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Abstract—There is a revival of the interest in adjoint sen-
sitivity analysis techniques. This is partly because current
computer-aided-design software based on full-wave electromag-
netic (EM) solvers remains too slow for the purposes of practical
high-frequency structure design despite the increasing capacity
of computers. The adjoint-variable methods for design sensitivity
analysis offer computational speed and accuracy. They can be
used for efficient gradient-based optimization, in tolerance and
yield analysis. Adjoint-based sensitivity analysis for circuits
has been well studied and extensively covered in the microwave
literature. In comparison, sensitivities with full-wave analysis
techniques have attracted little attention, and there have been
few applications into feasible and versatile algorithms. We review
adjoint-variable methods used in high-frequency structure design
with both circuit analysis techniques and full-wave EM analysis
techniques. A brief discussion on adjoint-based sensitivity analysis
for nonlinear dynamic systems is also included.

Index Terms—Adjoint networks, computer-aided design (CAD),
electromagnetic (EM) modeling, microwave circuits, optimization,
sensitivity analysis.

I. INTRODUCTION

COMPUTER-AIDED engineering for high-frequency
structures (microwave and millimeter-wave circuits and

antennas) originated in the early 1950s with the advent of
first-generation computers. Historically, RF and microwave
modeling started with the representation of the complex
electromagnetic (EM) environment in terms of circuit equiv-
alents—lumped elements and transmission lines. This is still
a major branch in the family of computational approaches
used by microwave and antenna engineers because of the
physical insight, manageable storage requirements, and high
computational speed. It is, therefore, not surprising that the
first significant advances in the direction of automated design
of high-frequency structures in the late 1960s and early 1970s
were made with microwave circuit modeling in mind.

As computing resources became more powerful and widely
available, computational electromagnetics emerged and spurred
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a variety of numerical algorithms for full-wave EM analysis.
They offer superior accuracy and complete field representa-
tion—as long as the theoretical model includes all EM field
interactions. On the other hand, unlike the equivalent-cir-
cuit models, these algorithms are extremely demanding in
terms of computer memory and time. Even today, full-wave
analysis appears prohibitively slow for the purposes of mod-
eling and design of a complete microwave circuit. EM field
analysts—preoccupied with the complexity of full-wave simu-
lation—are the last to appreciate the requirements of automated
EM design. The problem of efficient sensitivity estimation and
optimization with full-wave EM analysis remains a challenge,
especially from the viewpoint of implementation into robust
and feasible algorithms.

Here, we focus on adjoint-based approaches to design sen-
sitivity analysis whose purpose is to evaluate the gradient of
the system response in the design parameter space. We con-
sider both network- and field-based analyses. The system re-
sponse may be the solution at the current design given by the
state variables, e.g., currents or voltages of a circuit and field or
current density distribution in a high-frequency structure. This
is the system distributed response. The response may also be
defined in terms of multiport network parameters, e.g., -pa-
rameters. For optimization purposes, the response of interest is
a real-valued objective function (or cost function). Design sen-
sitivity information is crucial in engineering problems such as
optimization, statistical, yield, and tolerance analysis.

The adjoint-variable approach yields the response and its sen-
sitivity through two analyses: of the original structure or circuit
and of an auxiliary (or adjoint) structure or circuit. In general,
two system analyses are sufficient regardless of the number of
design parameters. As we describe below, the adjoint system
analysis is often obtained with very little or no overhead once
the solution to the original problem is carried out.

Adjoint-based sensitivity analysis for networks is attributed
to Director and Rohrer [1], [2] who derived a sensitivity
expression based on Tellegen’s theorem [3], [4]. An adjoint
network is constructed through relatively straightforward rules
and solved to produce the adjoint voltages and currents, which
are subsequently substituted in the sensitivity expression.
Generalized network sensitivities based on a somewhat simpler
derivation—a direct manipulation of the system matrix equa-
tions—were suggested by Branin soon after [5]. Theoretically,
this formalism is equivalent to the adjoint-network analysis of
Director and Rohrer. It is shown that a simple mathematical
relation exists between the original circuit and the adjoint
circuit through the transpose of the system matrix [5], [6].
Consequently, the sensitivity analysis with multiple design
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parameters can involve as little as a matrix transposition and a
few matrix multiplications in addition to the original network
analysis.

The microwave literature in the 1970s and 1980s abounds
with techniques and applications of adjoint-network sensitivity
analysis using -parameters, voltage–current variables, and
branched cascaded topologies [7]–[12]. Some comprehensive
reviews can be found in [12]–[15]. Exact sensitivities were
developed for harmonic-balance analyses [15] and feasible
implementations were proposed for nonlinear circuits [16].
Later, Alessandri et al. applied the adjoint network method to
the sensitivity analysis of waveguide structures composed of
subnetworks whose admittance matrices are analytically avail-
able [17]. Mongiardo and Ravanelli applied the adjoint network
sensitivities to the design of corrugated feeds [18]. Exact
sensitivities for circuit-based analyses are applied to prob-
lems involving coupled resonator filters [19] and high-speed
very large scale integration (VLSI) interconnects [20]–[25].
Exact adjoint sensitivities have been recently considered in
neural-based modeling and design [26].

Until the 1990s, computational EM analysis has been almost
exclusively focused on the problem of finding the response of a
given structure and has hardly addressed sensitivity estimations
for changes of the shape or the materials involved. When
integrated into an automated design environment, full-wave
simulators are closed “black boxes,” which communicate
with the optimization algorithms through a set of responses.
The lack of sensitivity information is typically compensated
for by gradient approximations [27] and multidimensional
response surface approximations [28]. Thus, the integration of
conventional full-wave simulators into a design environment
is numerically inefficient for the purposes of gradient-based
optimization. Consider the simplest implementation—forward
or backward finite-difference approximation of the response
derivatives in addition to the evaluation of the response itself.
The current design is slightly perturbed for each of the design
parameters to produce additional structures where is the
number of design parameters. This procedure requires
full-wave analyses per design iteration. Since optimization
typically requires hundreds of iterations, the overall numerical
effort for EM-based design may easily become unacceptable.

The need for adjoint-variable sensitivity analysis with
full-wave EM solvers seems obvious, and yet, to our knowl-
edge, commercial computer-aided design (CAD) software
based on full-wave analysis has not adopted adjoint-based tech-
niques for response derivative estimations. A possible reason is
that the implementation of adjoint sensitivities with complex
numerical EM algorithms is far from trivial. In the microwave
literature, we have seen only a few developments, which,
until recently, almost exclusively addressed the finite-element
method (FEM). Webb et al. considered exact sensitivities with
the FEM and developed element representations, which allow
analytical derivatives of the FEM system matrix with respect
to the Cartesian coordinates of the vertices of the finite-ele-
ment mesh [29]–[34]. Another more specific application with
the FEM was reported in [35]. More recent developments
involve problems analyzed with the finite-element time-do-
main (FETD) method, as well as with the finite-difference

time-domain (FDTD) method on unstructured grids [36]–[38].
Currently, efforts are directed toward the development of
feasible adjoint-based sensitivity analysis approaches, which
are easy to implement with a given class of EM solvers.
Feasible implementations are proposed with the method of
moments (MoM) [39], where the derivatives of the system
matrix are approximated using finite differences. A reduction
of the computational effort associated with the computation
of the derivatives of the MoM matrix through the perturbation
of the mesh boundary layers was suggested in [40]. Adjoint
techniques are under development for full-wave algorithms on
fixed structured grids such as the frequency-domain transmis-
sion-line method (FD–TLM) [41], the time-domain TLM [42],
and the FDTD method [43].

