
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 1, JANUARY 2004 337

Space Mapping: The State of the Art
John W. Bandler, Fellow, IEEE, Qingsha S. Cheng, Student Member, IEEE,

Sameh A. Dakroury, Student Member, IEEE, Ahmed S. Mohamed, Student Member, IEEE,
Mohamed H. Bakr, Member, IEEE, Kaj Madsen, and Jacob Søndergaard

Abstract—We review the space-mapping (SM) technique and
the SM-based surrogate (modeling) concept and their applications
in engineering design optimization. For the first time, we present
a mathematical motivation and place SM into the context of clas-
sical optimization. The aim of SM is to achieve a satisfactory solu-
tion with a minimal number of computationally expensive “fine”
model evaluations. SM procedures iteratively update and optimize
surrogates based on a fast physically based “coarse” model. Pro-
posed approaches to SM-based optimization include the original
algorithm, the Broyden-based aggressive SM algorithm, various
trust-region approaches, neural SM, and implicit SM. Parameter
extraction is an essential SM subproblem. It is used to align the
surrogate (enhanced coarse model) with the fine model. Different
approaches to enhance uniqueness are suggested, including the re-
cent gradient parameter-extraction approach. Novel physical illus-
trations are presented, including the cheese-cutting and wedge-cut-
ting problems. Significant practical applications are reviewed.

Index Terms—Computer-aided design (CAD), design
automation, electromagnetic (EM) simulation, EM optimization,
filter design, microwave filters, optimization algorithms,
optimization methods, parameter extraction (PE), space mapping
(SM), surrogate models.

I. INTRODUCTION

ENGINEERS have been using optimization techniques for
device, component, and system modeling and computer-

aided design (CAD) for decades [1]. The target of component
design is to determine a set of physical parameters to satisfy cer-
tain design specifications. Traditional optimization techniques
[2], [3] directly utilize the simulated responses and possibly
available derivatives to force the responses to satisfy the design
specifications. Circuit-theory-based simulation and CAD tools
using empirical device models are fast: analytical solutions or
available exact derivatives may promote optimization conver-
gence. Electromagnetic (EM) simulators, long used for design
verification, need to be exploited in the optimization process.
However, the higher the fidelity (accuracy) of the simulation,
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Fig. 1. Linking companion coarse (empirical) and fine (EM) models through
a mapping.

the more expensive direct optimization is expected to be. For
complex problems, this cost may be prohibitive.

Alternative design schemes combining the speed and matu-
rity of circuit simulators with the accuracy of EM solvers are
desirable. The recent exploitation of iteratively refined surro-
gates of fine, accurate, or high-fidelity models, and the imple-
mentation of space mapping (SM) methodologies address this
issue. Through the construction of an SM, a suitable surrogate
is obtained. This surrogate is faster than the “fine” model and
at least as accurate as the underlying “coarse” model. The SM
approach updates the surrogate to better approximate the corre-
sponding fine model.

This paper reviews the state of the art of the SM approach,
conceived by Bandler in 1993, for modeling and design of en-
gineering devices and systems, e.g., RF and microwave com-
ponents using EM simulators. Bandler et al. [4], [5] demon-
strated how SM intelligently links companion “coarse” (ideal,
fast, or low fidelity) and “fine” (accurate, practical, or high fi-
delity) models of different complexities. An EM simulator could
serve as a fine model. A low-fidelity EM simulation or empir-
ical circuit model could be a coarse model (see Fig. 1). More
model classifications are listed in Table I.

Generally, SM-based optimization algorithms comprise four
steps. They are as follows.

Step 1) Fine model simulation (verification).
Step 2) Extraction of the parameters of a coarse or surrogate

model.
Step 3) Updating the surrogate.
Step 4) (Re)optimization of the surrogate.

The original SM-based optimization algorithm was intro-
duced in 1994 [4], where a linear mapping is assumed between
the parameter spaces of the coarse and fine models. It is
evaluated by a least squares solution of the linear equations
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TABLE I
CLASSIFICATION OF MODELS

resulting from associating corresponding data points in the two
spaces. Hence, the surrogate is a linearly mapped coarse model.

The aggressive space mapping (ASM) approach [5] elimi-
nates the simulation overhead required in [4] by exploiting each
fine model iterate as soon as it is available. This iterate, deter-
mined by a quasi-Newton step, optimizes the (current) surrogate
model.

Parameter extraction (PE) is the key to establishing the
mapping and updating the surrogate. In this step, the surrogate
is locally aligned with a given fine model through various
techniques. However, nonuniqueness of the PE step may cause
breakdown of the algorithm [6].

Many approaches are suggested to improve the uniqueness of
the PE step. Multipoint parameter extraction (MPE) [6], [7], a
statistical PE [7], a penalty PE [8], and an aggressive PE [9] are
such approaches. A recent gradient parameter extraction (GPE)
approach [10] takes into account not only the responses of the
fine model and the surrogate, but the corresponding gradients
with respect to design parameters as well.

In this paper, we present for the first time a mathematical mo-
tivation and place SM into the context of classical optimization
based on local Taylor approximations. If the nonlinearity of the
fine model is reflected by the coarse model, then the SM is ex-
pected to involve less curvature (less nonlinearity) than the two
physical models. The SM model is then expected to yield a good
approximation over a large region, i.e., it generates large descent
iteration steps. Close to the solution, however, only small steps
are needed, in which case, the classical optimization strategy
based on local Taylor models is better. A combination of the
two strategies gives the highest solution accuracy and fast con-
vergence.

Trust-region strategies were introduced into optimization al-
gorithms to stabilize the iterative process [11]. The trust-region
ASM algorithm [12] integrates such a methodology with the SM
technique.

SM techniques require sufficiently faithful coarse models
to assure good results. Sometimes the coarse model and fine
models are severely misaligned, i.e., it is hard to make the
PE process work. The hybrid ASM algorithm [13] overcomes
this by alternating between (re)optimization of a surrogate
and direct response matching. More recently, the surro-
gate-model-based SM [14] optimization algorithm combines a
mapped coarse model with a linearized fine model and defaults
to direct optimization of the fine model.

Neural space-mapping (NSM) approaches [15]–[17] utilize
artificial neural networks (ANNs) in EM-based modeling and
design of microwave devices. This is consistent with the knowl-
edge-based modeling techniques of Zhang and Gupta [18]. After
updating an ANN-based surrogate [15], a fine model optimal de-
sign is predicted in NSM [16] by (re)optimizing the surrogate.
Neural inverse space mapping (NISM) simplifies (re)optimiza-
tion by inversely connecting the ANN [17]. The next fine model
iterate is then only an ANN evaluation.

The latest development of SM is implicit space mapping
(ISM) [19]. An auxiliary set of parameters (selected preassigned
parameters such as dielectric constant or substrate height) is
extracted to match the coarse and fine model responses. The
resulting (calibrated) coarse model, the surrogate, is then
(re)optimized to evaluate the next iterate (fine model point).

The SMX [20] system is a first attempt to automate SM opti-
mization through linking different simulators.

Several SM-based model enhancement approaches have been
proposed: the generalized space-mapping (GSM) tableau ap-
proach [21], space derivative mapping [22], and SM-based neu-
romodeling [15].

The SM technology has been recognized as a contribution to
engineering design [18], [23]–[27], especially in the microwave
and RF arena. Zhang and Gupta [18] have considered the in-
tegration of the SM concept into neural-network modeling for
RF and microwave design. Hong and Lancaster [23] describe
the ASM algorithm as an elegant approach to microstrip filter
design. Conn et al. [24] have stated that trust-region methods
have been effective in the SM framework, especially in cir-
cuit design. Bakr [25] introduces advances in SM algorithms,
Rayas-Sánchez [26] employs ANNs, and Ismail [27] studies
SM-based model enhancement.

Mathematicians are addressing mathematical interpretations
of the formulation and convergence issues of SM algorithms
[28]–[35]. For example, Madsen’s group [28]–[31] considers
the SM as an effective preprocessor for engineering optimiza-
tions. Madsen and Søndergaard investigate convergence proper-
ties of SM algorithms [32]. Vicente studies convergence prop-
erties of SM for design using the least squares formulation [33],
[34] and introduces SM to solve optimal control problems [35].

