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Abstract  —  We present a family of robust techniques for 
exploiting sensitivities in EM-based circuit optimization 
through Space Mapping (SM).  We utilize derivative 
information for parameter extractions and mapping updates.  
We exploit a Partial Space Mapping (PSM) concept where a 
reduced set of parameters is sufficient for parameter 
extraction optimization.  Upfront gradients of both EM (fine) 
model and coarse surrogates can initialize possible mapping 
approximations.  Illustrations include a two-section 10:1 
impedance transformer and a microstrip bandstop filter. 
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I. INTRODUCTION 

The SM approach [1] involves a suitable calibration of 
a fine model by a physically-based “coarse” surrogate.  
The fine model may be time intensive and field theoretic 
and accurate, while the surrogate is a faster (less accurate) 
representation. 
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We present, for the first time, new techniques for 
exploiting exact sensitivities in EM-based circuit design in 
the context of SM technology.  If the EM simulator is 
capable of providing gradient information, these gradients 
can be exploited to enhance a coarse surrogate.  New 
approaches for utilizing derivatives in the parameter 
extraction process and mapping update are presented. 

C. AAn efficient procedure exploiting a PSM concept [2] is 
proposed.  Several approaches for utilizing sensitivities 
and PSM are suggested. 

A

Alessandri et al. spurred the recent application of the 
adjoint network method using a mode matching 
orientation [3]. Currently, we are developing the adjoint 
technique within a method of moments environment [4].  
These techniques facilitate powerful gradient-based 
optimizers.  Our new work complements these efforts at 
gradient estimation for design optimization using EM 
simulations. 

for 
spac
are g

 
This work was supported in part by the Natural Sciences and 

Engineering Research Council of Canada under Grants 
OGP0007239 and STR234854-00, through the Micronet 
Network of Centres of Excellence and Bandler Corporation. 

whe

JJ.W. Bandler is also with Bandler Corporation, P.O. Box 
8083, Dundas, Ontario, Canada L9H 5E7. 

K. Madsen and J. Søndergaard are with the Department of 
Mathematical Modelling, Technical University of Denmark, 
DK-2800 Lyngby, Denmark. 
ing Partial Space Mapping  
sitivities 
. Bakr, Kaj Madsen and Jacob Søndergaard 

da L8S 4K1, www.sos.mcmaster.ca 

II. AGGRESSIVE SPACE MAPPING 

riginal Design Problem 

e original design problem is 
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, the fine model response vector is denoted by rf 
×1, e.g., |S11| at selected frequency points; m is the 
ber of sample points; the fine model point is denoted 

n×1, where n is the number of design parameters.  U 
suitable objective function.  xf

* is the optimal design. 

arameter Extraction (PE) 

 is crucial to SM: we extract a coarse model corres-
ing to a fine model response.  For PE we designate a 

plete set of basic responses by R∈ℜM×1, not 
ssarily identical to r, where M is the product of 
ber of simulation frequency points and number of 
c responses.  Fine and coarse response vectors are 
ted by Rf and Rc, respectively.  For example, we can 
eal and imaginary parts of S parameters. 

ggressive Space Mapping Approach 

ggressive SM solves the nonlinear system 
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xf , where P is a mapping between the two model 
es and xc∈ℜn×1.  First-order Taylor approximations 
iven by 
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re the Jacobian of P at the jth iteration is expressed by 
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We designate an approximation to this Jacobian by the 
square matrix B∈ℜn×n, i.e., B ≈ Jp(xf ). 
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From (2) and (3b) we can formulate the system 
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BSolving (5b) for h(j), the quasi-Newton step provides the 
next tentative iterate xf

(j+1) 
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III.  A PROPOSED ALGORITHM 

