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ABSTRACT: We present neural inverse space mapping (NISM) optimization for electromag-
netics-based design of microwave structures. The inverse of the mapping from the fine to the
coarse model parameter spaces is exploited for the first time in a space mapping algorithm.
NISM optimization does not require up-front EM simulations, multipoint parameter extrac-
tion, or frequency mapping. It employs a simple statistical parameter extraction procedure.
The inverse of the mapping is approximated by a neural network whose generalization
performance is controlled through a network growing strategy. We contrast our new algo-
rithm with neural space mapping (NSM) optimization. © 2003 Wiley Periodicals, Inc. Int J RF and
Microwave CAE 13: 136–147, 2003.
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I. INTRODUCTION

Neural networks have been extensively used for mod-
eling microwave devices and circuits, in many differ-
ent ways [1, 2]. In contrast, the use of neural networks
for design by optimization is at an earlier stage: a few
variations in the use of neural networks have been
reported. The most widely used strategy [3–7] con-
sists of generating a neuromodel of the microwave
circuit within a certain training region of the design
parameters and then applying conventional optimiza-
tion to this model to find a solution that yields the

desired response. Full wave EM simulations are typ-
ically employed to generate the training data. The
generalization ability of the neuromodel is controlled
during the training process by using validation data
and testing data, also obtained from EM simulations.

More effective approaches incorporate prior
knowledge into the neural network training scheme,
following an EM-ANN approach [8, 9] or a neural
space mapping (NSM) approach [10, 11]. NSM opti-
mization also avoids the use of validation and testing
data.

An elegant new algorithm for EM-based design of
microwave circuits is presented here: neural inverse
space mapping (NISM) optimization [12]. This is the
first space mapping (SM) algorithm that explicitly uses
the inverse of the mapping from the fine to the coarse
model parameter spaces. NISM follows an aggressive
formulation by not requiring up-front fine model evalu-
ations to start building the mapping. A simple proce-
dure for parameter extraction avoids the need for
multipoint matching and frequency mappings.
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§Now with ITESO, Periférico Sur 8585, 45090 Tlaquepaque,
Jal., Mexico.

Published online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/mmce.10067

© 2003 Wiley Periodicals, Inc.

136



A neural network whose generalization perfor-
mance is controlled through a network growing strat-
egy approximates the inverse of the mapping at each
iteration. The NISM step consists simply of evaluat-
ing the current neural network at the optimal coarse
solution. We show that this step is equivalent to a
quasi-Newton step, while the inverse mapping re-
mains essentially linear and gradually departs from a
quasi-Newton step as the amount of nonlinearity in
the inverse mapping increases.

We compare our new algorithm with NSM opti-
mization [11] by solving the same microwave design
problems: a bandstop microstrip filter with open stubs
and an HTS microstrip filter.

II. NEURAL INVERSE SPACE MAPPING
(NISM)

A. Notation

Let the vectors xc and xf represent the design param-
eters of the coarse and fine models, respectively (xc,
xf � �n). We denote the optimizable fine model
responses at point xf and frequency � by Rf (xf, �) �
�r where r is the number of responses to be opti-
mized. For example, if the responses to be optimized
are �S11� and �S21�, then r � 2. The vector Rf (xf) � �m

denotes the fine model responses at the Fp sample
frequency points, where m � rFp. Similarly, Rc (xc) �
�m denotes the corresponding coarse model re-
sponses to be optimized.

Additionally, we denote the characterizing fine
model responses at point xf � �n and frequency � by
Rfs(xf, �) � �R, which includes the real and imagi-
nary parts of all the available characterizing responses
in the model (considering symmetry). For example,
for a two-port reciprocal network they include
Re{S11}, Im{S11}, Re{S21}, and Im{S21}, and R � 4.
The vector Rfs(xf) � �M denotes the characterizing
fine model responses at all the Fp frequency points,
where M � RFp. Similarly, Rcs(xc) � �M denotes the
corresponding characterizing coarse model responses.

B. Flow Diagram: An Overview

A flow diagram for NISM optimization is shown in
Figure 1. We start by performing regular minimax
optimization on the coarse model to find the optimal
coarse solution xc* that yields the desired response.
The characterizing fine model responses Rfs at the
optimal coarse solution xc* are then calculated.

