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Abstract—We introduce the idea of implicit space mapping
(ISM) and show how it relates to the well-established (explicit)
space mapping between coarse and fine device models. Through
comparison, a general space mapping concept is proposed. A
simple algorithm based on the novel ISM concept is implemented.
It is illustrated on a contrived “cheese-cutting problem” and is ap-
plied to electromagnetics-based microwave modeling and design.
An auxiliary set of parameters (selected preassigned parameters)
is extracted to match the coarse model with the fine model. The
calibrated coarse model (the surrogate) is then (re)optimized to
predict a better fine model solution. This is an easy space mapping
technique to implement since the mapping itself is embedded in
the calibrated coarse model and updated automatically in the
procedure of parameter extraction. We illustrate our approach
through optimization of a high-temperature superconducting
filter using Agilent ADS with Momentum and Agilent ADS with
Sonnet’s em.

Index Terms—Circuit design, computer-aided design (CAD),
electromagnetics, microwave modeling, optimization, space
mapping (SM), surrogate modeling.

I. INTRODUCTION

THE space mapping (SM) [1] concept of using mapped
“coarse” models (usually computationally fast cir-

cuit-based models) to align with “fine” models (typically CPU
intensive full-wave electromagnetic (EM) simulations) has
been exploited by a number of authors [2]–[5]. Several notable
implementations and applications of SM have been reported.
Pavio presented a companion approach [6]. Snel [7] derived
mapped models for RF components. Swanson and Wenzel
[8] used SM to optimize mechanical adjustments by iterating
between a finite-element simulator and a circuit simulator.
Wu et al. [9] applied SM to design low-temperature co-fired
ceramic (LTCC) circuits. Choi et al. [10] applied it to magnetic
systems, and Redhe [11] in vehicle crashworthiness design.
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In [2]–[5], a calibration is performed through a mapping
between optimizable design parameters of the fine model and
precisely corresponding parameters of the coarse model such
that their responses match. This mapping is iteratively updated.
In [12], the coarse model is calibrated against the fine model
by adding circuit components to nonadjacent individual coarse
model elements. The component values are updated iteratively.
The expanded space mapping design framework (ESMDF)
algorithm [13] calibrates the coarse model by extracting certain
preassigned parameters such that corresponding responses
match. It establishes an explicit mapping from the optimizable
design parameters to preassigned (nonoptimized) parameters.

Our new approach does not establish an explicit mapping: in-
stead we suggest an indirect approach. In each iteration, we ex-
tract selected preassigned parameters to match the coarse model
with the fine model. With these preassigned parameters now
fixed, we reoptimize the calibrated coarse model. We then as-
sign its optimized design parameters to the fine model. We re-
peat this process until the fine model response is sufficiently
close to the target response. The preassigned parameters, which
are updated, calibrate the “mapping.” It is an application of a
new concept we call implicit space mapping (ISM) [14].

Examples of preassigned parameters are physical parameters
such as dielectric constant in microstrip structures, geometrical
parameters such as substrate height, or mathematical concepts
such as frequency-transformation parameters. Typically, they
are not optimized, but clearly they influence the responses. As in
[13], we allow the preassigned parameters (of the coarse model)
to change in some components and keep them intact in others.
We implement our technique in Agilent ADS.1

II. SM TECHNOLOGY

We categorize SM into: 1) the original or explicit SM and
2) ISM. Both share the concept of “coarse” and “fine” models.
Both use an iterative approach to update the mapping and predict
the new design.

A. Explicit SM

In explicit SM, we should be able to draw a clear distinction
between a physical coarse model and the mathematical mapping
that links it to the fine model (see Fig. 1). Here, the mapping,
together with the coarse model, constitute a “surrogate.” In each
iteration, only the mapping is updated, while the physical coarse
model is kept fixed. If the inverse mapping is available at each

1Agilent ADS, version 1.5, Agilent Technol., Santa Rosa, CA, 2000.
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Fig. 1. Illustration of explicit SM.

Fig. 2. Illustration of ISM. (a) Implicit mapping within the surrogate. (b) With
extra mapping and output mapping.

iteration, then the solution (best current prediction of the fine
model) can be evaluated directly. Otherwise an optimization is
performed on the mapping itself (not the mapped coarse model)
to obtain the prediction. Examples of explicit SM are the orig-
inal SM [2], aggressive SM [3], neural SM [4], etc.

