the space mapping surrogate initially (i.e., ωk = 1) and the local
approximation (i.e., ωk = 0) in the final stages of the iteration. Hence the weighting factor ωk

can be used in a transition from the space mapping surrogate c◦ pk to a local linearization lk .
We expect the usefulness of the linear model to increase as the iteration approaches the

optimal solution of f . On the other hand, we expect c◦ pk to be insubstantial in describing f
accurately in the vicinity of the optimal solution. Hence we would like to use the information
given in the coarse model at the initial stages of the iterations, and as we approach the optimal
solution we would like to do a direct optimization, by having the linear model lk dominate sk .

In general, we do not wish to change the value of ω if the steps produced by the space
mapping algorithm yield a sufficient reduction in the objective function H ◦ f .

A very simple method of updating ωk which fulfills these conditions is to define ωk+1 =
ωk if the objective has been improved, and ωk+1 = ωk/2 otherwise. More sophisticated
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updating strategies are currently being investigated. Some suggestions are found in Bakr
(2000), Bakr et al. (2000a), and Søndergaard (1999). The challenge is to find a good
combination of the trust region radius update and the ωk update.

4. Examples

Example 1a. To illustrate the space mapping method we consider the design of a two-
section capacitively-loaded 10 : 1 impedance transformer. The coarse and the fine models
are shown in figure 3. Assume that the fine model is very expensive and is not recommended
for direct optimization. The values of the fine model capacitances are given in Table 1. The
characteristic impedances are kept fixed at the optimal values given in Table 1. The physical
lengths L1 and L2 of the two transmission lines are selected as designable parameters. Eleven
frequency points are simulated per sweep. We consider the input reflection coefficient
response f ( j)(x) = |S11(t ( j); x)| (notice that S11(t ( j); x) > 0 for all x) of both models
which is a function of the real frequency t and the designable parameters x = [L1 L2]T .

The design specifications are |S11(t ( j); x)| ≤ 0.50 for the frequency interval t ∈ [0.5; 1.5]
GHz. Hence we wish to find a design x = x∗ of the fine model yielding

H( f (x)) ≡ max
j

{
f ( j)(x)

} ≤ 0.50. (20)

In the following we review some results of applying the combined method (18) on this
problem.

Table 1. The fine model capacitances, and the characteristic impedances for the two-section capacitively-loaded
impedance transformer.

Capacitance Value (pF) Impedance Value (ohm)

C1 10 Z1 4.47214

C2 10 Z2 2.23607

C3 10

Figure 3. Fine and coarse model, two-section capacitively-loaded impedance transformer.



AN INTRODUCTION TO THE SPACE MAPPING TECHNIQUE 377

Table 2. The optimal coarse and fine model parameters z∗ and x∗ (physical lengths of the transmission lines) for
the two-section capacitively-loaded impedance transformer.

z∗ (m) x∗ (m)

0.01724138 0.06186103

0.01724138 0.06605482

Given the optimal coarse model parameters z∗ (in Table 2), initially we let x0 = z∗,
figure 4 shows the fine model response f (x0). The figure illustrates how the initial fine
model design at x0 violates the specifications (20). Solving the subproblem (4) we find
z0 = p(x0), such that c(z0) (also shown in figure 4) is close to f (x0).

After the first iteration x1 is found using (19) and from figure 5 we note how the fine
model response f (x1) meets the specifications. For the engineering purpose of finding a
design satisfying the specifications (20) a result like this is sufficient. Until this stage the
algorithm has used two fine model evaluations.

Figure 4. Two-section capacitively-loaded impedance transformer: The fine model response f (x0) (◦) at the
coarse model optimal solution x0 = z∗ and the coarse model response c(z0) (—•—), z0 = p(x0). The dashed curve
is the optimal coarse model response c(z∗) which the mapped coarse model c ◦ p is aiming for, see (5).
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Figure 5. Two-section capacitively-loaded impedance transformer: The fine model response f (x1) (◦) and the
coarse model response c(z1) (—•—), z1 = p(x1).

The visual difference from the fine model design at x1 to the optimal design x∗ (given
in Table 2) is rather small: figures 5 and 6 show that from the first iteration to the solution
the objective is decreased only from H( f (x1)) = 0.481 to H( f (x∗)) = 0.455. It turns out
that the distance between x1 and the solution x∗ is so small that the coarse model is unable
to provide sufficient improvements after x1 (in accordance with the argument at the end of
Section 2). Hence the algorithm switches rapidly to the local linear model which—in the
near neighbourhood of an iterate xk—is more accurate than the mapped coarse model. The
fact that the local linear model is preferable when only small steps are needed is illustrated
in Example 1b.

Example 1b. Using the same problem, we here give a graphical illustration of how the
mapped coarse model approximation c ◦ pk is a valid approximation to f in a larger region
than a linearization lk of f . The following point is to be made: When large steps are needed
then the mapped coarse model approximation is the better, and when small steps are needed
(e.g., when we are close to x∗) then the linearization lk is the better. In order to make the
argument more clear we insert accurate Jacobian approximations, Bk to p′(xk) in (7), and
Dk to f ′(xk) in (16) (these approximations being found using finite differences).
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Figure 6. Two-section capacitively-loaded impedance transformer: The fine model response f (x∗) (◦) and the
coarse model response c(p(x∗)) (—•—).

