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Abstract—An electromagnetic feasible adjoint sensitivity tech-
nique (EM-FAST) has been proposed recently for use with fre-
quency-domain solvers . It makes the implementation of the ad-
joint variable approach to design sensitivity analysis straightfor-
ward while preserving the accuracy at a level comparable to that of
the exact sensitivities. The overhead computations associated with
the estimation of the sensitivities in addition to the system analysis
are due largely to the calculation of the derivatives of the system
matrix. Here, we describe the integration of the EM-FAST with
two methods for accelerated estimation of these derivatives: the
boundary-layer concept and the Broyden update. We show that the
Broyden update approach (Broyden-FAST) leads to an algorithm
whose efficiency is problem independent and allows the computa-
tion of the response and its gradient through a single system anal-
ysis with practically no overhead. Both approaches are illustrated
through the design of simple antennas using method of moments
solvers.

Index Terms—Adjoint sensitivities, antenna design, Broyden up-
date, design methodology, method of moments (MoM), optimiza-
tion, sensitivity.

I. INTRODUCTION

T RADITIONAL full-wave electromagnetic (EM) solvers
do not compute the gradient of the response (e.g., -pa-

rameters, input impedance or antenna gain) with respect to
the design parameters, which relate to the geometry and the
materials of the structure. Commercial high-frequency CAD
software typically resorts to finite-difference approximations
of the response sensitivities, which are numerically inefficient
but simple to implement with existing EM solvers. To compute
the response and its sensitivities, such an approach requires
a minimum of full-wave analyses, being the number
of the design parameters. This approach is also known as the
perturbation approximate sensitivity technique (PAST) [1].
Higher-order approximations may also be used at the expense
of an increased number of simulations. They are feasible when
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sufficient database for the system response in the design param-
eter space becomes available. Such response data, for example,
would gradually accumulate during optimization.

It is possible to derive exact sensitivity expressions for
the state variables of a system by directly differentiating its
equations with respect to the desired design parameters. For
example, in [2], a mixed potential integral equation is developed
for the current density derivatives with the method of moments
(MoM) applied to planar multilayer structures. This equation,
when solved together with the original electric field integral
equation, yields both the currents and their derivatives with
respect to the design parameters. Such an approach—generally
referred to as sensitivity analysis via direct differentiation—can
be applied to both steady-state [3], [4] and dynamic [5] systems.
For each design parameter, an additional linear system analysis
is required to obtain the respective response derivative. Each
of these analyses is characterized by the same system matrix,
which is also identical with the original system matrix.

A more efficient design sensitivity analysis is provided by the
adjoint variable method [3]–[7]. It reduces the computational
overhead of the sensitivity computation to just one additional
linear system analysis where the system matrix is the transpose
of that of the original problem. Thus, its computational overhead
is times smaller than that of the direct differentiation approach
and is practically independent of the number of design param-
eters . Adjoint-based design sensitivity analysis of microwave
structures has been first formulated in terms of circuit concepts
rather than field concepts, and it is referred to as the adjoint net-
work method [7]–[12].

To obtain exact sensitivities, both the direct differentiation
and the adjoint-variable techniques require the analytical deriva-
tives of the system matrix with respect to the design parameters.
This constitutes a major difficulty in applications with full-wave
EM solvers for research or commercial design software. Re-
cently, adjoint variable approaches were used with the finite-el-
ement method (FEM); see, for example, [13]–[15]. The FEM is
well suited for exact sensitivity calculations because of the ana-
lytical relation between the coefficients of the FEM matrix and
the coordinates of the vertices of the finite element grid. This
analytical relation, however, is not trivial. Its implementation in
the computation of the derivatives of the FEM system matrix
with respect to any geometrical or material design parameter
is in practice difficult and, to our knowledge, has not been ex-
ploited yet in commercial high-frequency CAD software.

A similar difficulty exists with the exact sensitivities for the
MoM. The different varieties of MoM techniques rely on spe-
cific Green’s functions, as well as different basis and weighting
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functions. The dependence of the system matrix coefficients on
possible geometry perturbations is involved and case specific
[2], [16].