We realize parameter extraction, which consists of
finding the coarse model parameters that makes the

characterizing coarse responses Rcs as close as possi-
ble to the previously calculated Rfs.

We continue by training the simplest neural net-
work N that implements the inverse of the mapping
from the fine to the coarse parameter space at the
available points.

The new point in the fine model parameter space is
then calculated by simply evaluating the neural net-
work at the optimal coarse solution. If the maximum
relative change in the fine model parameters is smaller
than a previously defined amount we finish, otherwise
we calculate the characterizing fine model responses
at the new point and continue with the algorithm.

C. Parameter Extraction

The parameter extraction procedure at the ith NISM
iteration is formulated as the optimization problem

xc
�i� � arg min

xc

UPE(xc) (1a)

UPE�xc� � �e�xc��2
2 (1b)

e�xc� � Rfs�xf
�i�� � Rcs�xc� (1c)

Figure 1. Flow diagram for neural inverse space mapping
(NISM) optimization.
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We solve (1) using the Levenberg-Marquardt algo-
rithm for nonlinear curve fitting available in the Mat-
lab™ Optimization Toolbox [13].

We normally use x*c as the starting point for solv-
ing (1). This might not be a good starting point when
an extremely severe matching problem is being
solved, one that has some poor local minimum around
x*c. If the algorithm is trapped in a poor local mini-
mum, we change the starting point for (1) by taking a
small random perturbation �x around x*c until we find
an acceptable local minimum, i.e., until we obtain
good matching between fine and coarse models.

The maximum perturbation �max is obtained from
the maximum absolute sensitivity of the parameter
extraction objective function at x*c as

�max �
�PE

��UPE�x*c���
(2)

Let rand � �n be a vector whose elements take
random values between 0 and �1 every time it is
evaluated. The values of the elements of �x are cal-
culated as

�xk � �max�2randk � 1�, k � 1, . . . , n (3)

A value of �PE � 0.03 is used in our implementation.
Many other values of �PE could be used in (2), as we
use it only to escape from a poor local minimum.

A similar strategy for statistical parameter extrac-
tion was proposed in [14], where an exploration re-
gion is first created by predefining a fixed number of
starting points around x*c.

The algorithm for realizing parameter extraction is
stated as follows

Algorithm: Parameter Extraction

begin
solve (1) using x*c as starting point
while �e(xc

(i)

)�� � �PE

calculate �x using (2) and (3)
solve (1) using xc � �x as starting point

end

A value of �PE � 0.15 is used in our implementa-
tion, assuming that all the response values are nor-
malized.

D. Inverse Neuromapping

When training the neural network N that implements
the inverse mapping we solve the optimization
problem

w* � arg min UN(w) (4a)
w

UN�w� � �	· · · el
T · · ·
T�2

2 (4b)

el � xf
�l � � N�xc

�l �, w�, l � 1, . . . , i (4c)

where i is the current NISM iteration and vector w
contains the internal parameters (weights, bias, etc.)
of the neural network N. The starting point w(0) for
solving (4) is a unit mapping, i.e., N (xc

(l), w(0)) � xc
(l),

for l � 1, . . ., i. We use the Scaled Conjugate Gra-
dient (SCG) algorithm available in the Matlab™ Neu-
ral Network Toolbox [15] for solving (4). Notice that
the time consumed in solving (4) is negligible because
no coarse or fine model simulations are needed.

To control the generalization performance of the
neural network N, we follow a network growing strat-
egy [16], in which case we start with a small per-
ceptron to match the initial points and then add more
neurons only when we are unable to meet a small
error.

We initially assume a two-layer perceptron given
by

N�xc, w� � xf � Woxc � bo (5)

where Wo � �n�n is the matrix of output weighting
factors, bo� �n is the vector of output bias elements,
and vector w contains bo and the columns of Wo. The
starting point is obtained by making Wo � I and bo � 0.