Section II presents a formulation of the SM concept. Sec-
tion III addresses the original SM optimization algorithm. The
ASM algorithm is described in Section IV. PE and different ap-
proaches for ensuring uniqueness are reviewed in Section V.
In Section VI, a mathematical motivation is presented: SM is
placed into the context of classical optimization. Trust-region
algorithms are discussed in Section VII, the hybrid- and surro-
gate-model-based optimization algorithms in Section VIII, the
ISM approach in Section IX, device model enhancement (quasi-
global modeling) in Section X, neural approaches in Section XI,
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Fig. 2. Illustration of the fundamental notation of SM [1].

and a review of various applications and implementations in
Section XII. The discussion and a glossary of terms in Sec-
tion XIII are followed by conclusions in Section XIV.

II. SM CONCEPT

The SM approach introduced by Bandler et al. [4] involves a
calibration of a physically based “coarse” surrogate by a “fine”
model to accelerate design optimization. This simple CAD
methodology embodies the learning process of a designer.
It makes effective use of the surrogate’s fast evaluation to
sparingly manipulate the iterations of the fine model.

A. Optimization Problem

The design optimization problem to be solved is given by

(1)

where is a vector of responses of the model, e.g.,
at selected frequency points, is the vector of design

parameters, and is a suitable objective function. For example,
could be the minimax objective function with upper and lower

specifications. is the optimal solution to be determined. It is
assumed to be unique.

B. SM Concept

As depicted in Fig. 2, the coarse and fine model design param-
eters are denoted by and , respectively. The corre-
sponding response vectors are denoted by and ,
respectively.

We propose to find a mapping relating the fine and coarse
model parameters as

(2)

such that

(3)

in a region of interest.
We can then avoid using direct optimization, i.e., solving (1)

to find . Instead, we declare , given by

(4)

as a good estimate of , where is the result of coarse model
optimization.

C. Jacobian Relationships

Using (2), the Jacobian of is given by

(5)

An approximation to the mapping Jacobian is designated by
the matrix , i.e., . Using (3), we obtain
[13]

(6)

where and are the Jacobians of the fine and coarse models,
respectively. This relation can be used to estimate the fine model
Jacobian if the mapping is already established.

An expression for , which satisfies (6), can be derived as
[13]

(7)

If the coarse and fine model Jacobians are available, the map-
ping can be established through (7) provided that has full
rank and .

D. Interpretation of SM Optimization

SM algorithms initially optimize the coarse model to obtain
the optimal design , for instance, in the minimax sense. Sub-
sequently, a mapped solution is found by minimizing the objec-
tive function , where is defined by

(8)

Correspondingly, according to [28], is optimized
in the effort of finding a solution to (1). Here, is an
expression of an “enhanced” coarse model or “surrogate.” Thus,
the problem formulation can be rewritten as

(9)

where may be close to if is close enough to . If
is unique, then the solution of (9) is equivalent to driving the

following residual vector to zero:

(10)

III. ORIGINAL SM APPROACH [4]

In this approach, an initial approximation of the mapping
is obtained by performing fine model analyses at a pre-

selected set of at least base points . One base
point may be taken as the optimal coarse model solution, thus,

. The remaining base points are chosen by
perturbation. A corresponding set of coarse model points is then
constructed through the PE process

(11)

for which

(12)



340 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 1, JANUARY 2004

is the PE error.
The additional points apart from are required to

establish full-rank conditions leading to the first mapping ap-
proximation . Bandler et al. [4] assumed a linear mapping
between the two spaces, i.e.,

(13)

where and .
At the th iteration, the sets of points in the two spaces may

be expanded to contain, in general, points, which are used to
establish the updated mapping . Since the analytical form
of is not available, SM uses the current approximation
to estimate at the th iteration as

(14)

The process continues iteratively until is close

enough to . If so, is assumed close enough to our
desired . If not, the set of base points in the fine space is aug-
mented by , and , as determined by (11), aug-
ments the set of base points in the coarse space. Upon termina-
tion, we set the space-mapped design as in (14).

This algorithm is simple, but has pitfalls. First, up-front
high-cost fine model analyses are needed. Second, a linear
mapping may not be valid for significantly misaligned models.
Third, nonuniqueness in the PE process may lead to an erro-
neous mapping estimation and algorithm breakdown.

IV. ASM APPROACH [5]

The ASM algorithm incorporates a quasi-Newton iteration
using the classical Broyden formula [36]. A rapidly improved
design is anticipated following each fine model simulation,
while the bulk of the computational effort (optimization, PE) is
carried out in the coarse model space.

A. Theory

The ASM technique iteratively solves the nonlinear system

(15)

for . Note, from (10), that at the th iteration, the error vector
requires an evaluation of . This is executed indi-

rectly through the PE (evaluation of ). Coarse model opti-
mization produces

The quasi-Newton step in the fine space is given by

(16)

where , the approximation of the mapping Jacobian ,
defined in (5), is updated using Broyden’s rank one update.
Solving (16) for provides the next iterate

(17)

The algorithm terminates if becomes sufficiently
small. The output of the algorithm is an approximation to

and the mapping matrix . The matrix can
be obtained in several ways.

B. Unit Mapping

A “steepest descent” approach may succeed if the mapping
between the two spaces is essentially represented by a shift. In
this case, Broyden’s updating formula is not utilized. We can
solve (16) keeping the matrix fixed at . Bila et al.
[37] and Pavio [38] utilized this special case.

C. Broyden-Like Updates

An initial approximation to can be taken as , the
identity matrix. can be updated using Broyden’s rank one
formula [36]

(18)

When is the quasi-Newton step, (18) can be simplified
using (16) to

(19)

D. Jacobian-Based Updates

If we have exact Jacobians with respect to and at corre-
sponding points, we can use them to obtain at each iteration
through a least squares solution [10], [13], as given in (7).

Note that can be fed back into the PE process and iteratively
refined before making a step in the fine model space.

Hybrid schemes can be developed following the integrated
gradient approximation approach to optimization [39]. One
approach incorporates finite-difference approximations and the
Broyden formula [10]. Finite-difference approximations could
provide initial estimates of and . These are then used to
obtain a good approximation to . The Broyden formula is
subsequently used to update .

E. Constrained Update [40]

On the assumption that the fine and coarse models share the
same physical background, Bakr et al. [40] suggested that
could be better conditioned in the PE process if it is constrained
to be close to the identity matrix by letting

(20)

where is a user-assigned weighting factor, and are the
th columns of and , respectively, defined as

(21)

The analytical solution of (20) is given by

(22)
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Fig. 3. Cheese-cutting problem solved by ASM of model lengths.

F. Cheese-Cutting Problem

This simple physical example, depicted in Fig. 3, demon-
strates the ASM approach. Our “response” is weight. The des-
ignable parameter is length. A density of one assumed. The goal
is a desired weight.

Our idealized “coarse” model is a uniform cuboidal block
(top block of Fig. 3). The optimal length is easily calculated.

Let the actual block (“fine” model) be similar, but imper-
fect (second block of Fig. 3). We take the optimal coarse model
length as the initial guess for the fine model solution, i.e., cut-
ting the cheese so that . This does not satisfy our goal.
We realign our coarse model to match the outcome of the cut.
This is a PE step in which we obtain a solution (third block
of Fig. 3). Thus, we have corresponding values and .
Assuming a unit mapping, we can write for

(23)

to predict the next fine model length (last block of Fig. 3).
Note that we assume that the actual block (fine model) per-

fectly matches its coarse model, except for the missing piece;
also that the first and second attempts (cuts) to achieve our goal
are confined to a uniform section. Our goal is achieved in one
space-mapping step, a result consistent with expectations.

Observe that the length of the coarse model is shrunk during
PE to match our first outcome. The difference between the pro-
posed initial length of the block and the shrunk length is applied
through the (unit) mapping to predict a new cut. This procedure
can be repeated until the goal is satisfied.

G. Five-Pole Interdigital Filter [8]

Interdigital filters [41], [42] have the advantage of compact
size and adaptability to narrow- and wide-band applications.
A five-pole interdigital filter is shown in Fig. 4. It consists of
five quarter-wavelength resonators, as well as input and output
microstrip T-junctions within a shielded box. Each resonator is
formed by one quarter-wavelength microstrip-line (MSL) sec-
tion, shorted by a via at one end and opened at the other end. The
arrows in Fig. 4 indicate the input and output reference planes,
and the triangles symbolize the grounded vias.