In summary, exact sensitivities appear to be often impractical
in full-wave EM analysis for two reasons: (1) the analytical pre-
processing is involved and solver specific; (2) the implementa-
tion requires thorough reworking of the analysis engine. The
second requirement is especially unattractive in the develop-
ment of commercial software.

Recently, a feasible adjoint-sensitivity technique (FAST)
for applications with full-wave EM solvers (EM-FAST) has
been proposed [17]. It uses finite differences to approximate
the derivatives of the system matrix. Its implementation in a
versatile CAD environment is straightforward since it requires
minor additions to existing frequency-domain computational
algorithms. Its accuracy is comparable to that of the analytical
exact sensitivities. Its overhead is mostly due to the finite-differ-
ence computation of the derivatives of the system matrix, and it
is equivalent to that of the exact sensitivity calculations. Here,
we propose the use of two techniques—the boundary-layer
concept and the Broyden update—to enhance the speed of the
EM-FAST, which is crucial in gradient-based optimization.
There is a certain loss of accuracy; however, the approximated
sensitivities are sufficiently accurate to efficiently guide the op-
timization toward the optimal design. In applications requiring
higher accuracy of the response gradient such as tolerance or
yield analysis, the original EM-FAST may be preferable.

We start with a brief outline of the EM-FAST [17] and its
computational requirements. We then discuss ways to accelerate
its performance through the boundary layer concept (BLC) and
the Broyden update. The resulting algorithms offer significant
CPU time reduction in comparison with the original EM-FAST
on the order of the number of design parameters . The savings
in comparison with the traditional finite-difference gradient ap-
proximation applied directly to the set of responses (e.g., PAST)
are drastic, especially in the case of multiple design variables.

II. FEASIBLE ADJOINT SENSITIVITY ANALYSIS

A. Definitions and Notations in Adjoint Sensitivity Analysis

Consider the system of complex-valued equations arising
form the discretization of a linear EM problem

(1)

where, is the vector of design parameters.
These parameters typically have real values related to the ge-
ometry and the materials of the structure. is
the state variable vector, e.g., complex-valued current distribu-
tion in the MoM; is the excitation vector; is the system
matrix whose complex coefficients depend on the geometry and
materials.

The objective of sensitivity analysis is to determine the gra-
dient of a properly defined response function at the
current solution of (1) with respect to the design parameters

(2)

We assume that the response is a scalar function, which is dif-
ferentiable in and . We define the gradient operator as a row
operator

(3)

When the gradient operator acts on a vector, e.g., , the result
is a matrix

...
... (4)

The optimization problem is formulated as

(5)

where is the objective function to be minimized, and is the
vector of optimal design parameters. Gradient-based optimizers
require both the response of the current design and its sensi-
tivity (3) in order to predict the next design iterate.

The sensitivities of the objective function are obtained as [18]

(6)

where is the solution of the complex adjoint problem

(7)

in which the adjoint excitation is defined by

... (8)

Here, and denote the real and imaginary parts, respectively,
of a complex variable. The gradient reflects the explicit
dependence of on . The matrix would typically be an-
alytically available. In fact, the excitation is often insensitive to
changes in the design parameters, i.e., . For example,
in a microstrip circuit, the excitation is defined at ports located
at feed lines. If the design parameter variations affect neither the
dielectric constant nor the height of the substrate, nor the width
of the feed line, the excitation remains unchanged.

In is a constant vector representing the solution at
the current design, i.e., (6) can be written explicitly as

(9)

The sensitivity expression (6) is a generalization of the well-
known, linear, real-system sensitivity formula [3], [17].

As evident from (6) and (7), the adjoint approach provides the
gradient of the response with respect to all design parameters
with just one additional system analysis (7) whose system ma-
trix is simply related to that of the original problem (1). When

factorization of is used to solve (1), the factors of
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are easily obtained by rearranging the factors of . Thus, the
additional system analysis (7) is practically avoided, the over-
head being due only to the forward-backward substitutions. In
the case of iterative solvers—often used when is large and/or
sparse—a complete additional system analysis seems impera-
tive.