B. ISM

Sometimes identifying the mapping is not obvious: it may be
buried within the coarse model. If the “mapping” is integrated
with the coarse model, the (mapped) coarse model becomes a
calibrated coarse model or enhanced coarse model, which we
also call a “surrogate,” the rectangular box in Fig. 2(a). In the
next step, the calibrated or enhanced coarse model is optimized
to obtain an “inverse” mapped solution. If the implicitly mapped
model is not sufficiently good after calibration, we may add an
explicit mapping or output mapping [1], [15] [see Fig. 2(b)].

Both explicit and implicit SM iteratively calibrate the mapped
model when approaching the fine model solution. Interestingly,
the explicit mapping could be expressed in the form of ISM
by using a simple mathematical substitution. We discuss this in
Section III.

C. SM Optimization Steps

Step 1) Select a mapping function (linear, nonlinear, neural).
Step 2) Select an approach (implicit, explicit).

Step 3) Optimize the coarse model with respect to design
parameters.

Step 4) Simulate the fine model at this solution.
Step 5) Terminate if a stopping criterion (e.g., response

meets specifications) is satisfied.
Step 6) Apply parameter extraction using preassigned pa-

rameters [13], neuron weights [4], coarse space pa-
rameters, etc.

Step 7) Rebuild the surrogate (update the mapping or surro-
gate if applicable).

Step 8) Predict the next fine model solution by either:

a) inverting or optimizing the mapping with re-
spect to the optimal coarse model design if
possible, else,

b) reoptimizing the “mapped coarse model” with
respect to design parameters.

Step 9) Go to Step 4).
Comments: Steps 6), 7) and 8) are separate steps in neural SM
(training data is obtained by parameter extraction, the surrogate
is rebuilt by the neural network training process, and prediction
is obtained by evaluating the neural network). However, Step 7)
may be implied in either the parameter-extraction process [Step
6)], e.g., ISM, where the surrogate is rebuilt by extracting preas-
signed parameters, or in the prediction [Step 8)], e.g., aggressive
SM, where the surrogate is not explicitly rebuilt. Step 6) can be
termed modeling for some cases.

III. ISM: CONCEPT

A. Original Design Problem

We denote the fine model responses at a point by .
The original design problem is to obtain

(1)

where is the objective function and is the optimal fine
model design. Solving (1) using direct optimization methods
may be prohibitive.

B. ISM

At the th iteration, we denote by a coarse model op-
timum point (usually designable parameters) for given , a
set of other (auxiliary) parameters, for example, preassigned pa-
rameters. The corresponding coarse model (the surrogate) re-
sponse vector is .

As indicated in Fig. 3, at the th iteration, ISM aims at estab-
lishing an implicit mapping between the spaces , , and

. We solve

(2)

with respect to to obtain indirectly by an optimization
algorithm, during which we set

(3)

such that

(4)



380 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 1, JANUARY 2004

Fig. 3. Illustration of ISM modeling. Here,QQQ = 0 is solved for xxx.

Fig. 4. Illustration of ISM prediction. Here,QQQ = 0 is solved for xxx .

over a region in the parameter space. We think of this as a mod-
eling procedure, also referred to as parameter extraction in this
case.

As in Fig. 4, ISM then utilizes the mapping to obtain a pre-
diction of by solving (2) again with respect to to obtain

. Here, we set

(5)

where is obtained from the foregoing modeling procedure.
Since the mapping is usually nonlinear and implicit, the pre-
diction is obtainable by optimizing a mapped coarse model or
surrogate, i.e., we find

(6)

The fine model parameters are then assigned (predicted) as

(7)

In general, ISM optimization obtains a space-mapped design
whose response approximates an optimized target. is

a solution, found iteratively, of the nonlinear system (2), which
is enforced through parameter extraction (modeling) with re-
spect to , and subsequent prediction of the fine model solution
(through optimization of the calibrated coarse model).

C. Interpretation and Insight

As mentioned before, the mapping is buried in the coarse
model. However, we can synthesize examples to develop insight
into ISM, i.e., we can construct and connect a known mapping
to a physical coarse model to study the behavior of the mapping
(see Fig. 5). A set of intermediate parameters is introduced
for this purpose.

Fig. 5. Synthetic illustration of ISM optimization with intermediate
parameters.