Decomposition is used to construct a coarse model. As shown
in Fig. 5, the coarse filter has a 12-port center piece, the vias, the

Fig. 4. Five-pole interdigital filter [8].

Fig. 5. Coarse model of the five-pole interdigital filter using decomposition
[8].

MSL sections, and the open ends. The vias are analyzed by em1

with a fine grid. All the other parts are analyzed using coarse
grid em or empirical models in OSA90/hope.2 The results are
then connected through circuit theory to obtain the responses of
the overall filter.

The alumina substrate height is 15 mil with . The
width of each microstrip is chosen as 10 mil. The optimization
variables are chosen to be , as shown in Fig. 5.

The interdigital filter design specifications are as follows:
Passband ripple dB for GHz GHz
Isolation: 30 dB, Isolation bandwidth: 0.95 GHz

1em version 5.1a, Sonnet Software, Inc., Liverpool, NY, 1997.
2OSA90/hope, formerly Optimization Systems Associates Inc., Dundas, ON,

Canada, 1997.
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Fig. 6. Optimal coarse model target response (—jS j and jS j) and the
fine model response at the starting point (�jS j and �jS j) for the five-pole
interdigital filter [8].

Sonnet’s em driven by Empipe3 is employed as the fine
model, using a high-resolution grid with a 1 mil 1 mil cell
size. With this grid size, the EM simulation time is approxi-
mately 1.5 CPU h per frequency point on a Sun SPARCstation
10. The coarse model simulation takes less than 1.5 CPU
min per frequency point on a Sun SPARCstation 10. The
overall CPU time required for optimizing the coarse model is
approximately 2 h, which is the same order of magnitude as the
fine-model EM simulation at a single frequency point.

The ASM technique converges in two iterations. The coarse
and fine model responses at the optimal coarse model solution
are shown in Fig. 6. The optimal coarse model response and
the final fine model response are shown in Fig. 7. The final fine
model response using a fine frequency sweep is shown in Fig. 8.
The passband return loss is better than 18.5 dB and the insertion
loss ripples are less than 0.1 dB.

V. PE

PE is crucial to successful SM. Typically, an optimization
process extracts the parameters of a coarse model or surrogate
to match the fine model. Inadequate response data in the PE
process may lead to nonunique solutions. Sufficient data to
overdetermine a solution should be sought. For example, we
may use responses such as real and imaginary parts of the

-parameters in the PE even though the design criteria may
include the magnitude of only.

A. Single-Point Parameter Extraction (SPE) [4]

The traditional SPE is described by the optimization problem
given in (11). It is simple and works in many cases.

B. MPE [6], [7]

The MPE approach simultaneously matches the responses
at a number of corresponding points in the coarse and fine
model spaces. A set

of fine model points is constructed by selecting

3Empipe, version 4.0, formerly Optimization Systems Associates Inc.,
Dundas, ON, Canada, 1997.

Fig. 7. Optimal coarse model target response (—jS j and jS j) and the
fine model response at the final design (�jS j and �jS j) for the five-pole
interdigital filter [8].

Fig. 8. Fine model response at the final design (—jS j and jS j) using a
fine frequency sweep for the five-pole interdigital filter [8].

perturbations around . The corresponding is
found by solving

(24)

where

(25)

and

(26)

The perturbations in (26) are related to . The basic
MPE [6] assumes the relation is given by

(27)

This approach to MPE does not provide guidelines on the selec-
tion of fine model points.
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A more reliable algorithm [12] considers the relation between
the perturbations to be determined through the mapping matrix

. Such a relation is given by

(28)

The algorithm proposed in [12] also automates the selection of
the set of fine model points by recursively augmenting the set

until a unique PE is achieved.
Another improvement in the selection of is suggested by

the aggressive PE algorithm [9], which aims at minimizing the
number of points used in MPE. It exploits the gradients and
Hessians of the coarse model responses at the extracted point

to construct new points to be added to . A perturbation
is found by solving the eigenvalue problem

(29)

The corresponding perturbation is found consistent
with (28) and the set is augmented by

(30)

C. Statistical PE [7]

Bandler et al. [7] suggest a statistical approach to PE. The
SPE process is initiated from several starting points and is de-
clared unique if consistent extracted parameters are obtained.
Otherwise, the best solution is selected.

A set of starting points are randomly selected in a region
where the solution is expected. For the th

iteration, is implied by

(31)
where is the th component of and is the th component
of , as in (10).

D. Penalized PE [8]

Another approach is suggested in [8]. Here, the point
is obtained by solving the penalized SPE process

(32)
where is a user-assigned weighting factor. If the PE problem
is not unique, (32) is favored over (11), as the solution is bi-
ased toward . The process is designed to push the error vector

to zero. If is too large, the matching between
the responses is poor. On the other hand, too small a value of
makes the penalty term ineffective, in which case, the unique-
ness of the extraction step may not be enhanced.

E. PE Involving Frequency Mapping

Alignment of the models might be achieved by simulating the
coarse model at a transformed set of frequencies [15]. For ex-
ample, an EM model of a microwave structure usually exhibits a
frequency shift with respect to an idealized representation. Also,
available quasi-static empirical models exhibit good accuracy

over a limited range of frequencies, which can be alleviated by
frequency transformation.

The PE optimization process (11), which extracts to cor-
respond to a given , may fail if the responses and are
disjoint. However, the responses might be aligned if a frequency
transformation is applied, relating frequency to
the coarse model frequency . Frequency mapping introduces
new degrees of freedom [14].

A suitable mapping can be as simple as frequency shift and
scaling given by [5]

(33)

where represents a scaling factor and is an offset (shift).
The approach can be divided into two phases [5]. In Phase 1,

we determine and that align and in the frequency
domain. This is done by finding

(34)
In Phase 2, the coarse model point is extracted to match
with , starting with and . Three algorithms

[5] can implement this phase: a sequential algorithm and two
exact-penalty function algorithms, one using the norm, and
the other is suitable for minimax optimization [5].

F. GPE [10]

GPE exploits the availability of exact Jacobians and .
At the th iteration, is obtained through a GPE process. In
GPE, we match not only the responses, but also the derivatives
of both models through the optimization problem

(35)

where is a user-assigned weight, , and

(36)

This approach reflects the idea of the MPE [6] process,
but permits the use of exact or implementable sensitivity
techniques [43]–[48]. Finite differences can be employed to
estimate derivatives if exact ones are unavailable.

G. Other Considerations

We can broaden the scope of parameters that are varied in an
effort to match the coarse (surrogate) and fine models. We al-
ready discussed the scaling factor and shift parameters in the fre-
quency mapping. We can also consider neural weights in NSM,
preassigned parameters in ISM, mapping coefficients , etc.,
as in the generalized SM tableau approach [21], and surrogate
model-based SM [14].

H. Rosenbrock Example [49]

The Rosenbrock banana function is used to test new optimiza-
tion algorithms. The minimum is located in a narrow curved
valley (Fig. 9). We use this function to illustrate how to resolve
the nonuniqueness problem in the crucial PE step.
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Fig. 9. Contour plot of the “coarse” original Rosenbrock banana function [10].

Fig. 10. Contour plot of the “fine” transformed Rosenbrock banana function
[10].

The original Rosenbrock function

(37)

is taken as a “coarse” model with optimal solution
. A “fine” model is described by the

transformed function

(38)

where

(39)

The solution to seven decimals evaluated by the inverse trans-
formation is . Contour plots
of the coarse and the fine models are shown in Figs. 9 and 10,
respectively.

A simple SPE process involving only function values pro-
duces a nonunique solution (Fig. 11). The enhanced PE process
such as GPE or MPE leads to improved results. The first and
last GPE iterations are shown in Figs. 12 and 13, respectively.

Fig. 11. Nonuniqueness occurs when SPE is used to match the models in the
“transformed” Rosenbrock problem.

Fig. 12. Unique solution is obtained when GPE is used in the “transformed”
Rosenbrock problem in the first iteration.

After six ASM iterations, the algorithm [10] converges to
. The corresponding function value

is 9 10 . At the final GPE step, the contour plot is similar to
that of the coarse model (see Fig. 13). The SM optimization re-
sults for and are shown in Figs. 14 and 15, respectively.

