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Expanded Space-Mapping EM-Based Design Framework
Exploiting Preassigned Parameters

John W. Bandler, Mostafa A. Ismail, and José E. Rayas-Sánchez

Abstract—We present a novel design framework for microwave circuits.
We calibrate coarse models (circuit based models) to align with fine models
(full-wave electromagnetic simulations) by allowing some preassigned pa-
rameters (which are not used in optimization) to change in some compo-
nents of the coarse model. Our expanded space-mapping design-frame-
work (ESMDF) algorithm establishes a sparse mapping from optimizable
to preassigned parameters. We illustrate our approach through two mi-
crostrip design examples.

Index Terms—Design automation, electromagnetic (EM) optimization,
microstrip filters, microwave circuits, optimization methods, preassigned
parameters, space mapping.

I. INTRODUCTION

The concept of calibrating coarse models (computationally fast cir-
cuit based models) to align with fine models [typically CPU intensive
full-wave electromagnetic (EM) simulations] in microwave circuit de-
sign has been exploited by several authors [1]–[4]. In [1]–[3], this cal-
ibration is performed through a mapping between the optimizable pa-
rameters of the coarse model and those of the fine model such that the
corresponding responses match. In [4], the coarse model is calibrated
by adding circuit components to nonadjacent individual coarse-model
elements.

Here, we expand the original space-mapping technique [1]. We
calibrate the coarse model by allowing “preassigned” parameters to
change. For example, the coarse model of the three-section microstrip
transformer in Fig. 1(b) consists of five components: three microstrip
lines and two step junctions. The line lengths and widths (Fig. 1(a))
are optimizable. Preassigned parameters are substrate heightH and
dielectric constant"r . The coarse model is calibrated w.r.t. Sonnet’s
ememem [5] by tuning selectedH and"r.

The ESMDF algorithm calibrates the coarse model by extracting the
preassigned parameters such that corresponding responses match. It es-
tablishes a mapping from optimizable to preassigned parameters. The
resulting mapped coarse model (the coarse model with the mapped pre-
assigned parameters) is then optimized subject to a trust region size.
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(a)

(b)

Fig. 1. Three-section microstrip transformer. (a) Physical structure; (b) Coarse
model.

(a)

(b)

Fig. 2. Changing the preassigned parameters in some of the coarse-model
components (the components in Set A) results in aligning the coarse model (b)
with the fine model (a).

The trust region size is updated [6]–[8] according to the match between
the fine and mapped coarse model.

II. BASIC CONCEPTS ANDNOTATION

A. Preassigned Parameter Mapping

Consider a microwave circuit represented by a fine model and a
coarse model. We decompose the coarse model into two sets of com-
ponents: a Set A and Set B. See Fig. 2. In Set A, we allow preassigned
parameters to change throughout the design process. In Set B, we keep
the preassigned parameters intact. The vectorxxx0 2 <

n represents the
original values of the preassigned parameters. Assume that the total
number of coarse-model components isN , the number of components
in Set A ism � N and the setI is defined by

I = f1; 2; . . . ; Ng: (1)

Let j1; j2; . . . ; jm 2 I represent the indices of the components in Set
A. The vector of corresponding preassigned parameters

xxx = [xxxTj xxxTj . . . xxxTj ]T 2 <mn (2)
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wherexxxj 2 <n , i = 1; 2; . . . ;m is theith component. The vector
xxxf 2 <

n represents the original optimization variables.
We assume that we can establish a mapping from some elements of

xxxf to xxx such that the coarse model aligns with the fine model. This
mapping is given by

xxx =PPP (xxxr):<
n 7! <mn (3)

xxxf = [xxxTr xxxTs ]T : (4)

Decomposition ofxxxf intoxxxr andxxxs (introduced and justified by Ban-
dler et al. [2] as “partial space mapping”) allows a reduction of the
mappingPPP . We approximate (3) and consider the difference form

�xxx = BBBr�xxxr (5)

whereBBBr 2 <
(mn )xn is a matrix to be determined.