We start with a brief outline of the basics of the adjoint
network method in microwave circuit sensitivity analysis.
Subsequently, we proceed with the adjoint variable method
in full-wave EM analysis and its applications with different
classes of EM solvers. We discuss difficulties arising in im-
plementations into practical algorithms and review approaches
dealing with these difficulties. The scope of this discussion in-
cludes both frequency- and time-domain full-wave techniques.

It would be impossible to present here all work related to
adjoint sensitivity analysis in its entirety or in detail. We would
rather address only a few basic concepts, which serve as a
starting point toward future developments.

II. ADJOINT NETWORK METHODS: TELLEGEN APPROACH

The adjoint network method and its applications in mi-
crowave circuit design have been discussed extensively in the
literature. Comprehensive reviews can be found, for example,
in [9], [12], and [44]. Reference [12] also provides a useful
comparison between the adjoint network method based on
Tellegen’s theorem on the one hand and adjoint-based methods
such as the direct method and the transpose-matrix methods on
the other.

We do not repeat these discussions here. We highlight some
basic concepts, which may be useful if applied with full-wave
analyses, especially with techniques representing the EM en-
vironment in terms of distributed circuits, e.g., TLM methods.
Thus, we hope to address a broader audience including not only
experts in microwave CAD, but also experts in computational
EM. The latter are, ultimately, the people capable of integrating
adjoint sensitivity techniques with full-wave EM simulators.

A. Tellegen’s Theorem

Tellegen’s theorem—well known to electrical engineers—is
often stated in matrix form as1 , where and are vec-
tors containing the time-dependent branch voltages and currents
of a circuit. This is known as the “actual-power” Tellegen the-
orem. It follows from Kirchhoff’s circuit laws. Since the phasors
of the circuit voltages and currents and obey Kirchhoff’s
laws, Tellegen’s theorem applies to them as well.

1Throughout this paper, matrices and vectors are in bold italic, while vectors
in three-dimensional (3-D) space are in bold.
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Fig. 1. (a) Circuit element represented by its hybrid matrix. (b) Respective
element in the adjoint circuit.

More generally, Tellegen’s theorem proves for any two topo-
logically identical circuits [45]–[47] whose voltages and cur-
rents are given by the vectors , and , , respectively, that

(1)

(the “quasi-power” Tellegen theorem). Therefore, Tellegen’s
theorem can be written in the difference form

(2)

Perturbing elements in the original circuit, and applying (2) to
the perturbed original circuit and an auxiliary circuit represented
by , , leads to

(3)

where and represent the incremental changes in the
voltages and currents of the original circuit. Equation (3) is com-
monly referred to as the perturbed difference form of Tellegen’s
theorem.

According to Penfield et al. [47], all forms of Tellegen’s the-
orem are valid for circuits obeying Kirchhoff’s laws: linear or
nonlinear, reciprocal or nonreciprocal, passive or active, hys-
teretic or nonhysteretic.

B. Circuit Sensitivities

Consider a multiport component of a circuit described by its
hybrid matrix [see Fig. 1(a)]

(4)

where

(5)

and

(6)

The hybrid matrix offers a generic representation, which in-
cludes the impedance matrix and admittance matrix as spe-
cial cases.

A perturbation of some of the elements of this component
leads to changes in all its branch currents and voltages. Ne-
glecting higher order terms, the changes of the currents and volt-
ages at its ports are expressed as

(7)

We write the product terms in (3) involving only the voltages
and currents of our circuit component and its auxiliary counter-
part as

(8)

Notice that (3) applies to the whole circuit, while (8) represents
just a portion of its left-hand side. Thus, in general, .
We refer to as the component sensitivity. The substitution
of (7) in the right-hand side of (8) leads to [9]

(9)

The expression in (9) is significantly simplified if we eliminate
the second term, which involves the variations of the voltages

and currents at the ports of the circuit element.
After imposing the relation

(10)

between the currents and the voltages of the respective element
in the auxiliary circuit, we obtain

(11)

The voltage–current relation in (10) defines the state equa-
tions for the component in the auxiliary circuit [see Fig. 1(b)].
The auxiliary circuit is not only topologically identical to the
original circuit, but it consists of elements whose hybrid ma-
trices relate to the hybrid matrices of the respective elements of
the original circuit in a straightforward manner. This auxiliary
circuit is referred to as the adjoint circuit.

The component sensitivity in (11) may, in general, be a result
of perturbations in all design parameters

(12)

where

(13)

In anticipation of our further discussion on alternative matrix
formulations of adjoint-based sensitivity analysis, we rewrite
(11) as

(14)
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where

(15)
The adjoint component equations (10) are modified accord-
ingly:

(16)

The latter equation represents a circuit component, which, de-
spite the sign differences in the hybrid matrix, is equivalent to
the one in Fig. 1(b). In fact, it shows that the sign reversal in the
adjoint hybrid matrix in (10) is superfluous [5]—notice that the
signs of both the voltages and currents at the first ports of the
adjoint circuit element described by (16) are reversed.

Let us now assume that our circuit consists of elements
each defined by its hybrid matrix. Each of these elements has
a sensitivity term . The circuit also con-
tains external sources, which are independent of any element
changes. These are given by a vector of current sources and a
vector of voltage sources . We now apply (3) to all branches
of the complete network. Keeping in mind that the sources are
independent of parameter perturbations, i.e., and

, we obtain

(17)
Here, and are the current and voltage sources in the ad-
joint circuit, respectively, is the change in the voltages at
the current sources in the original circuit due to the perturba-
tions, and is the change of the currents through the voltage
sources in the original circuit. The vector is defined ac-
cording to (15) for each adjoint network element. It is a subset
of the solution containing the voltages and currents of the
whole adjoint network. Similarly, is a subset of , which
contains the voltages and currents of the whole original network.
Equation (17) suggests a way to compute the circuit sensitivity
to parameter perturbations through the sensitivity of its response
at the source locations in terms of and .

We note that often a perturbation of a designable circuit pa-
rameter belonging to the th network component affects
only the th component matrix. This leaves only one nonzero
sensitivity term with respect to to be calculated on the
right-hand side of (17). Component sensitivities for all funda-
mental circuit elements can be found, for example, in [2] and
[44].