VI. MATHEMATICAL MOTIVATION FOR SM

In this section, we place the SM formulation into the context
of classical optimization methods [3], [50]–[54]. These methods
are iterative and based on a local Taylor approximation, or rather
a local Taylor model, at the current iterate , namely,

(40)

The deviation of this model from can be bounded as

(41)
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Fig. 13. Sixth (last) GPE iteration of the “transformed” Rosenbrock problem.

Fig. 14. Reduction of R versus iteration count of the “transformed”
Rosenbrock problem.

Fig. 15. Reduction of kfffk versus iteration count of the “transformed”
Rosenbrock problem.

where is a constant. If we make a similar Taylor approxima-
tion to

(42)

Fig. 16. Model effectiveness plots for a two-section capacitively loaded
impedance transformer [28] at the final iterate xxx , approximately
[ 74:23 79:27 ] . Centered at hhh = 0, the light grid shows kRRR (xxx + hhh)�

RRR (LLL (xxx +hhh)k. This represents the deviation of the mapped coarse model
(using the Taylor approximation to the mapping, i.e., a linearized mapping)
from the fine model. The dark grid shows kRRR (xxx + hhh) � LLL (xxx + hhh)k.
This is the deviation of the fine model from its classical first-order Taylor
approximation. It is seen that the Taylor approximation is most accurate close
to xxx , whereas the mapped coarse model is best over a large region.

we have the approximation bound

(43)

where is a constant. The approximation to is what
(13) is designed to realize, where

(44)

Assuming this approximation, the difference between and
the mapped coarse model can be bounded as

(45)

where is obtained from (12). Thus, unlike the Taylor approxi-
mation, the SM does not interpolate at the current iterate if
the PE error . This must be considered the normal situa-
tion. When moves away from , the Taylor error increases
with the square of . As follows from (45), this is also the case
for the SM error and, thus, we can only expect the SM model to
be better than the Taylor model if is smaller than . This
means that is “closer to linear” than , which is a reasonable
assumption if the two models and are similar: some of
the nonlinearity of then also appears in . Thus, the map-
ping is simpler, i.e., less nonlinear.

If is considerably smaller than , then the SM model
will be more accurate than the Taylor model when is large.
However, when is close to , the Taylor model is always
the best provided . Fig. 16 contrasts the effectiveness
of a mapped coarse model with a classical Taylor model for
a two-section capacitively loaded impedance transformer ex-
ample around the current iterate [28]. It is clear that the SM
model is a good approximation over the entire region far from

. However, if the solution is very close to , then the clas-
sical Taylor model is best.
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VII. TRUST REGIONS AND AGGRESSIVE SM

A goal of modern nonlinear programming is robust global be-
havior of the algorithms. By robust global behavior, we mean
the mathematical assurance that the iterates produced by an op-
timization algorithm, started at an arbitrary initial iterate, will
converge to a stationary point or local minimizer for the problem
[11]. Trust-region strategies can be used to achieve this property.

A. Trust-Region Methods [24]

The idea of trust-region methods is to adjust the length of the
step taken at each iteration based on how well an approximate
linear or quadratic model predicts the objective function. The
approximate model is trusted to represent the objective func-
tion only within a region of specific radius around the current
iteration. The local model minimum inside the trust region is
found by solving a trust-region subproblem. If the model min-
imum achieves sufficient actual reduction in the objective func-
tion, the trust-region size is increased. If insufficient reduction
is achieved, the trust region is reduced. Otherwise the trust re-
gion is kept unchanged.

Assume that the objective function is a scalar function .
At the th iterate , a local approximate model is used
to approximate . It is crucial that is interpolating
at , i.e., it has the property

as (46)

The step to the next tentative iterate is found by solving the
trust-region subproblem

minimize (47)

subject to

(48)

where is the trust-region size. A quality measure of the next
tentative step is the ratio as follows:

(49)

where the numerator represents the actual reduction and the de-
nominator is the reduction predicted by the local approxima-
tion. The trust-region size is adjusted at the end of each iteration
based on . The next iteration is accepted only if an actual re-
duction is achieved in the objective function. A good survey of
methods for updating the trust-region size is given in [55].

B. Trust Region and ASM [12]

The trust-region ASM algorithm integrates a trust-region
methodology with the ASM technique. Instead of using a
quasi-Newton step in the ASM to drive to zero, a trust-region
subproblem is solved within a certain trust region to minimize

. Consider the linearized function

(50)

Fig. 17. Wedge problem. (a) Fine model. (b) Possible coarse model.

The next step is obtained by solving the trust-region subproblem

(51)

subject to

(52)

Thus, the step taken is constrained by a suitable trust region .
Solving (51) and (52) is equivalent to solving

(53)

where is an approximation to the Jacobian of the mapping
at the th iteration. The parameter can be selected such that

the step is identical to that of (51). As in ASM, is updated
by Broyden’s formula (18).

The trust-region ASM algorithm also uses recursive MPE
(see Section V). Through the set of points used in the MPE, the
algorithm estimates the Jacobian of the fine model.

C. Wedge Problem

A simple example illustrates the trust-region ASM algorithm.
Consider a wedge that is required to be cut at a specific position
so that the volume is equal to a specific value . The fine
model is the wedge, as shown in Fig. 17(a). Observe that the
coarse model is chosen to be uniformly cuboidal, as shown in
Fig. 17(b). In this case, the coarse model volume is

. The optimal coarse model solution is . Taking this
as an initial value for the fine model , we evaluate

the fine model response (volume) . A PE step
is applied to find the parameter that corresponds to a volume

. We find that and .
By solving the trust-region subproblem (51) and (52), taking

and initial trust-region size , we find
. The next fine model iteration is . The fine model

response at the current iteration is . To evaluate
how successful it is, another PE is required, which results in

. It follows that and using (49) to get
. Since , the current iteration is indicated as

successful and the trust-region size is increased to, say, .
The algorithm continues solving (51) and (52) to get
and . Since , the algorithm reaches
the required optimum in two iterations (see Fig. 18). For other
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Fig. 18. Two iterations of a trust-region algorithm for the wedge problem.

Fig. 19. HTS quarter-wave parallel coupled-line microstrip filter [15].

initial trust-region sizes, the process may take one or two more
iterations.

D. High-Temperature Superconducting (HTS) Quarter-Wave
Parallel Coupled-Line Microstrip Filter [5], [15], [16], [56]

Fig. 19 illustrates the structure of an HTS filter. , , and
are the lengths of the parallel coupled-line sections and ,

, and are the gaps between the sections. The width is
the same for all the sections, as well as for the input and output
MSLs, whose length is . A lanthanum aluminate substrate
with thickness and dielectric constant is used.

Fig. 20. Representation of the coarse model for the HTS microstrip filter [16].

Fig. 21. Illustration of the connection between SM optimization and direct
optimization or response matching.

The design parameters are .
mil, mil, mil, , and loss

tangent 3 10 ; the metalization is considered lossless. The
specifications are

for GHz GHz

for GHz and GHz.

It has been shown in [56] that the responses of this narrow
bandwidth filter are very sensitive to dimensional changes.

The conceptual schematic of the coarse model used for the
HTS filter is illustrated in Fig. 20. Built-in linear-element MSLs,
two-conductor symmetrical coupled microstrip lines (MSCLs)
and open circuit (OPEN) connected by circuit theory over the
same microstrip substrate definition (MSUB) are taken as the
“coarse” model.

Bakr et al. [12] optimized this HTS filter, where the coarse
model exploits the empirical models of MSLs, coupled lines,
and open stubs available in OSA90/hope. The fine model em-
ploys a fine-grid em simulation. The coarse model is optimized
using the OSA90/hope minimax algorithm. The space-mapped
fine model design was obtained in five iterations (eight fine
model simulations).

VIII. HYBRID ASM AND SURROGATE-MODEL-BASED

OPTIMIZATION

A. Hybrid ASM Algorithm [13]

Hybrid ASM starts with an SM optimization phase and de-
faults to a response matching phase when SM fails. The algo-
rithm exploits (6) and (7) to enable switching between the two
phases (see Fig. 21).

In the SM phase, trust-region ASM optimization is carried out
using the objective function for defined by (10). While
in the response matching phase, the objective function is ,
where is defined by (8).