In a physically based simulation, design parameters such as
physical length and width of a microstrip line can be mapped to
intermediate parameters such as electrical length and character-
istic impedance through empirical formulas [16]. The mapping
may, in that case, be extractable (detachable), and the mapping
can be (re)optimized to obtain an “inverse” mapped solution (the
prediction). For a library of microstrip components, the trans-
formation from circuit parameters to physical parameters may
be implicit, and the intermediate parameters may not be directly
accessible. The prediction is then obtained through optimizing
suitably calibrated microstrip components (preassigned param-
eters).

Assuming the intermediate parameters are accessible, a
corresponding hidden mapping in the modeling procedure can
be thought of as finding

(8)

to match the coarse and fine model responses.
Let be the intermediate solution producing coarse model

optimum . Correspondingly, the prediction procedure can
then be expressed as

(9)

D. Relationship With Explicit SM

The first step in all SM-based algorithms results in an optimal
coarse model design for given nominal preassigned param-
eters . The corresponding response is denoted by . Once
obtained, is fixed, as seen in Fig. 6(a). In ISM, on the other
hand, begins with , depends on the current value of ,
and will change from iteration to iteration through reoptimiza-
tion, as in Fig. 6(b).

An interesting point that relates the ISM to the explicit map-
ping is when we set the preassigned parameters at the th itera-
tion

(10)

where is obtained through parameter extraction. We can
show that, after the modeling procedure, the prediction is

(11)

This agrees with the steps of aggressive SM [3] using a unit
mapping. The ISM, in this case, is consistent with the original
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Fig. 6. When we set the preassigned parameters xxx = �xxx , ISM is consistent
with the explicit SM process. (a) Original SM. (b) ISM process interpreted in
the same spaces.

SM with the difference, highlighted in Fig. 6, that ISM extracts
rather than during parameter extraction.

In the case of neuro-SM [4], if we set

(12)

where represents the weights of the neurons, then by asso-
ciating the artificial neural networks (ANNs) with the coarse
model, neuro-SM is representable by ISM. Preassigned param-
eters could also represent other variables such as the SM pa-
rameters , , , and in the SM-based surrogate approach [5],
in frequency SM [3], etc.

E. Cheese-Cutting Illustration

The ISM process can be demonstrated by a simple example,
i.e., the cheese-cutting problem, depicted in Fig. 7. The goal is
to deliver a segment of cheese of weight 30 units (target “re-
sponse”). The “coarse” model is a cuboidal block (top block in
Fig. 7). A unity density and a cross section of 3 1 units are
assumed. The “fine” model has a corresponding cuboidal shape
with a defect of six missing units of weight (the second block
from top).

A length of 10 units will give 30 units of weight for the coarse
model (top block in Fig. 7). An unbiased cut of the same length
in the fine model weighs 24 units (fine model evaluation). The
width (preassigned parameter) of the (coarse) model is shrunk to
2.4 units to match the fine model weight (parameter extraction).
A reoptimization of the length of the calibrated coarse model
(the surrogate) is performed to achieve the goal. The new length
of 12.5 units is then assigned to the irregular block (fine model).
The procedure continues in this manner until the irregular block
is sufficiently close to the desired weight of 30 units. From the
illustration, we see that the error reaches 1% after three itera-
tions.

ISM, in this case, is an indirect approach. A direct approach
would extract the length in the parameter-extraction process.

The weight of the coarse cheese model can be written as

Fig. 7. Cheese-cutting problem: a demonstration of the ISM algorithm.

Fig. 8. Cheese-cutting problem: illustration of an intermediate parameter
x = w � l.

where , , and are the length, width, and height, respectively,
as in Fig. 8. An intermediate variable is the area

We can see that each prediction procedure returns to a fixed
, which produces the optimal coarse model design.

IV. ISM: ALGORITHM

In Fig. 9, we represent a microwave circuit whose coarse
model is decomposed. We catalog the preassigned parameters
into two sets, as in [13]. In Set A, we vary certain preassigned
parameters . In Set B, we keep preassigned parameters
fixed. We can follow the sensitivity approach of [13] to formally
select components for Sets A and B.