If a two-layer perceptron is not sufficient to make
the learning error UN(w*) small enough, then we use
a three-layer perceptron with h hidden neurons given
by

N�xc, w� � Wo��xc� � bo (6a)

��xc� � 	��s1� ��s2� · · · ��sh�

T (6b)

s � Whxc � bh (6c)

where Wo � �n � h, bo� �n, �(xc) � �h is the
vector of hidden signals, s � �h is the vector of
activation potentials, Wh � �h�n is the matrix of
hidden weighting factors, bh � �h is the vector of
hidden bias elements, and h is the number of hidden
neurons. In this work we use hyperbolic tangents as
nonlinear activation functions, i.e., �( � ) � tanh( � ).
Vector w contains bo, bh, the columns of Wo, and the
columns of Wh.

Our starting point for solving (4) using (6) is also
a unit mapping, which is approximately obtained by
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making bo � 0, bh � 0, Wh � 0.1[I 0]T and Wo �
10[I 0], assuming that the training data has been
scaled between �1 and �1. Notice that we consider
h 	 n in order to achieve the unit mapping.

The algorithm for finding the simplest inverse neu-
romapping is stated as

Algorithm: Inverse Neuromapping

begin
solve (4) using (5)
h � n
while UN(w*) � �L

solve (4) using (6)
h � h � 1

end

In our implementation we use �L � 1 � 10�4.
Notice that the algorithm for finding the inverse neu-
romapping uses a two-layer perceptron during at least
the first n � 1 NISM iterations, since the points (xc

(i),
xf

(i)) can be mapped with a linear mapping for i � 1
. . . n � 1. A three-layer perceptron is needed only
when we exceed n � 1 NISM iterations and the
mapping is significantly nonlinear.

E. Termination Criterion

As illustrated in the flow diagram of Figure 1, we stop
NISM optimization when the new iterate is close
enough to the current point. We do this by testing the
relative change in the fine model parameters. If the
expression

�xf
�i�1� � xf

�i��2 
 �end��end � �xf
�i��2� (7)

is true, we end NISM optimization taking xf
(i) as the

solution, otherwise we continue. We use �end � 5 �
10�3 in our implementation. Notice that the fine
model is not evaluated at the point xf

(i�1).

III. NATURE OF THE NISM STEP

In this section we show that the NISM step, xf
(i�1) �

N (x*c), is equivalent to a quasi-Newton step while the
inverse mapping built during NISM optimization re-
mains linear (i.e., while a two-layer perceptron is
enough to approximate the inverse mapping). We also
show that the NISM step gradually departs from a
quasi-Newton step as the amount of nonlinearity
needed in the inverse mapping increases.

A. Jacobian of the Inverse Mapping

From (5), the Jacobian JN of the inverse mapping N
(xc) when a two-layer perceptron is employed is given
by

JN � Wo (8)

When a three-layer perceptron is used, the Jacobian
JN is obtained from (6) as

JN � W0J�Wh (9)

where J � �h�h is a diagonal matrix given by
J � diag(�� (sj)), with j � 1. . .h. We use (8) and
(9) to demonstrate the nature of the NISM step
xf

(i�1) N(x*c).

B. NISM Step versus Quasi-Newton
Step

A general space mapping optimization problem can
be formulated as solving the system of nonlinear
equations

f�xf� � P�xf� � x*c � 0 (10)

where xc � P(xf) is the mapping function that makes
the coarse model behave as the fine model, i.e., Rc

(P(xf)) � Rf (xf). A Newton step for solving (10) is
given by

xf
�i�1� � xf

�i� � JP
�1f (11)

where Jp � �n�n is the Jacobian of the mapping
function P(xf). This can be stated in an equivalent
manner by using the Jacobian JN � �n�n of the
inverse of the mapping xf � N(xc)

xf
�i�1� � xf

�i� � JNf (12)

Approximating JN directly involves the same compu-
tational effort as approximating JP, but calculating the
next step using (12) is more efficient than using (11).

If a two-layer perceptron is being used, we substi-
tute (8) in (12) to obtain

xf
�i�1� � xf

�i� � Wo�xc
�i� � x*c� (13)

which can be expressed using (5) as

xf
�i�1� � Wox*c � �xf

�i� � bo� � xf
�i� � N�x*c� (14)
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From (12) and (14) we conclude that while the inverse
mapping built during NISM optimization remains lin-
ear, the NISM step is equivalent to a quasi-Newton
step. Notice that we do not use any of the classical
updating formulae to calculate an approximation of
the inverse of the Jacobian; this is done by simply
evaluating the current neural network at the optimal
coarse solution.