B. The Feasible Technique

The matrices , which we refer to as
derivative matrices, may be analytically available, as is the case
with the FEM. Then the sensitivities obtained with (9) are exact.
The calculation of an analytically available matrix at
the current design is computationally equivalent to a -matrix
fill; therefore, at each design iteration, the equivalent of
matrix fills is needed. Thus, the advantage of analytically avail-
able derivative matrices is in the accuracy of the derivative esti-
mation rather than in its computational efficiency. When the
factors of the system matrix are available from the analysis of
(1), the computation of the derivative matrices determines the
overhead associated with the sensitivity analysis since it is far
more computationally demanding than the forward-backward
substitutions when solving the adjoint problem (7). When the
system equations of (1) and (7) are solved iteratively, the ad-
ditional (adjoint) system analysis determines the computational
overhead. Even in this case, the reduction of the time to estimate
the derivative matrices is desirable.

In full-wave EM analysis usually the derivative matrices
, are not analytically available or they are

too complicated to obtain for the purposes of general and versa-
tile design software. Then, we can resort to the finite-difference
approximation [17], which requires

additional -matrix fills if forward (or backward) finite
differences are used. The associated computational overhead is
equivalent to that of the exact sensitivity estimation discussed
above. The important advantage here is that the implementa-
tion with existing software is simple. The technique does not
require any analytical preprocessing, which often restricts the
versatility of the algorithm.

We have investigated the accuracy of the sensitivity estima-
tion with the feasible adjoint technique [17] and we have found
that it is excellent for relative perturbations between
0.5% and 2%. The relative error in comparison with the exact
sensitivities is well below 1% for a broad range of values of the
design parameters, close to or far from the nulls of the sensi-
tivity curves.

A detailed comparison between the computational require-
ments of the EM-FAST and the commonly used finite differ-
ences applied directly to the response is made in [17]. Here, we
only note that the EM-FAST reduces the number of required
full-wave analyses by a factor of being the number of
design parameters. However, there are overhead computations
associated with the additional matrix fills in order to compute

. In certain cases, e.g., electrically small
problems, the MoM matrix fill may account for a significant por-
tion of the CPU time required by the overall analysis (matrix
fill plus linear system solution). Such an overhead should not
be overlooked in a sequence of repetitive analyses performed
during optimization.

III. ACCELERATED OPTIMIZATION WITH APPROXIMATED

ADJOINT SENSITIVITIES

There are two techniques which can lead to faster calculation
of the derivative matrices. The first one is the boundary-layer
concept (BLC) first proposed by Amari [19] in the sensitivity
analysis with the direct differentiation method. The accelera-
tion offered by the BLC depends on the relation between the re-
spective design parameter and the geometry of the structure as
we explain below. Its computational requirements are dependent
on the number of design parameters . It requires modifications
of existing EM analysis software, which relate to meshing and
matrix building subroutines. Its advantage is that it yields sen-
sitivity estimates of very good accuracy.

The second approach uses Broyden’s update to iteratively
compute approximate derivative matrices. This approach
reduces the overhead drastically since its computational re-
quirements—negligible compared to a matrix fill—practically
do not depend on . The Broyden-update approach does not
require any modifications of the EM analysis algorithms.

A. BLC With the EM-FAST

The BLC can be applied with solvers which allow nonuni-
form discretization and/or unstructured grids, e.g., the FEM
and the MoM. The idea is to perturb a certain geometrical
parameter (the design parameter ) of a structure by respective
deformations of as few grid elements as possible. This makes
most of the -matrix coefficients insensitive to the perturba-
tion. Consequently, the matrix derivative is mostly
sparse and only few nonzero coefficients need to be calculated.
This is in contrast with the conventional EM-FAST where full
remeshing is applied to the perturbed structure, which results
in a full matrix.

We present two examples, which illustrate the BLC. Through
them, we investigate the accuracy of the modified EM-FAST
algorithm which exploits the BLC.