At the th iteration, is evaluated. If an actual reduction
is achieved in and , then the SM iteration is accepted,
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Fig. 22. DFS filter [4], [13].

the matrix is updated, and the SM optimization phase con-
tinues. Whenever no reduction is achieved in , the point

is rejected, the Jacobian of the fine model response

is evaluated at the point using (6) and response matching
starts.

If achieves reduction in , but does not achieve any
reduction in , mainly because of the PE nonuniqueness,
the point is accepted and recursive MPE is used to find

another vector . If the new still does not achieve
improvement in , is approximated using the

MPE fine model points, then and are supplied to
the response matching phase.

B. Double-Folded-Stub (DFS) Filter [4], [9], [12], [13]

We consider the design of the DFS microstrip filter [4]. The
filter is characterized by five parameters, i.e., , , , ,
and (see Fig. 22). , , and are chosen as optimization
variables. and are fixed at 4.8 mil. The design specifi-
cations are

dB for GHz and GHz

dB for GHz GHz.

A coarse model (Fig. 23) exploits the MSL and microstrip
T-junction models available in OSA90/hope. The coupling be-
tween the folded stubs and MSL is simulated using equivalent
capacitors.

The fine model is simulated by HP HFSS4 through HP Em-
pipe3D.5 The fine model response at is shown in Fig. 24. We
see a big shift between the optimal coarse response and initial
fine response. The first phase successfully carried out eight iter-
ations (12 fine model simulations). Through (6), a mapping esti-
mates and a switch to the second phase is carried out. The de-
sign at the end of the second phase is taken as the starting point
for minimax optimization. The optimal response is shown
in Fig. 25. The optimal designs are given in Table II.

C. Surrogate Model-Based SM Algorithm [14]

Surrogate model-based SM optimization exploits a surrogate
in the form of a convex combination of a mapped coarse model
and a linearized fine model. The algorithm employs the trust-re-
gion method in which the surrogate replaces the formal approx-

4HP HFSS, version 5.2, EEsof Division Hewlett-Packard Corporation, Santa
Rosa, CA, 1998.

5HP Empipe3D, version 5.2, EEsof Division, Hewlett-Packard Corporation,
Santa Rosa, CA, 1998.

Fig. 23. Coarse model of the DFS filter [13].

Fig. 24. Coarse response RRR (—) and fine response RRR (xxx )(�) for the DFS
filter [13].

Fig. 25. Coarse responseRRR (—) and fine responseRRR (�) for the DFS filter
[13].

TABLE II
OPTIMAL COARSE MODEL DESIGN AND OPTIMAL FINE MODEL DESIGN

FOR THE DFS FILTER [13]

imation to a linear or quadratic model. At the th iteration, the
surrogate model response is given by

(54)
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where is the mapped coarse model response,

is the linearized fine model response, and is a
parameter to determine how each model is favored. If ,
the surrogate becomes a mapped coarse model. If ,
the surrogate becomes a linearized fine model. Initially,

. Its update at each iteration depends on the predicted errors
produced by the mapped coarse model and the linearized fine
model with respect to the fine model [14].

The step suggested is given by

(55)

where is the trust-region size at the th iteration. The
mapped coarse model utilizes a frequency-sensitive mapping.
This idea is covered in Section X.

Two approaches based on (54) are described in [28] and [31].
In [28], the value of is monotonically decreased from 1 to 0
during the iterations. In [14], the value of is only decreased
if unsuccessful steps are produced. In [31], until at
least linearly independent steps have been tried. Thereafter,

remains one until an unsuccessful step is produced, then
is set to zero for the remaining iterations.

The surrogate model-based SM algorithm has been illustrated
through the design of microwave filters and transformers [14].
For the HTS filter described in Section VII, the fine model is
simulated at 16 frequency points per sweep. Starting from the
optimal coarse model design, a total of seven fine model simu-
lations are required to reach the final design.

IX. ISM

ISM [19] is a recent development. Selected preassigned
parameters are extracted to match the coarse and fine models.
Examples of preassigned parameters are dielectric constant and
substrate height. With these parameters fixed, the calibrated
coarse model (the surrogate) is reoptimized. The optimized
parameters are assigned to the fine model. This process repeats
until the fine model response is sufficiently close to the target
response.

The idea of using preassigned parameters was introduced in
[57] within an expanded SM design framework. This method
selects certain key preassigned parameters based on sensitivity
analysis of the coarse model. These parameters are extracted to
match corresponding coarse and fine models. A mapping from
optimization parameters to preassigned parameters is then es-
tablished.

As indicated in Fig. 26, ISM aims at establishing an implicit
mapping between the spaces , , and

(56)

where is a set of auxiliary parameters, e.g., preassigned, to be
varied in the coarse model only. Thus, the corresponding cali-
brated coarse model (surrogate) response is .

ISM optimization obtains a space-mapped design whose
response approximates an optimizied target. It is a solution
of the nonlinear system (56), obtained through a PE with respect
to and (re)optimization of the surrogate with respect to to

Fig. 26. Illustration of the ISM concept.

Fig. 27. SM super-model concept [21].

give , the prediction of the fine model. The corre-
sponding response is denoted .

ISM is effective for microwave circuit modeling and design
using full-wave EM simulators. Since explicit mapping is not
involved, this “SM” technique is more easily implemented than
[57]. The HTS filter design is entirely done by Agilent ADS6

and Momentum7 or Sonnet’s em, with no matrices to keep track
of.

X. SM-BASED MODEL ENHANCEMENT

The development of fast accurate models for components that
can be utilized for CAD over wide ranges of the parameter space
is crucial [15], [21], [22], [58]. Consider

(57)

This formulation offers the possibility of enhancing a preex-
isting coarse model through mapping. Approaches to SM-based
model enhancement differ in the way in which the mapping is
established, the nature of the mapping, and the region of validity.
The generalized SM tableau approach, space derivative map-
ping approach, and SM-based neuromodeling have been pro-
posed. Here, we review the first two. The third one is covered
in Section XI.

A. GSM Tableau [21]

This engineering device modeling framework exploits the SM
[4], frequency SM [5], and multiple SM [59] concepts.

Three cases are reviewed. The SM super model (Fig. 27) uses
only designable device parameters. The frequency-SM super
model (Fig. 28) maps frequency as well as designable device
parameters. In multiple SM, either the device responses or the
frequency intervals are divided into a number of subsets and a
separate mapping is established for each.

6Agilent ADS, version 1.5, Agilent Technol., Santa Rosa, CA, 2000.
7Agilent Momentum, version 4.0, Agilent Technol., Santa Rosa, CA, 2000.
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Fig. 28. Frequency-SM super-model concept [21].

B. Mathematical Formulation for GSM

The mapping relating fine model parameters and frequency
to coarse model parameters and frequency is given by

(58)

or, in matrix form, assuming a linear mapping,

(59)

The parameters can be evaluated, directly or
indirectly, by solving the optimization problem

(60)

where is the number of the fine model simulations and is
an error vector given by

(61)

with (the number of base points),
(the number of frequency points) and . The
total number of fine model simulations is .

The inverse of the frequency variable (proportional to wave-
length) used (59) shows good results [21].

C. Microstrip Shaped T-Junction [21]

A shaped T-junction is shown in Fig. 29(a). This T-junction
was introduced in [60] to compensate discontinuities. It is com-
pared in [61] with the other T-junction configurations in the lit-
erature. The T-junction is symmetric in the sense that all input
lines have the same width elements [see Fig. 29(a)]. The de-
sign parameters are .

The region of interest is given in Table III. The frequency
range is 2–20 GHz. The width of the input lines is determined
in terms of and so that the characteristic impedance of the
input lines is 50 .

The multiple SM for frequency intervals algorithm [21]
was applied to enhance the accuracy of the T-junction coarse
model. The fine model is analyzed by Sonnet’s em. The coarse
models [see Fig. 29(b)] are composed of empirical models of

Fig. 29. Microstrip shaped T-junction. (a) Physical structure (fine model).
(b) Coarse model [21].

TABLE III
REGION OF INTEREST FOR THE MICROSTRIP SHAPED T-JUNCTION [21]

microstrip elements of OSA90/hope. The algorithm divides the
total frequency range into two intervals: 2–16 and 16–20 GHz.
Table IV shows corresponding mapping parameters for each
interval. Fig. 30 shows and at two test points in the
region of interest.