B. Responses

The vectorsRRRf , RRRc, defined over the frequency set
p, represent
responses of the fine model and coarse model, respectively, used for
coarse-model calibration. The vectorsRRRfs,RRRcs, defined over the fre-
quency set
s, represent specific responses used to define the objective
function for design optimization in terms of design specifications.

C. Illustrative Example

Consider the microstrip transformer in Fig. 1. The source and load
impedances are 50 and 150
, respectively. The design specifications
are

jS11j � �20 dB; for 5 GHz� ! � 15 GHz:

The fine model is analyzed by Sonnet’sememem [5]. The coarse model in
Fig. 1(b) is analyzed by OSA90/hope [9]. The optimization variables
are the widths and the lengths of the microstrip transmission lines in
Fig. 1(a). That is

xxxf = [W1 W2 W3 L1 L2 L3 ]
T
:

The preassigned parameters are the dielectric constant"r = 9:7
and the substrate heightH = 25 mil. Therefore, the vector
xxx0 = [25 mil 9:7]T . The coarse model consists of five compo-
nents(N = 5) as shown in Fig. 1(b). The algorithm applies the
coarse-model decomposition technique in Section III and chooses the
components 1, 3, and 5. Thus, Set A consists of the three transmission
lines in Fig. 1(b) and Set B consists of components 2 and 4 (the step
junctions). The vector of preassigned parameters (in Set A) is

xxx = [xxxT1 xxxT3 xxxT5 ]T

wherexxxi = [ "ri Hi ]
T , i = 1, 3, 5. The vectorxxxr in (3) is given by

xxxr = [W1 W2 W3 ]
T
:

The matrixBBBr is chosen to have the sparsity structure

BBBr =

x 0 0

x 0 0

0 x 0

0 x 0

0 0 x

0 0 x

TABLE I
RESPONSESENSITIVITY MEASURES W.R.T. PREASSIGNEDPARAMETERS OF

MICROSTRIPTRANSFORMERCOARSE-MODEL COMPONENTS

wherex denotes a nonzero entry. This structure reflects an association
between preassigned parameters and the design parameters of the cor-
responding component. For example, the preassigned parameters are
functions only ofW1, W2, andW3, respectively.

The response vectorsRRRfs, RRRcs containjS11j. The vectorsRRRf , RRRc

contain the real and imaginary parts ofS11. Set
s contains 21 evenly
spaced frequencies while
p contains 11 evenly spaced frequencies
from 5 to 15 GHz.

III. COARSEMODEL DECOMPOSITION

We present a method based on sensitivity analysis to decompose the
coarse-model components. Set A contains those for which the response
is sensitive to changes in preassigned parameters, while Set B contains
those for which the response is insensitive.

Step 1) For alli 2 I in (1) evaluate

Si =
@RRRT

cs

@xxxi
DDD

T

F

(6)

whereSi represents a measure of the sensitivity of the
coarse-model response to preassigned parameters of theith
component, the matrixDDD is for scaling andkk

F
denotes

Frobenius norm.
Comment:The Jacobian in (6) is evaluated by perturba-

tion atxxxi = xxx0, i 2 I . The matrixDDD is diagonal. It con-
sists of the elements ofxxx0. For the microstrip transformer
in Fig. 1(b), (see Section II),D = diagf25 mil; 9:7g.

Step 2) Evaluate

Ŝi =
Si

maxj2IfSjg
; i 2 I (7)

Comment:For the example, in Section II, the values of
Ŝi are given in Table I, where we notice thatRRRcs is most
sensitive to the first transmission line.

Step 3) Put theith component in Set A if̂Si � � otherwise put it
in Set B.

Comment:The scalar� is a small positive number less
than 1. In our examples� = 0:2. For the microstrip trans-
former, we place components 1, 3, and 5 in Set A (see
Table I) and components 2 and 4 in Set B.