A. PE Exploiting Sensitivity 

Through the traditional PE process we can obtain the 
point xc that corresponds to xf such that 
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Using (4) the relation (8) can be simplified to 
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where Jf  and Jc are the fine and coarse Jacobians at xf and 
xc, respectively (Jf , Jc ∈ℜM×n; M ≥ n).  Solving (9) for B 
yields a least squares solution. 
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At the jth iteration we obtain xc
(j) through a Gradient 

Parameter Extraction (GPE) process: 
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B. Partial Space Mapping (PSM) 

Consider utilizing a subset of the physical parameters in 
the coarse space xc

PSM ∈ ℜk×1, k≤n.  PSM is illustrated in 
Fig. 1.  It can be represented by 

whe
colu









=












= s

f

fPSM
s
f

PSM
c

c x
xP

x
x

x
)(

 (12) 

The 
is context (9) becomes 
PSMPSM
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re BPSM∈ℜk×n and Jc
PSM ∈ℜM×k is the Jacobian of the 

se model at xc
PSM.  Solving (13) for BPSM yields the 

 squares solution at the jth iteration 

)()(1)()()( )( j
f

TjPSM
c

jPSM
c

TjPSM
c

jPSM JJJJ −=  (14)

PPSM

PSM

xf

xf
s }xc

xc
PSM

 
Fig. 1 Partial Space Mapping (PSM). 

elation (5b) becomes underdetermined.  The minimum 
 solution for h(j) is given by 
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apping Update Alternatives 

 we have exact derivatives throughout, we can use 
 to obtain B at each iteration in the PE.  Note that this 
ix can be iteratively fed back into the GPE process 
refined before making a step in the fine model space.  
can also use (14) to update BPSM(j). 
 we do not have exact derivatives, various approaches 
nitializing or constraining B and BPSM(1) can be 
sed, for example, we can use finite differences.  Either 
ix may be updated using a Broyden update.  Hybrid 
mes can be formally developed following the 
rated gradient approximation approach to 
ization by Bandler et al. [5]. 

n the assumption that the fine and coarse models share 
same physical background, Bakr et al. [6] suggested 
B could be better conditioned, in the PE process, if it 
nstrained to be close to the identity matrix I by 
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re η is a weighting factor, ei and ∆bi are the ith 
mns of E and ∆B, respectively, defined as 
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analytical solution of (16) is given by 
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D. Proposed Algorithm 

Step 1 Set j = 1.  Initialize B = I for the PE process. 
Obtain the optimal coarse model design xc

* and 
use it as the initial fine model point 
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Step 2 If derivatives exist execute GPE as in (10). 
Otherwise, execute the traditional PE where λ = 0. 

Step 3 Initialize the mapping matrix BPSM using (14). 
Step 4 Stop if 

2
*)(

1
)( or  εε <−< c

j
f

j RRf  (20) 

Step 5 Evaluate h(j) using (15). 
Step 6 Find the next xf

(j+1) using (6). 
 Step 7 Perform GPE or PE as in Step 2. Ca
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Step 8 If derivatives exist use (14) to obtain BPSM(j).  
Otherwise update BPSM(j) using a Broyden formula. 

Step 9 Set j =j+1 and go to Step 4. 
The output of the algorithm is the fine space mapped 

optimal design fx and the mapping matrix BPSM. 
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IV. EXAMPLES  

A. Capacitively Loaded 10:1 Impedance Transformer [7] 

We consider a “coarse” model as an ideal two-section 
transmission line (TL), where the “fine” model is a 
capacitively loaded TL with capacitors C1 = C2 = C3 = 10 
pF.  Design parameters are normalized lengths L1 and L2, 
w.r.t. the quarter-wave length Lq at the center frequency 1 
GHz, and characteristic impedances Z1 and Z2.  Thus, xf = 
[L1 L2 Z1 Z2]T.  Design specifications are 
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GHz 5.1GHz 5.0for ,5.011 ≤≤≤ ωS   

with eleven points per frequency sweep.  We utilize the 
real and imaginary parts of S11 in the GPE (10).  We solve 
(10) using the Levenberg-Marquardt algorithm available 
in the Matlab Optimization Toolbox [8]. 