If a three-layer perceptron is being used, we sub-
stitute (9) in (12) to obtain

xf
�i�1� � xf

�i� � WoJWh�xc
�i� � x*c� (15)

Adding and subtracting WoJ bh to (15)

xf
�i�1� � WoJ�Whx*c � bh� � WoJ�Whxc

�i� � bh� � xf
�i�

(16)

Substituting (6c) in (16)

xf
�i�1� � WoJs�x*c� � WoJs�xc

�i�� � xf
�i� (17)

Expanding the term J s(xc) we obtain

Js�xc� � 	���s1�s1 · · · ���sh�sh

T. (18)

Since we are using hyperbolic tangents as nonlinear
activation functions, when a small amount of nonlin-
earity is present (e.g., sj � 0.1), �(sj) � sj, and ��
(sj)sj � sj � � (sj), for j � 1,. . ., h, and using (6b) we
express (18) as

Js�xc� � ��xc� (19)

Substituting (19) in (17)

xf
�i�1� � Wo��x*c� � Wo��xc

�i�� � xf
�i� (20)

Adding and subtracting bo to (20) and using (6a) we
express (20) as

xf
�i�1� � Wo��x*c� � bo � Wo��xc

�i�� � bo � xf
�i�

� N�x*c� (21)

In conclusion, the NISM step gradually departs from
a quasi-Newton step as the amount of nonlinearity
needed in the inverse mapping increases.

Figure 2. Two-section impedance transformer test prob-
lem: (a) “coarse” model, (b) “fine” model.

Figure 3. Coarse (—) and fine (�) model responses at x*c
for the two-section impedance transformer.

Figure 4. Optimal coarse model response (—) and fine
model response (�) at the NISM solution for the two-section
impedance transformer.

TABLE I. Fine Model Parameters for the Two-
Section Impedance Transformer at Each
NISM Iteration

i xf
(i)T

1 [90 90]
2 [84.1990 83.0317]
3 [79.3993 73.7446]
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IV. EXAMPLES

A. Two-Section Impedance Transformer

As an illustrative case, consider the classical test
problem of designing a capacitively loaded 10:1 two-
section impedance transformer [17]. The proposed
“coarse” and “fine” models are shown in Figure 2.
The coarse model consists of ideal transmission lines;
the fine model consists of capacitively loaded ideal
transmission lines, with C1 � C2 � C3 � 10 pF. The
design specifications are �S11� 
 0.50 for frequencies
between 0.5 and 1.5 GHz.

The electrical lengths of the two transmission lines
at 1.0 GHz are selected as design parameters. The
characteristic impedances are kept fixed at the follow-
ing values: Z1 � 2.23615 �, Z2 � 4.47230 �. Both
models were implemented in OSA90/hope [18]. The
optimal coarse solution is x*c � [90 90]T (degrees).
The coarse and fine model responses at x*c are shown

in Figure 3. We used only 10 frequency points from
0.2 to 1.8 GHz for the fine model.

NISM optimization requires only three “fine”
model evaluations to solve this problem. The values
of the fine model parameters at each iteration are
shown in Table I. A two-layer perceptron was enough
to approximate the inverse mapping at all NISM iter-
ations. The fine model response at the NISM solution
is compared with the optimal coarse model response
in Figure 4. The fine model minimax objective func-
tion values at each NISM iteration are shown in
Figure 5.

Because both the coarse and fine models are fast to
evaluate, we applied direct minimax optimization to
the fine model, obtaining xf* � [79.2651 74.2322]T

after 64 fine model evaluations. In Figure 6 we com-
pare the fine model response at this solution with the
optimal NISM response, where a remarkable match is
observed.

Figure 5. Fine model minimax objective function values
for the two-section impedance transformer at each NISM
iteration.

Figure 6. Fine model response at the NISM solution (�)
and at the direct minimax solution (—) for the two-section
impedance transformer.