As implied in Fig. 9(b), in each iteration of the parameter-
extraction process, we set

(13)

Notice also that we do not explicitly establish a mapping be-
tween the optimizable parameters and the preassigned param-
eters. This contrasts with [13], where the mapping is explicit
[see Fig. 9(c)]. Therefore, our proposed approach will be easier
to implement in commercial microwave simulators.
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Fig. 9. Calibrating (optimizing) the preassigned parameters xxx in Set A results
in aligning the coarse model (b) or (c) with the fine model (a). In (c), we illustrate
the ESMDF approach [13], where PPP (�) is a mapping from optimizable design
parameters to preassigned parameters.

A. Summary of the Algorithm

Step 1) Select candidate preassigned parameters , as in [13]
or through experience.

Step 2) Set and initialize .
Step 3) Obtain the optimal (calibrated) coarse model param-

eters by solving (6).
Step 4) Predict from (7).

Step 5) Simulate the fine model at .
Step 6) Terminate if a stopping criterion (e.g., response

meets specifications) is satisfied.
Step 7) Calibrate the coarse model by extracting (param-

eter-extraction step) the preassigned parameters
[noting (13)]

(14)

Step 8) Increment and go to Step 3).

V. HTS FILTER EXAMPLE

We consider the high-temperature superconducting (HTS)
bandpass filter of [17]. The physical structure is shown in
Fig. 10(a). Design variables are the lengths of the coupled lines
and the separation between them, namely,

The substrate used is lanthanum aluminate with ,
mil and substrate dielectric loss tangent of 0.00003. The

Fig. 10. HTS filter [17]. (a) Physical structure and (b) coarse model as
implemented in Agilent ADS .

length of the input and output lines is mil and the lines
are of width mil. We choose and as the preassigned
parameters of interest, thus, mil . The design
specifications are

for GHz and for GHz

for GHz GHz

This corresponds to 1.25% bandwidth.
Our Agilent ADS coarse model consists of empirical models

for single and coupled microstrip transmission lines with ideal
open stubs [see Fig. 10(b)]. Set A [see Fig. 9(b)] consists of the
three coupled microstrip lines. Notice the symmetry in the HTS
structure, i.e., coupled lines “CLin5” are identical to “CLin1”
and “CLin4” to “CLin2.” Here, Set B [see Fig. 9(b)] is empty.
The preassigned parameter vector is
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Fig. 11. Momentum fine (�) and optimal coarse ADS model (—) responses
at: (a) the initial solution. (b) The final iteration after two iterations (three fine
model evaluations).

Fig. 12. Sonnet em fine (�) and optimal coarse ADS model (—) responses at:
(a) the initial solution. (b) The final iteration after one iteration (two fine model
evaluations).

TABLE I
AGILENT MOMENTUM/SONNET em OPTIMIZABLE PARAMETER

VALUES OF THE HTS FILTER

TABLE II
INITIAL AND FINAL PREASSIGNED PARAMETERS OF THE CALIBRATED

COARSE MODEL OF THE HTS FILTER

The fine model is simulated first by Agilent Momentum.2 The
relevant responses at the initial solution are shown in Fig. 11(a),
where we notice severe misalignment. The algorithm requires
two iterations (three fine model simulations). The total time
taken is 26 min (one fine model simulation takes approximately
9 min on an Athlon 1100-MHz PC). Responses at the final iter-
ation are shown in Fig. 11(b). Sonnet em3 has also been used as
a fine model. It takes 74 min to complete a sweep on an Intel P4
2200-MHz PC. The initial solution and the final result in one it-
eration (two fine model simulations) are shown in Fig. 12(a) and
(b), respectively. Table I shows initial and final designs. Table II
shows the variation in the preassigned (coarse model) parame-
ters.

The parameter-extraction process uses real and imaginary
-parameters and the ADS quasi-Newton optimization algo-

rithm, while coarse model optima are obtained by the ADS
minimax optimization algorithm.

VI. CONCLUSIONS

Based on a general concept, we have presented an effective
technique for microwave circuit modeling and design with re-
spect to full-wave EM simulations. We vary preassigned param-
eters in a coarse model to align it with the EM (fine) model. We
believe this is the easiest to implement “SM” technique offered
to date. The HTS filter design is entirely carried out by Agilent
ADS and Momentum (three frequency sweeps) or Sonnet em
(only two frequency sweeps) with no matrices to keep track of.
A general SM concept has been presented, which enables us to
verify that our implementation is correct and that no redundant
steps are used.

2Momentum, version 4.0, Agilent Technol., Santa Rosa, CA, 2000.
3Sonnet em, version 7.0b, Sonnet Software, North Syracuse, NY, 2001.
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