C. Original and Adjoint System Analyses

The adjoint network is assembled from the respective adjoint
circuit components in a similar fashion as the original network.
In fact, a reciprocal original circuit has an adjoint circuit, which
is identical to it. Take as an example a single-port passive cir-
cuit component [see Fig. 2(a)]. The -matrix representation is
a special case of the hybrid matrix formulation used above and,
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Fig. 2. (a) Passive one-port circuit element. (b) Its identical counterpart in the
adjoint circuit.

in the case of a one-port circuit element, it has one element
so that . The respective adjoint

circuit component—represented by the transpose -matrix ac-
cording to (10)—is identical to the original one, i.e.,
[see Fig. 2(b)]. Thus, a resistor in the original circuit corre-
sponds to the same resistor in the adjoint circuit. The same holds
for inductors and capacitors.

In fact, for any reciprocal multiport circuit component,
or holds, meaning that its counterpart in the ad-

joint circuit is identical. For example, a piece of uniform trans-
mission line of characteristic impedance and electrical length

is a reciprocal two-port element because its -matrix is sym-
metric as follows:

(18)

Thus, its adjoint counterpart is an identical transmission line.
Tables with correspondence between common circuit elements
and their adjoint counterparts can be found, for example, in [2]
and [44].

Note that the right-hand side of (17) requires the solution of
the original circuit and that of the adjoint circuit and . These
analyses can be carried out with any preferable technique. In
fact, the adjoint circuit analysis requires very few computations.
It consists of elements whose matrices are the transpose of those
of the original circuit elements. As a result, it can be shown that
the system matrix of the overall adjoint network—obtained, for
example, through a nodal formulation—is the transpose of the
original system matrix resulting from a nodal analysis. The
matrix is factorized when the original network is
analyzed. Its factors are then rearranged to produce the
factors of as follows:

(19)

which are used to compute the adjoint solution through forward
and backward substitutions. Details on efficient numerical al-
gorithms for obtaining, storing, and rearranging the LU factors
used in sensitivity analysis can be found in [12] and [48]. The
computational overhead associated with the sensitivity estima-
tion is negligible in comparison with the computational require-
ments of the original circuit analysis. Moreover, it does not de-
pend on the number of design parameters.

D. Response Sensitivity and Adjoint Excitation

There is one issue related to the adjoint network, which still
remains to be resolved, namely, the adjoint sources and .
We are free to choose them so that the left-hand side of (17)
yields the derivative of the response function of interest with
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respect to a given design parameter. An excitation vector and a
response vector can be introduced as

(20)

respectively, so that (17) becomes

(21)

Assume that a scalar response function is given as follows:

(22)

where is the vector of design parameters. The
response function depends implicitly on through the circuit
response . It may also have explicit dependence on . We as-
sume that is analytically differentiable in all elements of
and .

Consider first the simplest case—the response function is
identical with the circuit reaction (voltage across current source
or current through a voltage source) at the th port2 .
To find its sensitivity, we set all elements of the adjoint excita-
tion vector equal to zero, except for . For example, if
the th port corresponds to a current source in the original cir-
cuit, then its sensitivity is . Consequently, a unit
current source must be connected to the th port of the adjoint
circuit, i.e., . All remaining adjoint circuit ports, which
correspond to current sources in the original network, are open
circuited, i.e., and . All adjoint circuit ports, which
correspond to voltage sources, are short circuited, i.e., .

Once the adjoint sources are set, the adjoint network is ana-
lyzed. According to (21), the desired response sensitivity is cal-
culated from

(23)

The sensitivity with respect to any design parameter is

(24)

Notice that, in (24), the only terms that need to be recalcu-
lated for different are the matrix derivatives ,

. The solutions of the original circuit and the adjoint
circuit do not depend on any perturbation, i.e., they are inde-
pendent of and are computed once.

In a slightly different scenario, we may be interested in a
response, which is not simply equal to the voltage–current re-
sponse of the circuit at its th port, but is some function of it. In
microwave circuit design, we may be interested in minimizing
the reflection at this port [9], assuming that the loads of all other
ports are known. The reflection coefficient

(25)

is, in general, a complex number. In (25), is the
input impedance of the circuit at the th port, is the source
impedance, is the voltage of the source, and is the cur-
rent through the voltage source. A circuit diagram showing the

2Hereafter, we refer to the location of the external sources in the network as
ports.

VkI

original

network

kgR
kI

VkV kV

kinZ

(a)

+

−

adjoint

network

kgR
kI

kE kV

(b)

+

−

ˆ

ˆ ˆ

Fig. 3. Original and adjoint networks in the sensitivity analysis of the kth port
reflection.

arrangement at the th port is shown in Fig. 3(a). If we are in-
terested in the sensitivity at a single frequency , the objective
function to be minimized may be defined as

(26)

The derivative of (26) is

(27)

where denotes the real part of a complex-valued quantity.
At the same time, using (21) and setting a nonzero excitation

only at the th port of the adjoint circuit [see Fig. 3(b)], we can
express as

(28)

The substitution of (28) in (27) yields the sensitivity with respect
to any of the design parameters as

(29)

We are at liberty to set . In the case of a reciprocal
network, this makes the adjoint circuit identical to the original
circuit. Thus, , and the analysis of the adjoint circuit is
avoided.

The adjoint network method is often thought to be convenient
just in the case of a response function depending on the circuit
output at a single port. This, however, is not the case. The sen-
sitivity estimation of response functions, which depend on the
circuit output at all ports, is possible and it requires just as many
computations as in the case of an objective function depending
on a single port. Consider the following case, which arises in
gradient-based optimization. The response (or objective) func-
tion is a real-valued quantity, which may depend on the circuit
reaction at all ports of the circuit. Neglecting higher order terms,
the sensitivity of can be expressed as

(30)



408 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 1, JANUARY 2004

where and denote the real and the imaginary parts of a
complex-valued quantity, respectively; denotes the number
of the external current sources, and is the number of the
external voltage sources. A comparison between (30) and the
left-hand side of (21), which we can expand as

(31)

reveals that setting the elements of the adjoint excitation as

(32)

leads to

(33)

In (32), . Thus, the sensitivity expression becomes

(34)

Now, every port of the adjoint network has an external source,
as per (32).

III. ADJOINT NETWORK -PARAMETER SENSITIVITIES

BASED ON WAVE VARIABLES

The sensitivities of the -parameters of microwave circuits
have been discussed extensively in the microwave literature; see,
e.g., [7]–[11]. Here, we only show that the same principles apply
as in the case of current–voltage responses. For that, it would
suffice to state the generalized Tellegen theorem in wave vari-
ables [8], [11], [45] for any two topologically identical networks

(35)

Here, and are vectors containing the incident and reflected
waves, respectively, at all junctions in the first network, and
and contain the corresponding wave variables of the second
network. The voltage–current Tellegen theorem (2) can be easily
transformed into (35) by a substitution of the relation between
the voltage and current of a branch and its wave variables

and [45] as follows:

(36)

where is a normalization impedance.
Formally, (35) is identical to the voltage–current formulation

of Tellegen’s theorem (2). Thus, all voltage–current expressions
can be adapted to operate on the wave variables and the -ma-
trices of the original and the adjoint circuits.