The enhanced coarse model for the shaped T-junction is op-
timized to achieve the possible minimum mismatch at the three
ports. The optimization variables are and , the other param-
eters , , and are kept fixed [61]. The specifications [61]
are and in the range of 2–16 GHz.
The minimax algorithm in OSA90/hope reached the solution

mil and mil, which agrees with [61].
and are shown in Fig. 31.

D. Space Derivative Mapping [22]

This algorithm develops a locally valid approximation of the
fine model in the vicinity of a particular point . We denote
by the Jacobian of the fine model responses at . The first
step obtains the point corresponding to through the SPE
problem (11). The Jacobian at may be estimated by finite
differences. Both (11) and the evaluation of should add no
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TABLE IV
MAPPING PARAMETERS FOR THE MICROSTRIP SHAPED T-JUNCTION USING MULTIPLE SM FOR FREQUENCY INTERVALS [21]

Fig. 30. Responses of the shaped T-Junction at two test points in the region
of interest by Sonnet’s em (�), by the coarse model (- - -), and by the enhanced
coarse model (—). (a) jS j. (b) jS j [21].

significant overhead. The mapping matrix is then calculated
by applying (7) as

(62)

Fig. 31. Responses of the optimum shaped T-Junction by Sonnet’s em (�),
by the coarse model (- - -), and by the enhanced coarse model (—). (a) jS j.
(b) jS j [21].

Once is available, the linear mapping is given by

(63)
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Fig. 32. PSM [10].

Fig. 33. Conventional neuromodeling approach [15].

The space derivative mapping model is given by (57) with
given by (63).

The space derivative mapping technique was applied to sta-
tistical analysis of a two-section waveguide impedance trans-
former and a six-section -plane waveguide filter. For these
examples, the statistical responses assumed the design param-
eters are uniformly distributed with relative tolerance.

E. Partial Space Mapping (PSM) and Derivative-Based SM
[10]

Utilizing a reduced set of physical parameters of the coarse
space might be sufficient to obtain an adequate surrogate. A
selected set of design parameters are mapped onto the coarse
space and the rest, i.e., , are passed through unmapped.

The mapped coarse parameters are denoted by ,
, where is the number of design parameters. PSM is

illustrated in Fig. 32. It can be represented in matrix form by

(64)

In this context, (6) becomes

(65)

where and is the Jacobian of the
coarse model at . Solving (65) for yields the least
squares solution at the th iteration

(66)

Relation (16) becomes underdetermined since is a rect-
angular matrix with the number of columns is greater than the
number of rows. The minimum norm solution for is

(67)

The coarse model parameters used in the PE can be de-
termined by the sensitivity analysis proposed in [57].

XI. NEURAL SM

ANNs are suitable for modeling high-dimensional and
highly nonlinear devices due to their ability to learn and gen-
eralize from data, their nonlinear processing nature, and their
massively parallel structure [18].

Fig. 34. Space-mapped neuromodeling (SMN). (a) SMN training. (b) SMN
model [15].

In the conventional approach (Fig. 33), an ANN is trained
such that it approximates in a region of interest for and
operating frequency , where vector contains the internal pa-
rameters of the ANN (weighting factors, bias, etc.). Once the
ANN is trained with sufficient learning samples, i.e., once the
optimal is found, the ANN can be used as a fast and accurate
model within the region of interest [62].

Strategies have been proposed to reduce the learning data and
improve generalization capabilities of an ANN by incorporating
empirical models or microwave knowledge [63]–[67]. Rayas-
Sánchez reviews the state of the art in EM-based design and
optimization of microwave circuits using ANNs [68].

A. SM-Based Neuromodeling [15]

Using an ANN, a mapping from the fine to the coarse input
space is constructed. The implicit “expert” knowledge in the
coarse model permits a reduced number of learning points and
reduces complexity of the ANN (Fig. 34).

Here, we solve the optimization problem

(68)

where is the total number of learning samples and is the
error vector given by

(69)

with being the number of base points,
being the number of frequency points, and
(see Section X). A star set for the base learning points

(Fig. 35) is considered. A Huber norm is used in (68), exploiting
its robust characteristics for data fitting [69].

Frequency-sensitive mappings from the fine to the coarse
spaces can be realized by making frequency an additional input
variable of the ANN that implements the mapping [15].

B. NSM [16]

A strategy is proposed to exploit the SM-based neuromod-
eling techniques [15] in an optimization algorithm, including
frequency mapping (Fig. 36). A coarse model is used to se-
lect the initial learning base points through sensitivity analysis.
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Fig. 35. 3-D star set for the learning base points [15].

Fig. 36. NSM optimization [16]. The coarse and fine model design parameters
are denoted by xxx and xxx 2 <<< , respectively. The corresponding response
vectors are denoted by RRR and RRR 2 <<< , respectively. The optimal coarse
model responseRRR is the target response. The number of base points isB , and
xxx is the lth base point. The number of frequency points is F , and ! is the
jth frequency point. The total number of fine model simulations isN = B F .

The proposed procedure does not require PE to predict the next
point. Huber optimization is used to train the SM-based neu-
romodels at each iteration. These neuromodels are developed
without using testing points: their generalization performance
is controlled by gradually increasing their complexity starting
with a three-layer perceptron with zero hidden neurons. Five
neuromapping variations have been presented [16].

C. NISM [17]

NISM follows the aggressive approach [5] by not requiring
a number of up-front fine model evaluations to start building
the mapping. A statistical procedure for PE is used to over-
come poor local minima. At each iteration, a neural network
whose generalization performance is controlled through a net-
work growing strategy approximates the inverse of the map-
ping. The NISM step simply evaluates the current neural net-

Fig. 37. NISM optimization [17]. The coarse and fine model design
parameters are denoted by xxx and xxx 2 <<< , respectively. RRR and RRR are
the coarse and fine model characterizing responses for PE, respectively. xxx is
the optimal coarse model point. The inverse mapping between xxx and xxx is
created by the simplest neural network N .

work at the optimal coarse solution. This step is equivalent to
a quasi-Newton step, while the inverse mapping remains es-
sentially linear. A flow diagram for the algorithm is shown in
Fig. 37.

D. Yield Analysis and Yield Optimization [70]

Statistical simulation and yield optimization are essential to
manufacturability-driven design. EM-based yield optimization
requires intensive simulations to cover the entire statistic of pos-
sible outcomes of a given manufacturing process. This makes
SM-based neuromodels, obtained either through modeling [15]
or optimization [16] processes, attractive. This technique has in-
creased the yield of an HTS filter from 14% to 69% [70]. In ad-
dition, excellent agreement is achieved between the SM-based
neuromodel and the EM responses at the optimal yield solution.

XII. IMPLEMENTATION AND APPLICATIONS

A. RF and Microwave Implementation

The required interaction between coarse model, fine model,
and optimization tools makes SM difficult to automate within
existing simulators. A set of design or preassigned parameters
and frequencies have to be sent to the different simulators and
corresponding responses retrieved. Software packages such
as OSA90 or MATLAB can provide coarse model analyses,
as well as optimization tools. Empipe and Momentum driver
[27] have been designed to drive and communicate with
Sonnet’s em and Agilent Momentum as fine models. ASM
optimization of three-dimensional (3-D) structures [6] has
been automated using a two-level Datapipe architecture of
OSA90. The Datapipe technique allows the algorithm to carry
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out nested optimization loops in two separate processes while
maintaining a functional link between their results (e.g., the
next increment to is a function of the result of PE).

Agilent ADS circuit models can be used as coarse models.
ADS has a suite of built-in optimization tools. The ADS com-
ponent -parameter file enables -parameters to be imported
in Touchstone file format from different EM simulators (fine
model) such as Sonnet’s em and Agilent Momentum. Imported

-parameters can be matched with the ADS circuit model
(coarse model) responses. This PE procedure can be done
simply by proper setup of the ADS optimization components
(optimization algorithm and goals). These major steps of SM
are friendly for engineers to apply.

The object-oriented SMX [20] optimization system imple-
ments the surrogate model-based SM algorithm [14], which is
automated for the first time. SMX has been linked with Empipe
and Momentum driver to drive Sonnet’s em and Agilent Mo-
mentum, as well as with user-defined simulators.