Figure 7. Bandstop microstrip filter with quarter-wave
resonant open stubs.

Figure 8. Coarse model for the bandstop microstrip filter
with open stubs.
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B. Bandstop Microstrip Filter with
Open Stubs

We apply NISM optimization to a bandstop micro-
strip filter with quarter-wave resonant open stubs [11],
whose physical structure is illustrated in Figure 7. L1,
L2 are the open stub lengths and W1, W2 the corre-
sponding widths. An alumina substrate with thickness
H � 25 mil, width W0 � 25 mil and dielectric
constant �r � 9.4 is used for a 50 � feeding line.

The specifications are �S21� 
 0.01 in the stopband
and �S21� 	 0.9 in the passband, where the stopband
lies between 9.3 and 10.7 GHz, and the passband
includes frequencies below 8 GHz and above 12 GHz.
The design parameters are xf � [W1 W2 L0 L1 L2]T.

Sonnet’s em™ [19] driven by Empipe™ [18] was
employed as the fine model, using a high-resolution
grid with a 1 mil � 1 mil cell size. The coarse model,
illustrated in Figure 8, consists of simple ideal trans-
mission lines for modeling each microstrip section
and classical formulas [20] to calculate the character-
istic impedance and the effective dielectric constant of
each transmission line. It is seen that Lc2 � L2 �
W0/2, Lc1 � L1 � W0/2, and Lc0 � L0 � W1/2 � W2/2.
We use OSA90/hope™ [18] built-in transmission line
elements TRL.

The following optimal coarse model solution is
found for L0, L1, and L2 of quarter-wave lengths at 10
GHz: x*c � [6.0 9.0 106.4 110.1 108.8]T (mils), as in

[11]. The coarse and fine model responses at the
optimal coarse solution are shown in Figure 9.

NISM optimization requires only four fine model
evaluations to solve this problem. The sequence of
iterates is shown in Table II (all the points are on the
grid, to avoid interpolation). A two-layer perceptron
was enough to approximate the inverse mapping at all
NISM iterations. The fine model response at the
NISM solution is compared with the optimal coarse
model response in Figure 10. The fine model minimax
objective function values at each NISM iteration are
shown in Figure 11.

The same problem was solved in [11] using
NSM optimization. NSM required 13 fine model
evaluations to find the solution whose response is
shown in Figure 12. NISM optimization requires
fewer fine model evaluations and arrives at a solu-
tion closer to the solution of the original optimiza-
tion problem.

Figure 9. Coarse and fine model responses at the optimal
coarse solution for the bandstop filter with open stubs:
OSA90/hope™ (—) and em™ (�).

TABLE II. Fine Model Parameters for the Bandstop
Filter With Open Stubs at Each NISM Iteration

i xf
(i)T

1 [6 9 106 110 109]
2 [7 11 103 112 111]
3 [9 20 95 115 115]
4 [9 19 95 115 114]

Figure 10. Coarse model response (—) at the optimal
coarse solution and fine model response (�) at the NISM
solution for the bandstop microstrip filter with open stubs.

Figure 11. Fine model minimax objective function values
for the bandstop microstrip filter at each NISM interation.
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C. High-Temperature Superconducting
Microstrip Filter

We apply NISM optimization to a high-temperature
superconducting (HTS) quarter-wave parallel cou-
pled-line microstrip filter and contrast our results with
those obtained by using NSM optimization on the
same problem [10, 11]. The physical structure of the
HTS filter is illustrated in Figure 13.

L1, L2, and L3 are the lengths of the parallel cou-
pled-line sections and S1, S2, and S3 are the gaps
between the sections. The width W is the same for all
the sections as well as for the input and output lines of
length L0. A lanthanum aluminate substrate with
thickness H and dielectric constant �r is used.

The specifications are �S21� 	 0.95 in the passband
and �S21� 
 0.05 in the stopband, where the stopband
includes frequencies below 3.967 GHz and above

4.099 GHz, and the passband lies in the range [4.008
GHz, 4.058 GHz]. The design parameters are xf � [L1

L2 L3 S1 S2 S3]T. We take L0 � 50 mil, H � 20 mil,
W � 7 mil, �r � 23.425, loss tangent � 3 � 10�5; the
metalization is considered lossless.