Assume that a microwave network is composed of subnet-
works, each described by

(37)

The corresponding adjoint subnetwork -parameters are given
by so that

(38)

The external ports of the original and adjoint networks are ex-
cited by sources, which are considered independent of any pa-
rameter changes in the networks. The wave variables at the ex-
ternal ports are given by and for the original circuit and
by and for the adjoint circuit. For an adjoint circuit whose
components are defined by (38), the sensitivity expression is in
the form [11]

(39)

Notice that the incident waves on the external ports may still
depend on a varying circuit parameter because they are deter-
mined not only by the external source, but also by the impedance
matching at that port. If all ports are matched, .
The choice of the adjoint external waves is made in a manner
similar to the case considered before so that the left-hand side
of (39) yields the sensitivity of the response function .

The sensitivity of an -parameter of the overall circuit is often
required. Since

(40)

we single out the element from the row in
(39) by setting the incident adjoint wave at the th port as

, while all other ports of the adjoint circuit have no excitation
and are matched, i.e., and . The arrangement
of the original and the adjoint circuit for the calculation of the

-parameter and its sensitivity are given in Fig. 4. Notice that
when the network is reciprocal, , the adjoint network
is the same as the original one, and there is no need to solve an
adjoint problem, in the sense that the arrangement in Fig. 4(b)
can be set with the original circuit.

IV. MATRIX APPROACHES TO ADJOINT SENSITIVITY ANALYSIS

Thus far, we have used first-order approximations to the
derivatives of the state variables of our problem and those of the
response function. Such analysis follows from the perturbation
difference form of Tellegen’s theorem in a straightforward
manner and it leads to a definition of the adjoint network
and its components. It features clarity and physical insight.
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Fig. 4. Original and adjoint circuits with single-port excitations when the sensitivity of the S -parameter is calculated.

However, one could apply direct differentiation to the circuit
equations. Such an approach is often referred to as the direct
differentiation method [12], [49]. This method is general in
the sense that it applies to any problem, which is cast in the
form of a system of linear or nonlinear equations. Thus, it is
applicable to the system of equations arising in computational
EM algorithms as well.

With further matrix manipulations, the direct differentiation
method leads to an adjoint-based sensitivity analysis approach,
which is mathematically equivalent to the adjoint-network
method in the case of circuit sensitivities. In control theory, this
approach is usually referred to as the adjoint-variable method
[49], [50], but it is also sometimes called the transpose-matrix
method [12]. Below, we outline the application of the direct
differentiation and the adjoint-variable methods to linear and
nonlinear problems.

A. Direct Differentiation Method for Linear Systems

Assume that a linear circuit or EM field problem is cast in the
form of a system of equations

(41)

where is the system matrix, is the vector of
state variables, and is the excitation vector. The
state variables may be voltages, currents, or normalized waves in
circuit analysis. In EM field analysis, may represent the field
solution (e.g., the -field distribution resulting from FEM anal-
ysis) or a solution in terms of current densities (as in the case of
MoM analysis). In high-frequency structure design, the design
parameters would typically relate to the structure’s geometry
and the constitutive parameters of the materials. The system ma-
trix is clearly dependent on and, thus, the solution is an
implicit function of . The excitation vector , in general, de-
pends on the sources and boundary conditions of the problem.
It may depend on as well.

We define the response function as in (22). The ob-
jective is to determine its sensitivity with respect to all

as follows:

subject to (42)

where the gradient is defined as a row operator

(43)

A direct differentiation of (41) with respect to each design vari-
able yields

(44)

Using the definition of the gradient in (43) and assuming that
is not singular, (44) is written as

(45)

where

...
... (46)

In (45), is a vector obtained from the solution at the current
design , which is held constant during the differentiation, see
(44). We note parenthetically that, in high-frequency design, the
EM sources are usually independent of the design parameters,
i.e., .

Expression (45) gives the sensitivities of all state variables.
Once they are known, the sensitivity of the response function
(42) can be obtained by substituting into

(47)

Here, the gradient operator is defined as in (43), and re-
flects the explicit dependence of on . Often,

.
The procedure summarized by (45) and (47) is what is usu-

ally referred to as sensitivity analysis via direct differentiation.
The computational overhead associated with it depends on the
method of solution of (41). If LU factoring of the matrix is
used, then the overhead is small because the matrix LU factors
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are reused in the forward–backward substitutions in (45). Obvi-
ously, the number of forward–backward substitutions is equal
to the number of design parameters . On the other hand, if

is very large and sparse (as, for example, is the case with
the FEM), the preferred method of solution may be an iterative
solver. Neither , nor its LU factors are then available after
the system analysis (41) is completed. The solution for the state
variable sensitivities via (45) now requires linear system solu-
tions—each equivalent to that in (41). This is a very substantial
overhead, which renders the technique as inefficient as the per-
turbation technique where finite differences are applied at the
level of the response.

Another issue relates to the computation of the derivatives
of the system matrix with respect to all design parameters,

in (44) or (45). In linear circuits, this
is usually not a problem, as these derivatives are analytically
available. In full-wave analysis, however, these derivatives pose
a major difficulty. We will return later to this problem when we
discuss adjoint-based sensitivities with EM solvers.

The direct differentiation method has been applied to a
number of practical microwave design examples [19], [40],
[51].

B. Adjoint-Variable Method for Linear Systems

In optimization, we are usually interested in the sensitivity
of the objective function rather than the sensitivities of
all state variables. Thus, the calculation of via (45) seems
somewhat superfluous. If (45) is substituted in (47), the response
sensitivity is obtained as

(48)

We can now introduce the adjoint-variable vector as [11], [12],
[49]

(49)

This defines the adjoint problem as

(50)

analogously to (16) and (38). With the introduction of the ad-
joint solution, the sensitivity expression (48) becomes

(51)

For clarity, we rewrite (51) as

(52)

The computational overhead of the adjoint-variable method is
approximately times smaller than that of the sensitivity anal-
ysis via direct differentiation. If the LU factors of the matrix
are available, only one forward–backward substitution is per-
formed to solve the adjoint problem (50). Similarly, in the case
of an iterative linear system solver, only one additional system
analysis is performed when solving (50). Thus, the efficiency

of the adjoint variable method is independent of the number of
design parameters. In the worst case, its overhead is roughly
equivalent to one additional system analysis.

C. Sensitivities of Complex Linear Systems

A note of caution should be made. Strictly speaking, the
derivation above refers to real-number linear systems. In the
case of complex linear systems, the transposition of the system
matrix also involves conjugation. Such a matrix is referred
to as Hermitian conjugate, and is sometimes denoted as
(or ) instead of , which may be misleading in the case
of complex analysis. From the theory of complex matrices, it is
known that the Hermitian conjugate of a complex-number ma-
trix has properties analogous to the transpose of a real-number
matrix, e.g., ; see, e.g., [52]. This applies
to every analysis, which requires the transposition of a com-
plex-valued system matrix. In fact, the adjoint sensitivity
expressions in the case of complex systems are readily obtained
from those for real-valued systems.