B. Structural Design [71]

Leary et al. apply the SM technique in civil engineering struc-
tural design. Their aim is to establish a mapping between the
constraints of a fine model and coarse model. They illustrate
their approach with a simple structural problem of minimizing
the weight of a beam subject to constraints such as stress. Two
models with different mesh densities are taken as fine and coarse
models. The dimensions of the beam are optimization parame-
ters. They found that the mapped model exhibited good agree-
ment with the fine model with considerable reduction in the
CPU effort.

C. Vehicle Crashworthiness Design [72], [73]

Redhe et al. [73] apply the SM technique and surrogate
models together with response surfaces to structural optimiza-
tion of crashworthiness problems. In crashworthiness problems,
the intrusion into the passenger compartment is constrained.
To construct the response surfaces, several computationally
expensive function evaluations must be performed. A surrogate
(coarse model) determines these surfaces and their associated
gradients. Surrogates can be constructed using coarse meshes,
simplified theoretical models or approximate analytic solutions.
The full (fine) model finite-element method (FEM) simulator
is used to correct the gradients for the next iteration. The fine
model is evaluated once per iteration, then the results are added
to the coarse model for response surface updating. Using the
SM technique, CPU time is reduced relative to the traditional
response surface methodology.

D. Automatic Model Generation, Neural Networks, and SM
[74]

Devabhaktuni et al. propose a technique for generating mi-
crowave neural models of high accuracy using less accurate
data. The proposed knowledge-based automatic model genera-
tion (KAMG) technique integrates automatic model generation,
knowledge neural networks, and SM. The KAMG exploits fine
data generators that are accurate and slow (e.g., CPU-intensive
3-D EM simulators) and coarse data generators that are approx-
imate and fast (e.g., inexpensive two-dimensional (2-D) EM).

During neural model generation by KAMG, the intent is to make
extensive use of the coarse generator and minimal use of the fine
generator.

E. Combline Filter Design [75]

Combline-type microwave filters have found extensive appli-
cations as a result of their compact size, low cost, wide tuning
range, and high performance. Swanson and Wenzel [75] intro-
duce a design approach based on the SM concept and commer-
cial FEM solvers. Their coarse model, generated by the CLD8

program, is a circuit model with an empirical correction for tap
positions and gaps between rods. The fine model is analyzed by
Agilent HFSS.9 Mechanical details such as finite radius can be
added. -parameters are obtained at the tuning screw locations
by adding ports at these locations in the fine model. The entire
filter can then be tuned using lumped capacitors in the circuit
model. For a good starting point, one iteration is needed to im-
plement the design process.

F. SM Implementation of Harscher et al. [76]

This technique combines EM simulations with a minimum
prototype filter network (surrogate). They execute optimization
in the surrogate model space with EM simulations (in the
best case), where is the number of geometrical parameters.

Harscher et al. begin with an initial nonideal design for the
EM model, then PE is performed. They obtain the filter charac-
teristics, e.g., frequency shifts and coupling between resonators,
sensitivities with respect to geometrical parameters by finite-
difference approximations ( EM simulations). The ideal char-
acteristic filter parameters are determined using filter synthesis,
then the surrogate parameters are obtained through optimization
exploiting sensitivities. Results are validated by an EM solver. If
the specified target is not met, the PE step is used to start a new
iteration. They present two examples: a direct coupled four-res-
onator -plane filter and a dual-mode filter. The EM solver is
based on mode matching.

G. CAD of Integrated Passive Elements on Printed Circuit
Boards (PCBs) [77]

Draxler introduces a methodology for CAD of integrated pas-
sive elements on PCB incorporating surface mount technology
(SMT). The proposed methodology uses the SM concept to ex-
ploit the benefits of both domains.

Parametric sub-networks (PSNs) have representations in the
design phase (with SMT components) and the production phase
(with PCB integrated passive components). The creation of the
PSN reduces the risk of redesign. Draxler [77] defines an au-
tomated CAD structure that exploits a rapid component real-
ization over multiple material specifications through mapping.
The proposed approach enables component transformations be-
tween the two material domains.

Draxler [77] utilizes SM to create companion models by
identifying which integrated passive physical parameters most
closely match the SMT electrical behavior. A CAD process
incorporating this feature could provide an SMT-PCB design

8CLD-Combline Design, version 3.0, Bartely R.F. Syst., Amesbury, MA,
2001.

9Agilent HFSS, version 5.6, Agilent EEsoft EDA, Santa Rosa, CA, 2000.



BANDLER et al.: SM: THE STATE OF THE ART 355

that exhibits the benefits of integrated passives with minimal
risk of redesign [77].

H. CAD Technique for Microstrip Filter Design [78]

Ye and Mansour apply SM steps to reduce the simulation
overhead required in microstrip filter design. They use a coarse
model of cascaded microstrip circuit sections simulated individ-
ually by their EM simulator. Circuit components are used to ac-
count for the interaction between nonadjacent sections. These
circuit components are determined with a few complete EM
simulations. The coarse model is optimized at each iterate and
the results verified by full EM simulation of the circuit. They
illustrated their technique through an HTS filter.

I. SM Models for RF Components [79]

Snel [79] proposed the SM technique in RF filter design for
power amplifier circuits. He suggests building a library of fast
space-mapped RF filter components. These components can be
incorporated in the design of ceramic multilayer filters for dif-
ferent center frequencies in wireless communication systems.
The library is implemented in the Agilent ADS design frame-
work.

J. Multilayer Microwave Circuits [Low-Temperature Co-Fired
Ceramic (LTCC)] [80]

Pavio et al. apply typical SM techniques in optimization of
high-density multilayer RF and microwave circuits. Initially, a
“companion” or coarse model is optimized. The optimized cir-
cuit values are fed into the EM simulator. A PE step obtains
the circuit values that match the EM simulation. The resulting
change in coarse model parameters is directly applied (unity
mapping, ) to the EM simulator for the next iteration.
They suggest decomposition in developing coarse models for
complex structures. They apply the SM approach to a three-pole
bandstop filter LTCC capacitor, LTCC three-section bandstop
filter, and an LTCC broad-band tapered transformer.

K. Cellular Power Amplifier Output Matching Circuit [81]

Lobeek [81] demonstrates the design of a digital communi-
cations system (DCS)/personal communications system (PCS)
output match of a cellular power amplifier using SM. The de-
sign uses different technologies on a multilayer substrate car-
rier, which makes it difficult or even impossible to optimize the
complete circuit of the output match. The design uses a six-layer
LTCC substrate, a silicon passive integration die, discrete sur-
face mount designs, as well as bond wires. Lobeek derives an
SM model for the silicon passive integration die to integrate ca-
pacitors and low-value inductors. He optimizes the overall cir-
cuit to sufficient accuracy with this model.

Lobeek also applies the SM model to monitor the statistical
behavior of the design with respect to parameter values. He uses
nominal and yield optimization powered by SM and sensitivity
analysis to create a manufacturable design. Monte Carlo anal-
ysis with EM accuracy based on the space-mapped model shows
good agreement with manufactured data.

L. Multilevel Design Optimization Strategy [82]

Safavi-Naeini et al. consider a three-level design method-
ology for complex RF/microwave structure using an SM con-
cept. They propose a circuit (coarse) model, an approximate
(corrected quasi-static) model, and an EM (fine) model. The
intermediate model maps the circuit model parameters to the
corresponding physical parameters in the EM solver. They con-
sider this a two-level SM. Their technique is implemented in
the WATML-MICAD software. Applications include a parallel-
coupled line filter, combline-type filters, and multiple-coupled
cavity filters.

M. Coupled Resonator Filter [83]

Pelz applies SM in realization of narrow-band coupled res-
onator filter structures. A realization of such a filter involves
the determination of dimensions of the apertures between the
resonators. He considers a 3-D EM model as fine model and an
equivalent LC-network model as the coarse model. A PE process
obtains the coupling matrix of the LC network corresponding to
the physical (EM) model parameters. A five-pole coupled res-
onator filter design is achieved with fast convergence.

N. LTCC RF Passive Circuits Design [84]

Wu et al. apply the ASM approach to LTCC RF passive cir-
cuit design. A third intermediate space called the “buffer knowl-
edge” space, based on CAD formulas (knowledge), is intro-
duced between the “fine” and “coarse” spaces. The reason for
introducing this space is to link the physical parameters in the
coarse and fine spaces (number of parameters can be different).
We can view the coarse model in combination with the knowl-
edge embedded space as an enhanced coarse model or surrogate
well aligned with the fine model. They design LTCC 3-D mul-
tilayer structures used in wireless applications, e.g., W-CDMA
bandpass filter.