IV. ESMDF ALGORITHM

The ESMDF algorithm decomposes the coarse model into two sets
of components as in Section III. Then, it obtains the optimal solution
of the coarse model. If the fine-model response at that solution satis-
fies the specifications and (or) is very close to the optimal coarse-model
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response, (i.e, the coarse model is already very good) the algorithm ter-
minates. Otherwise, the algorithm calibrates the coarse model by ex-
tracting the preassigned parameters at the optimal coarse-model solu-
tion and updating the matrixBBBr . At each iteration, the algorithm ob-
tains the optimal solution of the mapped coarse model subject to a cer-
tain trust region [6], [8]. This solution is accepted if it results in a reduc-
tion in the fine-model objective function. The trust region size is adap-
tively updated according to the relative improvement of the fine-model
objective function to that of the coarse model. The algorithm performs
four main tasks: mapped coarse-model optimization, extraction of pre-
assigned parameters, checking some stopping criteria and updating the
mapping parameters and the trust region size.

A. Mapped Coarse-Model Optimization

A trust region methodology controls the optimization of the mapped
coarse model to insure improvement in the fine-model objective func-
tion. Lethhh denote the prospective step�xxxf andhhhr denote the corre-
sponding step�xxxr . At the ith iteration the algorithm obtains the step
hhh(i) by solving the optimization problem

hhh
(i) =argmin

h
U RRRcs xxx

(i)
f + hhh; xxx

(i) +BBB
(i)
r hhhr

subject tok���ihhhk � �i (8)

whereU is a suitable objective function,�i is the trust region radius and
the matrix���i is for scaling [7]. We set���i as a diagonal matrix whose
elements are the reciprocal of the elements ofxxx

(i)
f . Therefore, the trust

region radius�i represents the maximum allowable relative change in
the design variables at theith iteration. The norm used in (8) is the`1
norm. The algorithm decides whether to accept the prospective step
hhh(i), as shown in (9) at the bottom of the page. Theith iteration is
successful ifhhh(i) results in an improvement in the fine-model objective
function. The algorithm updates the trust region radius according to the
criteria in [7] and [8].

B. Stopping Criteria

At the ith iteration, the algorithm simulates the fine model at the
optimal mapped coarse-model solution and stops if one of the following
stopping criteria is satisfied.

1) Predefined maximum number of iterationsimax is reached. This
puts a limit on the number of fine-model evaluations the designer
can afford.

2) Algorithm reaches a solution that just satisfies the specifications.
3) Mapped coarse-model response is very close to the fine-model

response

RRRfs xxx
(i)
f ;
p �RRRcs xxx

(i)
f ; xxx

(i�1) +BBB
(i�1)
r hhh

(i)
r ;
p � "1:

(10)
4) The solutions obtained in two successive successful iterations are

very close [3]

xxx
(i)
f � xxx

(i�1)
f

1

� "2: (11)

5) The radius of the trust region is very small

�i < �min (12)

where�min is the smallest allowable trust region radius.

C. Extraction of Preassigned Parameters

At the ith iteration, if the algorithm accepts the prospective stephhh(i)

(9) and the stopping criteria are not satisfied, it extracts the vector of
the preassigned parametersxxx(i+1) corresponding toxxx(i+1)f

xxx
(i+1) = argmin

x
RRRf xxx

(i+1)
f ;
p �RRRc xxx

(i+1)
f ; xxx;
p (13)

where the norm used in (13) is the Huber norm [10]. The optimization
problem (13) may get trapped in a poor local minimum if the coarse
and fine-model responses are severely misaligned. Possible ways to
overcome this is to use frequency mapping [11] or statistical param-
eter extraction [12]. Here, we present another technique. Instead of
solving (13) directly, we try to roughly align the responses first. We
do that by minimizing the difference between the center frequency and
the bandwidth of the coarse-model and the fine-model responses. We
use this solution as a starting point to solve (13). If this procedure fails
to produce a good match the algorithm uses the statistical parameter
extraction approach in [12]. That is, it tries to solve (13) from different
random starting points until it obtains a good match.