Consider the following representation of the complex-valued
linear system (41) in a real-number form

(53)

The application of the standard adjoint-based approach to (53)
leads to the sensitivity expression

(54)
where the real-valued adjoint vector is a solution to

(55)

Notice that the response is assumed to be a real quantity. It is
now obvious that (54) and (55) can be cast in equivalent com-
plex-number representations

(56)

(57)

where . Note that the right-hand side of
(57) has to be conjugated when the row of complex derivative
elements is transposed to produce a column, i.e.,

... (58)

The same rule of conjugation applies to in (56) when the
adjoint-variable vector is converted into a row.

We should point out that the sensitivity analysis represented
by (56)–(58) can be extended to complex response functions.
To find the sensitivity of the real and imaginary parts of the
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response function , we still need only one complex
linear system analysis. Using Cauchy–Riemann equations,

(59)

we can show that if the complex adjoint problem is defined as
in (57) with , then the complex sensitivity expression
becomes

(60)

Another equivalent complex-number representation, which
avoids the conjugation of the system matrix, is

(61)

(62)

where is the conjugate of (58)with . This is
the case with the adjoint network method when it is applied
to complex circuit analysis, where is considered to be the
adjoint system solution instead of .

The adjoint-variable method is the most computationally ef-
ficient approach to design sensitivity analysis of linear systems.
The CPU-time reduction in comparison with direct forward
or backward finite-difference sensitivity approximations at the
level of the response, e.g.,

(63)

is very significant. It is of the order of .
The adjoint-network method for circuit sensitivities presented

in Sections II and III and the adjoint-variable approach to linear
system sensitivities presented here are conceptually identical.
They rely on an adjoint system analysis whose system matrix
is the transpose of the original system matrix, and their sen-
sitivity expressions utilize the derivatives of the matrices de-
scribing the circuit or system. The difference is in the fact that
the adjoint-network method computes the overall circuit sen-
sitivity as a summation over the individual sensitivities of the
circuit components (34), (39), each of these sensitivities being
dependent on the derivative of the component matrix (a com-
ponent-level approach). The particular solution method used to
carry out the circuit analysis and the resulting system matrix are
of no importance to the sensitivity expression as long as they
provide the accurate voltage/current distribution in the original
and adjoint circuits.

On the other hand, the adjoint-variable method uses the
derivative of the system matrix to compute the overall sen-
sitivity directly (a system-level approach) (56), (60). Strictly
speaking, this system matrix must be the one arising from the
chosen analysis method. When the solution, however, is known
to be unique, it is possible to use the derivative of a system
matrix arising from a given analysis method and a vector of
state variables (i.e., the solution) obtained by another method.

For example, in [37] and [38], the sensitivity expression
uses the derivatives of a matrix arising from a finite-element
discretization and a solution obtained via the FDTD method.

D. Adjoint-Variable Method for Nonlinear Systems [15], [16]

The previously discussed matrix approach can be extended
to the sensitivity analysis of nonlinear systems. Our previous
results then appear as a special case of the nonlinear system
analysis. This analysis has been applied mainly with microwave
circuits, e.g., [15] and [16], since most of the full-wave EM
solvers assume a linear medium. However, the trend of in-
tegrating lumped nonlinear components with full-wave EM
solvers justifies an overview of the subject.

Assume a problem is represented by the system of nonlinear
equations

(64)

As before, represents the vector of design pa-
rameters, and is the vector of state variables.
Differentiating (64) directly with respect to a given design pa-
rameter gives

(65)

where

...
... (66)

is the Jacobian of (64). If is a nonsingular matrix, the sensi-
tivities of the state variables are found as

(67)

Equation (67) is a generalization of the linear case in (45) with
and . Its substitution in (47) results in

(68)

which is used to introduce the adjoint problem as the solution
to the linear system

(69)

Finally, the sensitivity expression is obtained as

(70)

Here, denotes the solution at the current design. It is kept
constant when calculating the gradient of on the right-hand
side of (70).

The nonlinear system (64) corresponding to the current
design of the optimization can be solved using
Newton’s update [15]

(71)
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where denotes the iteration of the update. At each iteration,
the Jacobian is updated and factored in order to compute .
Therefore, its LU factors are available after the last update and
can be used for the sensitivity estimation via (69) and (70) at the
current design.

Nonlinear circuit sensitivities with harmonic-balance simula-
tions of microwave circuits such as mixers and frequency dou-
blers have been applied in yield analysis and optimization [15],
[16]. Therein, a detailed description of related numerical algo-
rithms and nonlinear circuit analysis approaches can be found.

V. ADJOINT SENSITIVITIES IN EM ANALYSIS

The theory of adjoint sensitivities for linear systems dis-
cussed in the previous section, in principle, applies to EM
analysis in linear media. However, to our knowledge, com-
mercial EM-based CAD software does not employ adjoint
sensitivities for optimization purposes. A major difficulty
in EM-based sensitivity analysis is the availability of the
derivatives of the system matrix with respect to the design
parameters, [see (52)]. When the
design parameters describe variations in the shape and size
of objects, they may relate to the solver’s discrete mesh, its
expansion, and weighting functions in a very complicated
manner. This prevents applications versatile enough to allow
for an arbitrary user-defined set of design parameters.

Recently, there have been efforts to integrate adjoint sensi-
tivities with certain EM computational approaches. We outline
these achievements and discuss issues related to their applica-
bility, efficiency, and accuracy.

A. Adjoint Network Applications With Mode-Matching (MM)
Analysis [17]

The MM method—particularly well suited for waveguide
problems—utilizes modal expansions of the EM field in prop-
erly defined sub-domains of the computational volume. The
boundary conditions at a junction plane between two neigh-
boring sub-domains lead to a linear system of equations in
the modal expansion coefficients. Traditional MM techniques
rely on segmentation such that the sub-domains are waveguide
sections where the field expansion is in terms of the intrinsic
waveguide modes. The equivalence between a waveguide
mode—characterized by its wave impedance and propagation
constant—and a transmission line is used to develop microwave
network formalism where every mode is represented by a trans-
mission line connecting multiport networks corresponding
to respective discontinuities at junction planes. Each port
of these networks corresponds to a given mode. Thus, the
microwave structure is represented by an equivalent network
whose complexity depends on the number of modes taken into
account in the field expansion at the discontinuities. This is
why the adjoint network approach to design sensitivity analysis
is particularly well suited for application with MM techniques.