O. Waveguide Filter Design [85]

Steyn et al. consider the design of irises in multimode coupled
cavity filters. They combine a reduced generalized scattering
matrix with ASM. Their aim is to reduce the number of EM
analyses. In the design process, the optimization of an iris for
specific coupling coefficients at a specific frequency requires
roughly 35 coupling coefficient with eight EM evaluations per
coupling coefficient to achieve max error of 0.01%. With the
ASM technique, only four coupling coefficients were sufficient
to obtain the same error.

P. Inductively Coupled Filters [86], [87]

Soto et al. and Morro et al. apply the ASM procedure to
build a fully automated design of inductively coupled rectan-
gular waveguide filters. A modal method based on the general-
ized admittance matrix is employed for both the fine and coarse
models. The coarse model utilizes a smaller number of modes,
while higher modes are incorporated in the fine model. Soto et
al. incorporate a segmentation (decomposition) technique in the
PE phase. They design two bandpass inductively coupled filters,
with electrical responses centered at 11 and 13 GHz. The com-
plete ASM design procedure required three iterations to con-
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verge (ten times faster than directly using a precise simulation
tool).

Q. Magnetic Systems [88]

The magnetic equivalent circuit (MEC) method and the FEM
have been widely used for simulation of EM systems. The MEC
method is computationally efficient, but lacks accuracy. The
FEM is accurate, but relatively complex and computationally
intensive [88]. Choi et al. utilize SM to design magnetic sys-
tems. The FEM model is the fine model and the MEC model
with a closed form of lumped parameters is the coarse model.
They validate the approach by two numerical examples, i.e., a
magnetic device with leakage flux and a machine with highly
saturated part. Both examples converge after only five iterations
[88].

R. Dielectric Resonator Multiplexer Design [89]

Ismail et al. apply SM optimization with the FEM (fine
model) to design a five-pole dielectric resonator loaded filter
and a ten-channel output multiplexer. The coarse model of the
filter uses a coupling matrix representation. The fine model
includes tuning screws. The proposed approach reduces overall
tuning time compared with traditional techniques.

S. Nonlinear Device Modeling [90]

Zhang et al. introduce a new neuro-SM approach for non-
linear device modeling and large-signal circuit simulation. A
neural-network maps the current and voltage signals between
the coarse and fine device models. By automatically modi-
fying the voltage and current signals fed to the model using
neuro-SM, the mapped model accurately matches the actual
device behavior. The neuro-SM approach is demonstrated by
modeling the SiGe HBT and GaAs field-effect transistor (FET)
devices.

XIII. DISCUSSION OF SURROGATE MODELING

AND SM

Table V lists a glossary of terms that is helpful in this discus-
sion.

A. Building and Using Surrogates [91]

In his summarizing comments [91] on the Workshop on Sur-
rogate Modelling and Space Mapping,10 Dennis integrates the
terminology “coarse” and “fine” from the SM community with
his own. Dennis uses the term “surrogate” to denote the func-
tion to which an optimization routine is applied in lieu of ap-
plying optimization to the fine model . Another piece of ter-
minology he uses is “surface” to denote a function (it may be
vector valued) trained to fit or to smooth fine model data.

Dennis mentions several ways to choose fine model data sites,
also known as experimental designs. The surfaces are generated
from the data sites. He notes that “surfaces (are) designed to cor-
rect a coarse model and to be combined with the coarse model to
act as a surrogate in optimization.” He then used the surface con-
cept to interpret SM. Here, “The surrogate is the coarse model

10First Int. Surrogate Modelling and Space Mapping for Engi-
neering Optimization Workshop, Nov. 16–18, 2000. [Online]. Available:
http://www.imm.dtu.dk/~km/smsmeo/

TABLE V
GLOSSARY OF TERMS

applied to the image of the fine model parameters under the SM
surface.”

Dennis discusses “heuristics” that optimize the surrogate and
(perhaps) correct the surface part of the surrogate. He classifies
SM in terms of “local SMs and methods that use poised designs
implicitly or explicitly approximate derivatives. The former do
this by Broyden updates and the latter by the derivatives of the
surface.”

Dennis’s definition of surrogate agrees with our definition in
the sense that the surrogate is an enhanced coarse model. Dennis
regards the mapping as a surface.

We think of the mapping as that part of the surrogate, an ap-
proximation to which needs to be updated in each iteration. The
mapping (surface) is the same during all iterations.

B. Building and Using Surrogates [92]

In an editorial, Bandler and Madsen emphasize that “surro-
gate optimization” refers to the process of applying an optimiza-
tion routine directly to a coarse model, a surrogate, which is a
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Fig. 38. General SM flowchart.

function (or a model) that replaces the original fine model. Some
surrogates attempt to fit the fine model directly (e.g., by poly-
nomials). In other cases, the information gained during the op-
timization process is used to train the surrogate to fit the data
derived from evaluation of the fine model (e.g., by ANNs). In
the SM approach, coarse models may be enhanced by map-
ping (transforming, correcting) the optimization variables. In
this case, surrogates of increasing fidelity are developed during
the optimization process.

C. SM Concept

All the SM-based optimization algorithms we review have
four major steps. The first one is fine model simulation (verifi-
cation). The fine model is verified and checked to see if it satis-
fies the design specifications. The second one is PE, in which the
coarse model is (re)aligned with the fine model to permit (re)cal-
ibration. The third one is updating or (re)mapping the surrogate
using the information obtained from the first two steps. At last
the aligned, calibrated, mapped, or enhanced coarse model (the
surrogate) is (re)optimized. This suggests a new fine model de-
sign iterate.

D. General SM Optimization Steps

A flowchart of general SM is shown in Fig. 38.
Step 1) Select a coarse model suitable for the fine model.
Step 2) Select a mapping process (original, ASM, neural, or

ISM, etc.).
Step 3) Optimize the coarse model (initial surrogate) with

respect to design parameters.
Step 4) Simulate the fine model at this solution.
Step 5) Terminate if a stopping criterion is satisfied, e.g.,

response meets specifications.
Step 6) Apply PE (neuron weights, coarse space design pa-

rameters).

Step 7) Rebuild surrogate (may be implied within Steps 6 or
8).

Step 8) Reoptimize the “mapped coarse model” (surrogate)
with respect to design parameters (or evaluate the
inverse mapping if it is available).

Step 9) Go to Step 4.
Comment: Rebuilding the surrogate (Step 7) may be implied in
either the PE process (Step 6) or in the reoptimization (Step 8).

E. Output SM

Table V mentions “output” or response SM. This concept
could address a residual misalignment in the optimal responses
of the coarse and fine models. For example, a coarse model such
as will never match the fine model around
its minimum with any mapping . An
“output” or response mapping can overcome this deficiency by
introducing a transformation of the coarse model response based
on a Taylor approximation [93]. Current research is directed to
this topic [94].

XIV. CONCLUSIONS

The SM technique and the SM-oriented surrogate (modeling)
concept and their applications in engineering design optimiza-
tion have been reviewed. The simple CAD methodology
follows the traditional experience and intuition of engineers,
yet appears to be amenable to rigorous mathematical treatment.
The aim and advantages of SM are described. The general
steps for building surrogates and SM are indicated. Proposed
approaches to SM-based optimization include the original SM
algorithm, the Broyden-based ASM, trust-region ASM, hybrid
ASM, NSM, and ISM. PE is an essential subproblem of any
SM optimization algorithm. It is used to align the surrogate
with the fine model at each iteration. Different approaches
to enhance the uniqueness of PE are reviewed, including the
recent GPE process.

For the first time, we have presented a mathematical motiva-
tion for SM. We have placed SM into the context of classical
optimization, which is based on local Taylor approximations.
The SM model is seen as a good approximation over a large re-
gion, i.e., it is efficient in the initial phase when large iteration
steps are needed, whereas the first-order Taylor model is better
close to the solution.

Interesting SM and surrogate applications have been re-
viewed. They have indicated that exploitation of properly
managed “space-mapped” surrogates promises significant
efficiency in all branches of engineering design.
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