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Abstract -We present a microwave design framework 
far implementing an implicit and response residual space 
mapping (RRSM) approach. The RRSM surrogate is 
matched to the fme model. An intuitive “multiple cheese 
cutting” example demonstrates the concept For the flmt 
time, an ADS framework implements the space mapping 
(SM) steps interactively. A sir-sectian H-plane waveguide 
l t e r  design emerges after four iterations, using the implicit 
SM and RRSM optimization entirely within the design 
IrameworL We use spane frequency sweeps and do not use 
the Jacobian ofthe fine modeL 

In& Terms - CAD, fiter desigo, space mapping (SM), 
surrogate modeling, parameter extraction PE). 

I. INTRODUCTION 

Space mapping (SM) effectively connects fast coarse 
models to align with CPU-intensive fine models [1]-[4] in 
the design parameter space. The output space mapping 
(OSM) [5] addresses the residual misalignment of coarse 
and tine models in the response space. 

We describe a new design framework implementing 
OSM, specifically, a response residual space mapping 
(RRSM) approach. It diffen from the approach described 
in [5]. Here, we match the response residual SM 
surrogate with the fine model in a parameter extraction 
(PE) process. A novel and simple “multiple cheese- 
cutting” problem illustrates the technique. An ADS [6] 
design kamework exploiting explicit, implicit, and output 
SM is presented. Entirely in ADS, a good six-section H- 
plane waveguide filter [7][8] design is achievcd after only 
five EM simulations (Agilent HFSS [9])  or four iterations. 
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11. RESPONSE RESIDUAL SPACE MAPPING APPROACH 

A. Surrogate 

The response residual surrogate is a calibrated 
(implicitly or explicitly space mapped) coarse model plus 
an output or response residual. The residual is a vector 
whose elements are the differences between the calibrated 
coarse model response and the fine model response at 
each sample point after parameter extraction. The 
surrogate is shown in Fig. I .  Each residual element 
(sample point) may be weighted using a weighting 
parameter A, i = 1.. .m, where m is the number of sample 
points. 
Io the parameter extraction, we match the previous 

response residual SM surrogate (instead of the calibrated 
coarse model of [5]) to the fme model at each sample 
point. 

B. Multiple Cheese-cuffing Problem 

We develop a physical example suitable for illustrating 
space mapping optimization. Our “responses” are the 
weights of individual cheese slices. The designable 
parameter is the length of the top slice [see Fig. 2(a)]. A 
density of one is assumed. The goal is to cut through the 
slices to obtain a weight for each one as close to a desired 
weight s as possible. Note that we measure the lengfh 
from the right-hand end. We cut on the left-hand side. 

The coarse model involves 3 slices of the same height x, 

design paramctas 

*I 

response 
calibrated 

come model 

Fig. I ,  Illustration of the responsc residual SM swogate 
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namely, the preassigned parameter shown in Fig. 2(a). 
The lengths of the two lower slices are c units shorter than 
the top one. The optimal length x,’ can be calculated to 
minimize the differences between the weights of the slices 
and the desired weight s. We use minimax optimization. 
The responses of the coarse model are given by 
RCI =x.x;l, R,,=x.(x,-c).l and R,,=x.(x,-c).l. 

The fme model is similar but the lower two slices arefi 
andj i  units shorter, respectively, than the top slice pig. 
2(b)]. The heights of the slices are x, ,  x2 and x3, 
respectively. The corresponding responses of the fine 
modelareRP = x ,  ~xf.l,Rfl=xl.(xf-fi)l, andRp=x3.(xf 

We demonshate the implicit and response residual SM 
optimization process. We set c = 2 andfi =ji = 4. The 
specification s is set to IO. The heights of the slices are 
tixed at unity for the fine model, i.e., x, = q = n = 1. The 
coarse model preassigned parameter x is initially unity 
Fig. 3 shows thc first two iterations of the algorithm, step 
by step. The RRSM algorithm converges to the optimal 
tine model solution as shown in Fig. 4. 

-/i).l. 

ID. ADS SCHFMATIC DESIGN FWWORK 

Agilent ADS has a huge library of circuit models that 
can he used as “coarse” models. ADS also has a suite of 
easy-to-use optimization tools, e.g., random search, 
gradient search, Quasi-Newton search, discrete search, 
genetic algorithm. An S-parameter file SnP io ADS CM 

import data files (S-parameter8) in Dataset or Touchstone 
format. Here, n is the port number. Fig. 5 is a symbol of 
2-port S-Parameter File component S2P with terminals. 
Many EM simulators (“fine” model) such as Sonnet’s em 
[lo], Agilent Momentum [I l l ,  and Agilent HFSS [9] 
support Touchstone file format. Using this file, we import 
S-parameters and match them with the ADS circuit model 
(coarse model) responses in the PE procedure. The 
residual between tbe calibrated coarse model and fine 
model can also be obtained using the SnP file and 
MeasEqn (Measwemeat Equation) component. These 
major steps of SM are friendly for engineers to apply. 

ADSSchematic Design Framework for SM 

Step 1 Set up the coarse model in ADS schematic. 
Step 2 Optimize the coarse model using the ADS 

optimizer. 
Step3 Copy and paste the parameters into the 

parameterized fine model (Agileut Momentum, 
HFSS/Empipe3D [12], or Sonnet’s em). In 
Momentum, the fme model can also be generated 
using the Generatdpdate Loyout command. 
Simulate the fme model and Save the responses 
in Touchstone format (Agilent Momentum, 

Step 4 

... 
Fig. 3. “Multiple chese-cutting” problem: step-by-step implicit 
SM and RRSM optimization. 