In [17], the authors exploit the fact that the admittance ma-
trix for a subnetwork corresponding to a microwave component
bounded by metal walls is evaluated analytically and is, thus,
differentiable in the geometrical parameters of this component.
Using an efficient cellular segmentation technique [53] and a

generalized admittance matrix formulation [54], they cast the
problem in the form

(72)

where and are vectors consisting of the currents and volt-
ages at the external ports of the microwave network. Due to the
reciprocity of the waveguide structures of interest, the adjoint
network is identical to the original one. Further, the derivatives
of the system matrix with respect to a design parameter
are expressed in terms of the analytically available derivatives
of the subnetworks’ -matrices as

(73)

where are the voltages at the ports of the subnetwork
when the circuit is excited from the external port and is
the admittance matrix of the th subnetwork.

The voltages at the external ports are known as they are set
equal to zero or one depending on which port is excited. From
them, the voltages at the ports of the internal (or connected)
ports are determined. For that, a matrix equation is constructed
making use of the connection matrix, which expresses the topo-
logical relations of the connected ports. Finding the internal-port
voltages requires just one additional system analysis. Once the
sensitivity of the system -matrix is found from (73), the sen-
sitivity of the matrix is readily computed [13], [17].

This technique has been used in the design of waveguide fil-
ters.

B. Adjoint Sensitivities With the FEM

The FEM offers very good flexibility and accuracy for ad-
joint-based sensitivity analysis. This is due to the fact that the el-
ements of the FEM system matrix are analytically differentiable
with respect to the coordinates of the vertices of the finite-ele-
ment mesh. This is why sensitivities have been first computed
with FEM analysis in structural and electrical engineering (see,
e.g., [29], [49], [55], and [56]).

It appears that Lee and Itoh were first to apply adjoint vari-
ables with the FEM to high-frequency structure design [35].
Later, the approach was generalized to handle an arbitrary vari-
ation in the geometry [30]–[33]. Akel and Webb [30] and Webb
[31] developed a systematic way of computing the derivatives
of the FEM system matrix with respect to the rectangular co-
ordinates of the vertices of the mesh. The sensitivity estimates
showed excellent accuracy when compared with the results of a
central finite-difference calculation using the response directly.
The same authors also showed that there is no need for an ad-
joint-system analysis when the sensitivities of the structure’s

-parameters are desired [30] provided that the port geometries
do not change under variations of the design variables. These
sensitivities with respect to a design parameter are obtained
as

(74)
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where and are vectors containing the -field solution
at port and port , respectively.

Further, Webb developed an efficient technique for the cal-
culation of the -parameter sensitivities in a broad frequency
range using a single-frequency analysis and employing Padé ex-
pansion with complex frequencies [32]. The accuracy control of
the FEM solution for both the -parameters and their sensitivi-
ties is considered in [33] and [34].

C. Adjoint Sensitivities With the MoM

Exact sensitivities of charge and current densities computed
with the MoM have been considered in [57] and [58]. In [57],
electrostatic problems for planar conducting surfaces embedded
in planar structures are solved by applying the MoM to the in-
tegral equation relating the potential on the conductor’s surface
to the surface charge distribution. A new integral equation is
developed for the derivative of the potential with respect to the
design (shape) parameter. The two integral equations are solved
with the MoM using the same set of basis functions. A similar
approach is applied with the mixed-potential integral equation
for the analysis of planar microstrip structures, where two cou-
pled integral equations are solved [58]. The sensitivities of the

-parameters are calculated from the sensitivity of the current
densities. These techniques, although formally different from
the adjoint variable methods, provide accurate derivative esti-
mation whose computational requirements are independent of
the number of design parameters. The drawback is that their
implementation into a design environment would require pro-
gramming of the analysis software practically from scratch.

Recently, a feasible adjoint-based technique was proposed
for use with full-wave frequency-domain solvers [39]. More
specifically, it considers applications with the MoM. There are
a number of MoM techniques currently in use in microwave and
antenna engineering. They differ significantly in the choice of
expansion and test functions. To reduce the computational ef-
fort, most MoM techniques utilize specialized Green’s func-
tions; e.g., planar MoM solvers compute a Green’s function,
which satisfies the boundary conditions of a multilayer dielec-
tric medium with specific heights and dielectric constants of the
layers. Unlike in the FEM, these functions lead to a system ma-
trix whose elements depend on the coordinates of the point of
observation and the point of integration in a very complicated
manner. With very few exceptions, straightforward analytical
differentiation is not feasible. Moreover, it would require com-
plete reprogramming of the existing codes, which is an insur-
mountable complication for most researchers and commercial
software developers.

The feasible technique proposed in [39] applies finite-dif-
ference approximation to the derivatives of the MoM system
matrix, thus avoiding analytical preprocessing. It requires only
minor additions to the existing analysis algorithms. Feasible
techniques utilizing finite differences for the approximation of
the Jacobian of the system equations have been previously ap-
plied to the sensitivity analysis of nonlinear circuits [16]. The
accuracy of the technique with the MoM is carefully investi-
gated, and it is shown that perturbations of the design param-
eters in the range of 1%–5% yields excellent accuracy when

compared with both exact sensitivities and central finite-differ-
ence approximations utilizing the response directly. The adjoint
system analysis reuses the LU factors of the system matrix ob-
tained in the solution of the original problem. The overhead as-
sociated with the sensitivity estimation is thus due mainly to the
computation of the derivatives of the system matrix, which re-
quires additional matrix fills at each design iteration. Keeping
in mind that in a large problem a matrix fill requires a small por-
tion of the overall CPU time needed for one system analysis, this
overhead is significantly less than additional full analyses.
Thus, the technique offers a reduction of the computational cost
of the design process by a factor of approximately .

The feasible technique has been applied to the sensitivity
analysis and the design of wire antennas (dipoles and Yagi–Uda
arrays) and printed patch antennas [39]. The response func-
tions include the antenna input impedance and antenna gain.
The technique is simple to implement, robust, and accurate. It is
versatile as its implementation is practically independent of the
type of the MoM algorithm or its Green’s functions.

Possible venues for this line of research concern the appli-
cation of other computationally more efficient gradient approx-
imation techniques to the estimation of the derivatives of the
system matrix [59]. A number of such techniques have been
developed for the purposes of gradient-free optimization, and
they can be applied at the level of the system matrix rather than
the level of the response itself. Such an approach would reduce
the computational requirements of the design process in com-
parison with the feasible adjoint technique. At the same time, it
would improve the accuracy of the sensitivity estimation in com-
parison with approximations applied to the response directly.
This is due to the weakly nonlinear dependence of the elements
of the system matrix on geometrical perturbations, unlike the re-
sponse function, which may exhibit highly nonlinear behavior
at certain points of the design parameter space.

D. Adjoint Sensitivities With Fixed Structured Grids

Finite-difference or transmission-line modeling methods for
EM analysis typically utilize fixed structured grids in Cartesian
coordinates or orthogonal curvilinear coordinates. Their equa-
tions can be cast in a matrix form with a system matrix, which
is very sparse. The elements of the system matrix, however, are
not analytical functions of the coordinates of the grid nodes and,
therefore, they are not differentiable with respect to design pa-
rameters related to the structure’s geometry. We note parenthet-
ically that the matrix elements are differentiable with respect to
the constitutive parameters and, thus, allow for a straightforward
computation of material-related adjoint sensitivities.