Sonnet’s em™ [19] driven by Empipe™ [18] was
employed as the fine model, using a high-resolution
grid with a 1 mil � 1 mil cell size. OSA90/hope™
[18] built-in linear elements MSL (microstrip line),
MSCL (two-conductor symmetrical coupled micro-
strip lines), and OPEN (open circuit) connected by
circuit theory over the same MSUB (microstrip sub-
strate definition) are taken as the coarse model, whose
schematic representation is illustrated in Figure 14.

The following optimal coarse model solution is
used, as in [10,11]: x*c � [188.33 197.98 188.58 21.97
99.12 111.67]T (in mils). The coarse and fine model
responses at the optimal coarse solution are shown in
Figure 15. Only 14 frequency points per frequency
sweep are used for the fine model.

After only three fine model simulations, the op-
timal NISM solution was found. The sequence of
fine model parameters at each NISM iteration is
shown in Table III (all the points are on the grid, to
avoid interpolation). A two-layer perceptron was
enough to approximate the inverse mapping at all
NISM iterations. Figure 16a compares the optimal
coarse response with the fine model response at the

Figure 12. Coarse model response (—) at the optimal
coarse solution and fine model response (�) at the NSM
solution, obtained in [11], for the bandstop microstrip filter
with open stubs.

Figure 13. HTS quarter-wave parallel coupled-line mi-
crostrip filter.

Figure 14. Schematic representation of the coarse model
for the HTS filter.

Figure 15. Coarse and fine model responses at the optimal
coarse solution for the HTS filter: OSA90/hope™ (—) and
em™ (�).
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NISM solution using a fine frequency sweep. A
more detailed comparison in the passband is shown
in Figure 16b. The fine model minimax objective
function values at each NISM iterations for this
problem are shown in Figure 17.

Figure 18 shows the results obtained by applying
NSM optimization [11] to the same problem, where
the optimal NSM solution was found after 14 fine
model evaluations.

For all the previous examples, parameter extraction
was successfully performed in just one attempt at
every NISM iteration. That was not the case for the
HTS filter, where the parameter extraction objective
function has many poor local minima around x*c. Our
proposed algorithm for parameter extraction over-
came this problem. We applied NISM optimization to

the HTS filter five times to test the statistical param-
eter extraction results. In Table IV we show the num-
ber of attempts needed for successful parameter ex-
traction at each NISM iteration for the five
optimizations. Exactly the same sequence of points
illustrated in Table III was predicted by each of the
five optimizations.

V. CONCLUSIONS

We propose neural inverse space mapping (NISM)
optimization for EM-based design of microwave
structures. The inverse of the mapping is exploited for
the first time in a space mapping algorithm. NISM
optimization does not require up-front EM simula-
tions, multipoint parameter extraction, or frequency
mapping. A simple statistical procedure overcomes
the existence of poor local minima during parameter
extraction. A neural network whose generalization
performance is controlled through a network growing
strategy approximates the inverse of the mapping at

TABLE III. Fine Model Parameters for the HTS
Microstrip Filter at Each NISM Iteration

i xf
(i)T

1 [188 198 189 22 99 112]
2 [187 196 187 21 84 92]
3 [186 194 185 20 80 89]

Figure 16. Coarse model response at x*c (—) and fine
model response at xf

NISM (�) for the HTS filter: (a) in the
complete range of interest, (b) in the passband.

Figure 17. Fine model minimax objective function values
for the HTS microstrip filter at each NISM iteration.

Figure 18. Coarse model response at x*c (—) and fine
model response at xf

NSM (�), obtained in [11], in the pass-
band.
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each iteration. The NISM step simply evaluates the
current neural network at the optimal coarse solution.
We show that this step is equivalent to a quasi-
Newton step while the inverse mapping remains es-
sentially linear, and gradually departs from a Newton
step as the amount of nonlinearity in the inverse
mapping increases. In the examples considered, our
new algorithm exhibits superior performance to NSM
optimization and the trust region aggressive space
mapping algorithm exploiting surrogates [21, 22].
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