D. Updating the Mapping Parameters

After extracting the preassigned parameters at theith iteration the
algorithm updatesBBBr in (5). In the early iterations we have an under-
determined system. We choose the minimum norm solution to render
the preassigned parameters close to their original values. That is, we
chooseBBBr close to0. At the ith iteration we have

[ �xxx(1) �xxx(2) . . . �xxx(i) ]

= BBBr [ �xxx
(1)
r �xxx

(2)
r . . . �xxx

(i)
r ] (14)

where

�xxx
(j) =xxx(j) � xxx

(j�1)
; j 2 1; 2; . . . ; i (15a)

�xxx
(j)
r =xxx(j)r � xxx

(j�1)
r ; j 2 1; 2; . . . ; i: (15b)

The vectorxxx(0) contains the original values of the preassigned param-
eters. When solving (14) forBBBr sparsity should be considered. Let
bbb 2 <p contain the nonezero elements ofBBBr. By rearranging (14) we
can write the linear system as

yyy = XXXrbbb (16)

whereyyy = [ (�xxx(1))T (�xxx(2))T . . . (�xxx(i))T ]T 2 <mn i and
XXXr 2 <mn i�p is a sparse matrix whose nonezero elements are the
elements of�xxx

(1)
r ;�xxx

(2)
r ; . . . �xxx

(i)
r . The structure of the matrixXXXr

depends on the sparsity ofBBBr. The solution of (16) is given by

bbb = XXX
+
r yyy (17)

xxx
(i+1)
f =

xxx
(i)
f + hhh(i); if U RRRfs xxx

(i)
f + hhh(i);
p < U RRRfs xxx

(i)
f ;
p

xxx
(i)
f ; otherwise.

(9)
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TABLE II
VALUES OFDESIGNPARAMETERS FORMICROSTRIPTRANSFORMER

whereXXX+
r is the pseudoinverse ofXXXr. A Matlab [13] function is

written to construct the matrixXXXr and the Matlab function pinv is
used to evaluateXXX+

r . The advantage of using the pseudoinverse is that
it gives us the minimum norm solution for underdetermined systems.

E. Summary of the ESMDF Algorithm

Given�0 (the initial trust region radius),�min, imax, "1, "2 the algo-
rithm performs the following steps.

Step 1: Decompose the coarse-model components into

sets A and B as mentioned in Section III . Initialize

= 0, = 0.

Step 2: Optimize the coarse model. Designate the

optimal solution .

Step 3: Simulate the fine model at . Terminate if

a stopping criterion is satisfied.

Step 4: Extract the preassigned parameters by

solving (13) . Update using (17) .

Step 5: Evaluate the prospective step by opti-

mizing the mapped coarse model (8) .

Mark as a successful iteration if

+ 
 
 .

Set according to (9) .

Comment: When = 0 we disable the trust region,

hence can be small. For example, 0.05 is used in

our design examples.

Step 6: Update and increment .

Step 7: If a stopping criterion is satisfied termi-

nate.

Step 8: If the th iteration is successful go to

Step 4, otherwise go to Step 5.

V. EXAMPLES

The ESMDF algorithm has been tested with�0 = 0:05, �min =
0:005, imax = 10, and"1 = 0:005 on an IBM Aptiva (AMD Athlon,
650 MHz, 384 MB).

A. Three-Section Microstrip Transformer

This example (Section II) requires two iterations (three fine-model
simulations) to reach the optimal solution in Table II in 17 min. The
stopping criterion (10) terminates the algorithm, signifying excellent
agreement between the mapped coarse model and fine model. The ini-
tial and final solutions are shown in Fig. 3(a) and (b). Table III shows
corresponding preassigned parameters.

The final mapped coarse model can be utilized in yield estimation.
We assume a uniform distribution with 0.25 mil tolerance on all six

(a)

(b)

Fig. 3. The fine ( ) and mapped coarse-model (—) responses of the
microstrip transformer: (a) at the initial solution and (b) at the final solution
(detailed frequency sweep).