We illustrate the adjoint-based sensitivity analysis on discrete
structured grids with a recent application with the FD–TLM
[41]. Let us consider a rectangular mesh and metallic boundaries
perturbed as shown in Fig. 5. The designable parameters (e.g.,
and ) can assume only a discrete set of values that are multi-
ples of the cell size in the respective direction. The perturbation
shown in Fig. 5(b) (referred to as “metallization”) requires that
the respective tangential field components (total nodal voltages
in the case of TLM) be set equal to zero in the “metallized”
cells. This effectively reduces the number of unknowns, which
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Fig. 5. Discrete perturbations of metallic boundaries that result in cells being
“metallized” and “de-metallized.” (a) Nominal structure. (b) Perturbation�W
results in two cells being “metallized.” (c) Perturbation�L results in five cells
being “metallized” and other five being “de-metallized.”

the system is solved for. In general, a perturbation may require
previously perfectly conducting cells to be “de-metallized” and
others to be “metallized” [see Fig. 5(c)]. When cells are being
de-metallized, new unknowns are added to the vector of state
variables. In any case, the perturbation results in a new system
matrix with a different size because variables (incident voltages
or field components) are added or removed at the location of
perturbation. Thus, a meaningful definition of a derivative of the
system matrix is not possible unless an enlarged system matrix
is introduced in anticipation of possible geometrical modifica-
tions.

When a cell is metallized, the coefficients in the system ma-
trix multiplying its vanishing field components must change
from a fixed known value to zero. Alternatively, when a cell is
de-metallized, the respective coefficients change from zero to
known fixed values. This simple “binary” behavior in the case
of perfectly conducting walls is used to calculate the finite-dif-
ference approximation , . The design
parameter perturbation is limited to the smallest on-grid pertur-
bation along the respective axis , where is the
size of the grid step. It is obvious that the difference matrices

have very few nonzero elements corresponding to the
locations at which the boundary conditions change.

We should emphasize that the perturbed structure is never ac-
tually simulated. We consider it only because we need an esti-
mate of the derivatives of the system matrix with respect to all
design parameters.

Such a “discrete” adjoint-based approach has to take into ac-
count second-order terms in the perturbed system of equations
describing the linear EM problem (41)

(75)

In (75), represents the solution of the problem at the current
design. Simplifying (75),

(76)

Notice that (76) is not just the finite-difference approximation
of (44) obtained from the direct differentiation of (41). In (76),
the second-order term is retained. This is necessary in
order to achieve reasonable accuracy when the perturbation
is actually of the same magnitude as itself. The technique fur-
ther approximates the elements of the vector on the
right-hand side of (76), which correspond to the few nonzero
columns of . The components of corresponding to the

metallized cells are set to as the incident voltages
vanish for these cells. For the de-metallized nodes, the corre-
sponding components of are approximated by the values of
the incident voltages of neighboring nodes along the perturba-
tion direction [41]. The adjoint-based sensitivity expression is
now given as

(77)

where . The adjoint solution is obtained in the
usual way from the adjoint system (50).

The approach described above is, in principle, applicable with
any frequency- or time-domain EM technique, which uses a
fixed structured mesh.

E. Adjoint Sensitivities With Time-Domain Techniques

The subject of dynamic response sensitivity has been given
very little consideration in the microwave literature. Some ap-
plications with the FETD and FDTD methods have been re-
ported in [36]–[38]. These applications are based on a varia-
tional theory developed for second-order time-dependent prob-
lems [49]. We present this theory in the context of time-domain
EM analysis.

Consider the vector wave equation for the electric field vector

(78)

where , and are the magnetic perme-
ability and dielectric permittivity of vacuum, respectively, is
the relative permeability, is the relative permittivity, and is
the conductivity of the medium. It can be discretized (e.g., using
finite elements) to construct a system of equations

(79)

with initial conditions

(80)

In the matrix (79), the first- and second-order time derivatives
are denoted as and , respectively. The vector contains the
tangential components of the -field along the edges of the fi-
nite-element mesh.

The response function can be defined as a general integral
functional of the form

(81)

where is the volume of observation and is the period
of observation. The volume of observation must be contained
within the computational volume, and is usually the same
as the computational time required by the time-domain simu-
lation. is an implicit function of through the electric field
solution (or equivalently through ), but it may also have an
explicit dependence on the design variables .
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Using the chain rule of differentiation, the derivative of
with respect to the design parameter is obtained as

(82)

where relates to the explicit dependence only of on
. The evaluation of (82) is subject to the solution of the system

(79) complemented by the initial conditions (80) and by speci-
fied boundary conditions.

We multiply a residual vector

(83)

with the transpose of an auxiliary vector and integrate in time

(84)

The above expression must hold for an arbitrary vector , which
is independent of any changes occurring in the original problem.
Thus, differentiating with respect to yields

(85)

The first variation of in (85) is zero when the vectors , ,
and represent the solution to the original problem (79). In
the second integral of (85), we integrate by parts twice the term

, as well as we integrate by parts once the term
. This shifts the time derivatives onto the auxil-

iary vector . Note that the matrices , , , and are inde-
pendent of time. We also introduce the notation

(86)

The bar in and its derivatives emphasizes that the field solution
is held constant during the differentiation of and contains the
values obtained from the analysis at the current design. Thus,
(85) is transformed into

(87)

We now define the auxiliary field solution so that it relates
(87) to (82). The zero initial conditions for the original problem
(80) together with zero terminal conditions for the auxiliary field
problem

(88)

eliminate the last two terms in (87). Next, we choose an auxiliary
vector such that

(89)

This makes the second integral of (87) identical to the first term
in the right-hand side of (82). Thus,

(90)

We can now express the response derivative as

(91)

Finally, we can generalize (91) to include all derivatives of the
response gradient in the design parameter space

(92)

The sensitivity expression above does not contain derivatives
of the field solution with respect to the design parameters. It
requires only the derivatives of the system matrices ,

, , , . It also requires
the solution of (89), which we write as

(93)

Equation (93) defines the adjoint problem. As before, the
system matrices of the adjoint problem are equal to the trans-
posed matrices of the original problem, and the adjoint excita-
tion is the gradient of the local response function with respect
to the state variables . Note, however, the sign reversal associ-
ated with the first-order time derivative. The quasi-EM problem
defined by (93) has the same boundary conditions as the original
problem. Instead of zero initial conditions, it has zero terminal
conditions (88). Thus, in an explicit scheme, the simulation runs
backward in time.