Fig. 4. 
minimax direct optimization. Finally,xf =xf = 12. 

Parameter difference between the,RRSM design and 
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come model plus response residual) w.1.t. 
design parameters to predict the next fine 

Q r ; q T e r m  Term2 model design. 
Step 7 

We implement implicit and response residual SM 
optimization in the ADS schematic framework in an 
interactive way. The fme model is Agilent momentum, 
HFSS, or Sonnet's em. 

Update the fine model design and go to Step 4. 

- . 

- - - - 

Fig. 5.  S2.P (2-Port S-Parameter File) symbol with terminals. 

Step 5 

Step 6 

HFSS, or Sonnet's em) or Dataset (Momenhlm); 
check the stopping criteria; if satisfied, stop. 
Import the responses to the ADS schematic using 
SnP component under Dafa Items. set UP ADS 
(calibrated) coarse model or response residual 
SM -gate to match the SnP and 
run ADS optimizer to perform parameter 
exmction. He=, YOU may extract the C m e  
model design parameter or the preassigned 

to implement explicit (original or 
aggressive SM) or implicit space mapping, 
respectively. 
Predict the next fine model solution by 

Tv. H-PLANE FUTER DESIGN 

A. Implicit and Response Residual SMOptimiration Steps 

implicit SM and 
RRSM to design an H-plane filter, The 
iterations are employed: two iterations of implicit SM to 
drive the design to be close to the optimal solution; one 

we use the ADS framework 

implicit SM and RRSM iteration using weighting 
parameters 1, = 0.5, i = 1 ... m (1, 5 1 because the 
optimization algorithm has difficulty reoptimizing the 
surrogate with the full residual added); a second implicit 
SM and RRSM iteration with the full residual added. 

Explicit S M  transfer exmcted p k e t e r s  to 
MATLAB [I21 (or other scientific computing 
tool) and calculate a prediction based on the 

Implicit S M  reoptimize the calibrated coarse 
model w.r.t. design parameters to predict the 
next fme model design, andor, 
RRSM reoptimize the surrogate (calibrated 

algorithm in [1][2], or, 

B. Sir-Section H-plane Waveguide Filter 

The six-section H-plane waveguide fdter [7][8] is 
shown in Fig. qa). The design parameters are the lengths 
and widths: L,, L2, L,, W,, W,, W,, W,. Design 
specifications are lSlll 9 0.16 for frequency range 5.4- 
9.0~3%; lSlll t 0.85 for eequency 09 5.2GHz; ISIII t 0.5, 
for frequency O? 9.5GHz. We use 23 sample points. 

A waveguide with a cross-section of 1.372 x 0.622 
inches (3.485 x 1.58 cm) is used. The six sections are 
seuarated bv seven Holane septa, which have a finite 
thickness ok 0.02 inch i  (O.SOSm"& The coarse model 
consists of lumped inductances and waveguide sections. 
There are various approaches to calculate the equivalent 
inductive susceptance corresponding to an H-plane 
septum. We utilize a simplified version of a formula due 
to Marcuvie [I41 in evaluating the inductances. The 
coarse model is simulated using ADS [6] as in Fig. 6@). 

We the select waveguide width of each section as the 
preassigned parameter to calibrate the coarse model. The 
f?equency coefficient of each inductor, for convenience 

(a) PI, is also harnessed as a preassigned parameter to 
compensate for the suceptance change. The fine model 

2.5 minutes on an Intel Pentium 4 (3 GHz) computer with 
1 GB RAM and m i n g  in Windows XP Pro. Fig. 7(a) 
shows the fine model response at the initial solution. Fig. 

coarse model. algorithm using the Agilent HFSS simulator. Since no 
Jacobian is needed, the total time taken for five fme model 

k 

w,,, m2, exploits W e n t  HFSS PI. One fWuency sweep takes 

7(b) shows the fhe model response after running the 

ma Rmjl 

- - - - - - - - - - 
@) 

~ i ~ . 6 .  (a) ~ i x - ~ ~ n i ~ ~  H - ~ I ~ ~  waveguide filter @) ADS 
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TABLE I 

H-PLANE WAVEGUIDE FILTER 
Om”&- PARAMETER V a n s  OF THE SIX-SECTION 

Solution 
reached via 

RRSM 

Initial 
solotion 

VI 0.555849 0.499802 

w2 0.519416 0.463828 
w3 0.5033 0.44544 
W4 0.49926 0.44168 
LI 0.591645 0.630762 

L1 0.660396 0.644953 

L3 0.67667 0.665449 
all values are in inches 

simulations is 15 minutes on an Intel P4 3 GHz computer. 
Table I shows the initial and optimal design parameter 
values ofthe six-section H-plane waveguide filter. 

V. CONCLUSIONS 

We present a response residual SM (RRSM) modeling 
technique that matches the response residual SM surrogate 
with the fme model. A new “multiple cheesecutting” 
design problem illustrates the concept. Our approach is 
implemented entirely in the A D S  framework. A good H- 
plane filter design emerges after only five EM simulations 
using the implicit and RRSM with sparse frequency 
sweeps and no Jacobian calculations. 
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