TABLE III
VALUES OF PREASSIGNEDPARAMETERS OFMICROSTRIPTRANSFORMER

COARSE-MODEL DESIGNATED COMPONENTS ATINITIAL AND FINAL

ITERATIONS

geometrical parameters. With 250 outcomes the estimated yield is 78%
compared with 79% using the fine model directly.

B. HTS Filter (Fig. 4)

The design variables of the high-temperature superconducting
(HTS) bandpass filter (Fig. 4(a)) [14] are the lengths of the coupled
lines and the separation between them

xxxf = [S1 S2 S3 L1 L2 L3 ]
T
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(a)

(b)

Fig. 4. HTS Filter. (a) Physical structure. (b) Coarse model.

TABLE IV
RESPONSESENSITIVITY MEASURES W.R.T. PREASSIGNEDPARAMETERS OF

HTS FILTER COARSE-MODEL COMPONENTS

Fig. 5. The coarse-model response resulting from 2% perturbation in the
preassigned parameters of: (a) the first component( ); (b) the
second component (—), and (c) the third component (- - -).

xxxr = [S1 S2 S3 ]
T
:

Fig. 6. Sonnet fine-model response( ) and the coarse-model response
(—) of the HTS filter at the initial solution.

Fig. 7. Objective function of the HTS filter fine model.

TABLE V
VALUES OF DESIGN PARAMETERS FORHTS FILTER

The substrate used is lanthanum aluminate with"r = 23:425, H =
20 mil and substrate dielectric loss tangent of 0.000 03. The length of
the input and output lines isL0 = 50 mil and the lines widthW =
7 mil. We choose"r andH as preassigned parameters, thusxxx0 =
[20 mil 23:425]T . The design specifications are

jS21j �0:05 for ! � 4:099 GHz and for! � 3:967 GHz

jS21j �0:95 for 4:008 GHz� ! � 4:058 GHz:

This corresponds to a 1.25% bandwidth. The coarse model consists of
empirical models for single and coupled microstrip transmission lines
[see Fig. 4(b)]. All open circuits are considered ideally open. Table IV
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(a)

(b)

Fig. 8. Detailed frequency sweep of the fine- and coarse-model responses of
the HTS filter at the final solution. (a) . (b) in decibels.

shows the sensitivity measures for the coarse-model responses w.r.t.
the preassigned parameters. Fig. 5 depicts significant changes in the
coarse model response due to+2% perturbation in both preassigned
parameters of each component. The preassigned parameter vector is
xxx = [xxxT1 xxx

T
2 xxx

T
3 ]

T , wherexxxi = [ "ri Hi ], for i = 1, 2, 3. Here

BBBr =

x 0 0

x 0 0

0 x 0

0 x 0

0 x 0

0 0 x

0 0 x

:

The fine model is parameterized by Empipe [15] and is simulated by
Sonnet’sememem [5]. The cell size used is 0.5 mil by 1 mil. All parameter
values are rounded to the nearest grid point.
s contains 25 frequencies
while
p contains 17. The coarse and fine-model responses at the initial
solution are shown in Fig. 6, where we notice severe misalignment.
The remedy suggested in Section IV managed to get a good solution of
(13). The algorithm needs four iterations (five fine-model simulations).
The time taken is 6.2 h (one fine-model simulation takes 1.2 h). The
fine-model objective function is shown in Fig. 7. Table V shows the
starting point, the optimal coarse-model solution and the final solution.
Detailed responses are shown in Fig. 8.

VI. CONCLUSION

We expand the original space-mapping technique for circuit design.
We deliberately change some preassigned parameters in the coarse

model to align it with the fine model. A mapping is established from
the optimization variables to those preassigned parameters. This
mapping is sparse and needs only few fine-model simulations to be
established. Our algorithm calibrates the coarse model w.r.t. the fine
model. It updates the mapping and exploits the resulting mapped (en-
hanced) coarse model with a trust region optimization methodology.
For implementation details see [16]. We have successfully applied our
approach to several design problems.
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