The adjoint sources are located at the points of observation
belonging to where the local response is recorded. Typically,
these points are located at a port of the microwave circuit. This
is where the excitation of the adjoint circuit exists. For example,
in [36], the response function is defined to be proportional to the
average power leaving port 2 of a -band unilateral fin line to
waveguide transition

(94)
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where is the total instantaneous transmitted
electric field at the observation plane, which is port 2 at

. The -axis is along the direction of propagation. The
local response is then

(95)

which defines the adjoint excitation at each point of port 2 as

(96)

The original problem corresponding to (79) and the adjoint
problem corresponding to (93) can be solved either by the
FETD method based on the -field wave equation or by
Yee’s FDTD algorithm based on the Maxwell curl equations.
The details about the conversion of the adjoint excitation
(96) into adjoint current densities for use with the adjoint
Maxwell equations are given in [36] and [38]. In this particular
application, the authors consider FDTD solutions to both the
original and adjoint problems. To accommodate fine tuning of
the grid nodes, the FDTD algorithm utilizes unstructured grids,
which are regenerated with each design iteration. This makes
the implementation rather complicated.

The adjoint problem, which is cast in the form of either a wave
equation or a system of quasi-Maxwell equations (loss terms
have their signs reversed), needs absorbing boundary conditions
(ABCs) if the original problem itself contains open boundaries
(matched ports or radiation into open space). A procedure for
the derivation of various ABCs for adjoint problems is provided
in [60].

The similarity between static/time–harmonic and dynamic
system sensitivity analysis is obvious when (51) and (50) are
compared with (92) and (93), respectively. In any case, two
system analyses are sufficient to obtain the gradient of the
response, regardless of the number of the design parameters.
While the time–harmonic adjoint system analysis is practically
avoided by the reuse of the LU factors of the original system
matrix, the dynamic adjoint system analysis seems imperative.

The derivatives of the , , , and matrices in (86) are
analytically available when finite-element discretization is ap-
plied. These FEM derivative matrices are used for sensitivity es-
timations with the FDTD method as well [36], [38]. The FDTD
method is used only as an analysis tool to obtain the solution of
the original and adjoint problems. As these solutions are unique,
the FDTD solution should be identical with that of the FETD
method.

F. Adjoint Sensitivities for Nonlinear Dynamic Systems

The full-wave EM analysis in the time domain usually as-
sumes linear properties of the media involved. For the majority
of practical microwave and antenna designs, this assumption
holds. However, there are classes of EM problems, which are in-
herently nonlinear, e.g., involving ferromagnetic materials, light
generation in semiconductors, nonlinear lumped devices, etc.
For this reason, as well as for completeness, we briefly outline
the sensitivity analysis of a class of nonlinear dynamic systems.

We assume that the time-dependent nonlinear problem is cast
in the form of a system of nonlinear equations of state
variables

(97)

where, as in the linear case, the vectors , , and represent
the EM field solution and its time derivatives. We assume zero
initial conditions as in (80). We emphasize that depends on
time through the field solution only. We also mention that the
following discussion is not limited to second-order systems. We
assume the form in (97) since it is most often encountered in
EM analysis. Its extension to higher order systems is straight-
forward.

An application of the direct differentiation method to the sen-
sitivity analysis of (97) is described in [61]. The sensitivity of
the state variables is found by solving linear time-dependent
systems of equations

(98)
obtained by the direct chain differentiation of (97). Here, the Ja-
cobian matrices are , , and . The
right-hand derivative term in (98) relates to the explicit depen-
dence of on , i.e., the state variables and their time deriva-
tives are held constant during the differentiation. In the special
case when represents the linear problem defined in (79) and
(80), , , , and

defined in (86).
Here, we show that the adjoint-variable approach is appli-

cable to nonlinear dynamic systems and that it needs only one
additional linear dynamic system analysis. The methodologies
for the solution of nonlinear time-dependent problems and their
relation to the system sensitivity analysis are not discussed here.
Excellent introduction into this subject can be found in [61] and
[62].

The response function is defined as in (81). The sensitivity
expression is obtained from the first variation of the functional

(99)

with respect to a given design parameter , which we write as

(100)
Following the same approach (as in the linear case), we integrate
by parts and arrive at the intermediate result

(101)
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We eliminate the first two terms by imposing zero terminal con-
ditions on and . The third term is used to define the adjoint
problem

(102)

Notice that the adjoint system (102) is linear since the matrices

, , and are independent of the adjoint vector and its
derivatives. We have already encountered a similar situation in
the analysis of steady-state nonlinear problems [see (69)]. Thus,
(101) becomes

(103)

Taking into account (82), we finally obtain the sensitivity ex-
pression

(104)

which is analogous to (70) and (91).

VI. TELLEGEN APPROACH TO EM SENSITIVITY ANALYSIS

It has been long ago noted that Tellegen’s theorem can be
extended to EM fields [47]. In fact, the reaction concept intro-
duced by Rumsey [63] is very similar and can be considered as
the analog of the Tellegen’s theorem in electromagnetics. The
derivation of the reaction equations follows the well-known pro-
cedure used to derive the expressions for the conservation of EM
power (Poynting’s theorem) [64]. Two sets of sources, ,
and , , generate two fields

(105)

and

(106)

Here, and denote electric current densities of external
sources, and are the magnetic current densities of ex-
ternal sources, and are electric field vectors, and are
magnetic field vectors, and are electric flux density vec-
tors, and and are magnetic flux density vectors.

Take the dot product of with the first equation of (105)
and the dot product of with the second equation of (106).
Summing up the resulting equations and integrating over the
volume of interest yields

(107)

A similar manipulation of the other two equations in (105) and
(106) gives

(108)

We can subtract (107) from (108) to obtain

(109)

where , , ,
and are respective total current densities. The
analogy between (109) and (2) should be noted. If the boundary
conditions or material parameters are perturbed in the original
problem described by (105), an equation for the incremental
changes of the perturbed field and can be obtained as
follows:

(110)

which is analogous to (3). In (110), it is assumed that the ex-
ternal sources of the original problem are independent of the
changes occurring in the boundary conditions or the constitu-
tive parameters.

Using a formulation of Tellegen’s theorem in electromag-
netics similar to (110), Dyck and Lowther [65] have developed a
sensitivity expression with regard to changes in the constitutive
parameters and have applied it to an inverse problem—deter-
mining the shape of a defect in an aluminum block [65].

There is little doubt that the Tellegen approach to EM sen-
sitivity analysis can be applied to more general problems also
involving variations in the structure’s geometry.

VII. CONCLUSION

We have reviewed a variety of techniques for exact and
approximate sensitivity estimation with circuit- and EM-based
analysis. We have shown that adjoint-network and adjoint-vari-
able sensitivity analyses offer the best computational efficiency
and can drastically reduce the computer time required by
gradient-based optimization, tolerance, and yield analyses.
We have seen very limited applications of adjoint-based tech-
niques with full-wave EM analysis in high-frequency structure
CAD. There is a need for feasible and robust algorithms that
can be readily implemented in existing numerical analysis
algorithms in the time and frequency domains. EM simulators
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should no longer be viewed as “black boxes” linked to the
optimizers through a set of response functions. With clever use
of adjoint-sensitivity approaches, new features can be added
to them, which would provide accurate and low-cost gradient
information. Future developments in this area will greatly
benefit both research and commercial applications for fully
automated high-frequency structure design.
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