In figure 7 the mapped coarse model approximation error ‖c(pk(x)) − f (x)‖2 is plotted
for points on a mesh in a square region centered at xk . The linearized fine model approxi-
mation error ‖lk(x) − f (x)‖2 is plotted for points at the same mesh. The figure illustrates,
as expected, how the approximation error of the linear approximation lk (which is zero at
xk) grows with the square of the distance from xk . The approximation error of the mapped
coarse model c ◦ pk , however, does not grow systematically with the distance from xk , in
fact it is almost constant in the region considered. Furthermore we note that c ◦ pk does not
interpolate f , i.e., ‖c(pk(x)) − f (x)‖2 is non-zero at x = xk .

From these observations we conclude that close to xk the better approximation to f is lk ,
whereas c ◦ pk is the better away from xk . In fact c ◦ pk is a valid approximation to f in the
whole region shown in figure 7.

Example 2. In this example we consider the design of a seven-section capacitively-loaded
impedance transformer. The load impedance is 100 � and the line impedance is 50 �. The
coarse and the fine models are shown in figure 8. The values of the fine model capacitances
are given in Table 3. The characteristic impedances are synthesized using an equi-ripple
approximate design procedure (Pozar, 1998) and are kept fixed at these values given in
Table 3. The physical lengths Li , i = 1, . . . ,7, of the seven transmission lines are selected
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Figure 7. Two-section capacitively-loaded impedance transformer: Mapped coarse model approximation error
‖c(Bk(x −xk)+ p(xk))− f (x)‖2 (white mesh), linearized fine model approximation error ‖Dk(x −xk)+ f (xk)−
f (x)‖2 (gray scale mesh). For both meshes: xk the point of linearization is in the center of the plot.

Figure 8. Fine and coarse model, seven-section capacitively-loaded impedance transformer.
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Table 3. The fine model capacitances, and the characteristic impedances for the seven-section capacitively-loaded
impedance transformer.

Capacitance Value (pF) Impedance Value (ohm)

C1 0.025 Z1 91.9445

C2 0.025 Z2 85.5239

C3 0.025 Z3 78.1526

C4 0.025 Z4 70.7107

C5 0.025 Z5 63.9774

C6 0.025 Z6 58.4632

C7 0.025 Z7 54.3806

C8 0.025

Figure 9. Seven-section capacitively-loaded impedance transformer: The fine model response f (x0) (◦) at the
coarse model optimal solution x0 = z∗ and the coarse model response c(z0) (—•—), z0 = p(x0). The dashed curve
is the optimal coarse model response c(z∗) which the mapped coarse model c ◦ p is aiming for, see (5).



382 BAKR ET AL.

as designable parameters. We consider the input reflection coefficient response f ( j)(x) =
|S11(t ( j); x)|, and the design specifications are |S11(t ( j); x)| ≤ 0.07 for the frequency interval
t ∈ [1; 7.7] GHz.

In figure 9 the fine model response is plotted at the optimal design of the coarse model,
x0 = z∗. The coarse model response at the design z0 (being the design at which the coarse
model response is closest to the fine model response f (x0)) is also plotted in figure 9. It
is seen that this coarse model response is not very accurate in describing the fine model
response indicating that the correspondence between the two models is less obvious in this
case.

In figure 10 the optimal fine model response is plotted together with the closest coarse
model response. We see how the coarse model poorly describes the fine model at this design,
in this case the space mapping algorithm is depending heavily on the classical method to be
able to converge to the optimal solution (not another local minimum). The optimal coarse
and fine model parameters are given in Table 4.

A feasible solution is found after 18 fine model evaluations. At this stage the combination
parameterωk of (18) has been downdated to 0.016, so the space mapping is almost abandoned

Figure 10. Seven-section capacitively-loaded impedance transformer: The fine model response f (x∗) (◦) and
the coarse model response c(p(x∗)) (—•—).
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Table 4. The optimal coarse and fine model parameters z∗ and x∗ (physical lengths of the transmission lines) for
the seven-section capacitively-loaded impedance transformer.

z∗ (m) x∗ (m)

0.01724138 0.01564205

0.01724138 0.01638347

0.01724138 0.01677145

0.01724138 0.01697807

0.01724138 0.01709879

0.01724138 0.01723238

0.01724138 0.01625988

from this stage, i.e., the rest of the iterations are practically speaking based on the local
linear model lk .

For comparison we have solved this problem directly using an implementation of the
minimax optimization method of Hald and Madsen (1981) with finite differences to ap-
proximate the fine model Jacobians. As initial iterate we use the coarse model optimal
solution, i.e., x0 = z∗. This way we find a feasible solution after 25 fine model evaluations.

5. Conclusions

The basic principles of the space mapping technique have been presented. It is shown how
the space mapping technique can be combined with classical optimization strategies. The
combined method is illustrated by a simple two-dimesional example and a more complicated
seven-dimensional example. The space mapping surrogate is shown by example to be a
valid approximation to the fine model in a larger region than a corresponding fine model
linearization using the same number of fine model evaluations.

The space mapping has proved to be an efficient preprocessing technique in many difficult
engineering optimization problems. The solution accuracy is often sufficient for practical
purposes. Otherwise the technique can be combined with other methods of optimization.
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