Case 1.  We consider xc
PSM = [L1 L2]T while xf

s = [Z1 
Z2]T are kept fixed.  We employed adjoint analysis [9] to 
obtain all Jacobians.  We initialize BPSM with (14).  The 
algorithm converges in a single iteration (2 fine model 
evaluations). See Fig. 2.  The final mapping is 
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2. Optimal coarse model target response (—), the fine 
el response at the starting point (+) and final design (•) for 
apacitively loaded 10:1 transformer with L1 and L2 as the 
 coarse model parameters. 

se 2.  We also apply the algorithm for xc
PSM = [L2].  

result is very similar to Fig. 2.  We also converge in a 
le iteration (2 fine model evaluations).  The final 
ping is 

[ ] 0092.00027.0186.1067.1 −=PSMB  

se 3.  We apply the algorithm for xc
PSM = [L1].  The 

lt is again similar to Fig. 2.  Convergence is in a single 
tion (2 fine model evaluations).  The final mapping is 

[ ]00297.00092.0685.0133.1=PSMB   

andstop Microstrip Filter with Open Stubs [2] 

ur approach is applied to a symmetrical bandstop 
ostrip filter with three open stubs.  The open stub 
ths are L1, L2, L1 and W1, W2, W1 are the 
esponding stub widths.  An alumina substrate with 
ness H = 25 mil, width W0 = 25 mil and dielectric 
tant εr = 9.4 is used for a 50 Ω feeding line.  The 
gn parameters are xf = [W1 W2 L0 L1 L2]T.  The design 
ifications are 

GHz 8 and GHz 12for   9.0
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nnet’s em [10] driven by Empipe [11] is 
loyed as the fine model, using a high-resolution grid 
 a 1mil×1mil cell size.  As a coarse model we use 
le transmission lines and classical formulas to 

ulate the characteristic impedance and the effective 
ctric constant of each transmission line.  We use 
90/hope [11] built-in transmission line elements. 



Using OSA90/hope xc
* = [4.560 9.351 107.80 111.03 

108.75]T (in mils).  We use 21 points per frequency 
sweep.  We utilize the real and imaginary parts of S11 and 
S21 in the traditional PE, for which λ = 0 in (10). 

During the PE we consider xc
PSM = [L1 L2]T while xf

s = 
[W1 W2 L0]T are held fixed.  Finite differences estimate the 
fine and coarse Jacobians.  We initialize B with (14). 

The algorithm converges in 5 iterations (6 fine model 
evaluations).  See Fig. 3. Results are shown in Table I.  
The final mapping is 
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TABLE I 
INITIAL AND FINAL DESIGNS FOR 

THE BANDSTOP MICROSTRIP FILTER USING L1 AND L2 
Parameter xf

(1) xf
(5) 

W1 4.560 7.329 
W2 9.351 10.672 
L0 107.80 109.24 
L1 111.03 115.53 
L2 108.75 111.28 

All values are in mils 
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Fig. 3. Optimal OSA90/hope coarse response (—) and em 
fine model response at the starting point (+) and at the final 
design (•) for the bandstop filter using a fine frequency sweep 
with L1 and L2 as the PSM coarse model parameters. 

V. CONCLUSIONS 

We present a family of robust techniques for exploiting 
sensitivities in EM-based circuit optimization through SM.  
We exploit a PSM concept where a reduced set of 
parameters is sufficient in the PE process.  Available 
gradients can initialize mapping approximations.  Exact or 
approximate Jacobians of responses can be utilized.  For 
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bility, we propose different possible “mapping 
ices” for the PE processes and SM iterations.  
den updates can be used for approximated Jacobians.  
t region methodologies can be employed.  Our app-
hes have been tested on several examples. 
nal mappings are useful in statistical analysis and 
 optimization.  Furthermore, the notion of exploiting 
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