1) A Dipole of Finite Thickness: We analyze the sensitivity
of the input impedance of a dipole with respect to the nor-
malized length of the dipole . The dipole is dis-
cretized into segments whose normalized length is uniform and
equal to [see Fig. 1(a)]. Here, is the number
of segments. In this example, . This example is suit-
able for design sensitivity tests because the input impedance
of a dipole is highly sensitive to its length, especially close to
resonance. The thickness of the dipole is represented by the
radius of its cross-section, which is constant and set to

. The derivatives and are calcu-
lated, where and . We use the sym-
metry of the structure and analyze half of it. The analysis algo-
rithm is based on Pocklington’s equation, which is discretized
using pulse basis functions and a point-matching technique [20].
Magnetic frill excitation is applied.

Fig. 1(b) shows the perturbed geometry corresponding to a
change of length at the th design iteration where only
the boundary-layer (edge) segments are changed accordingly.
The resulting derivative matrix has only one row and
one column of nonzero elements. Fig. 1(c) shows the same pa-
rameter perturbation this time realized with the conventional
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Fig. 1. Perturbing the length of the dipole at the kth iteration with and without
a boundary layer.

EM-FAST approach. Since the centers of all segments in the
perturbed structure change their mutual positions, the
matrix is dense.

The input impedance sensitivities are calculated in four dif-
ferent ways. First, the forward finite differences are applied di-
rectly to the response

(10)

For each , the MoM solver is invoked twice to perform the
analysis at , and at , where .
The sensitivity of is evaluated in the range from 0.3 to
1.2 (see Figs. 2 and 3).

Second, the input impedance sensitivity is computed with the
conventional EM-FAST [17]. The derivative matrix
is dense and its coefficients are calculated using forward fi-
nite differences applied to each matrix element

. This requires numerical integrations. The incre-
ment is again set at . The derivative
matrix is then used in (9) to compute and .
The resulting sensitivity curves are used as a reference as they
are the closest to the exact sensitivities [17].

The third and the fourth derivative estimations use the ad-
joint technique with the BLC. The matrix is very
sparse and its computation is fast as it involves only numer-
ical integrations. The perturbations are set so that the length of
the edge elements is increased by

and for the
third and the fourth analysis, respectively. Some accuracy is sac-
rificed as is clear from Figs. 2 and 3; however, it is sufficient for
the purposes of gradient-based optimization. The slight deteri-
oration in accuracy is due to the nonuniformity of the segment

Fig. 2. Derivative of the input resistance of the dipole with respect to its
normalized length.

Fig. 3. Derivative of the input reactance of the dipole with respect to its
normalized length.

size introduced by the edge-only perturbation. We expect such
deterioration to be less when higher-order basis and test func-
tions are used such as triangular functions for wire antennas or
rooftops for planar structures.

We now proceed with the optimization of the dipole for an
input impedance of . The objective function is de-
fined as

(11)

We allow two geometrical parameters to vary: the normalized
dipole length and the normalized dipole diameter .
The vector of design parameters is thus . The
following constraints are imposed:

(12)

since this problem is known to be nonunique. The BLC is used
to compute the matrix derivative . Notice, however,
that it cannot be exploited in the case of the design parameter
because a change in the antenna diameter affects all -matrix
coefficients. The matrix is computed with the con-
ventional EM-FAST technique, which requires a full matrix fill.
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TABLE I
OPTIMIZATION OF THE INPUT IMPEDANCE OF THE DIPOLE

Fig. 4. Geometry of the microstrip-fed patch antenna.

A similar situation would arise in the design of another wire an-
tenna, a Yagi–Uda array. While the BLC is very useful when
a design parameter represents the length of a wire, it can offer
little or no computational savings if the design parameter is a
separation distance between wires. Its efficiency is case specific.

The initial design is where the ob-
jective function is . After seven iterations, an
optimal solution is found at with

, which corresponds to an input impedance of
. The progress of the optimization is

summarized in Table I. The gradient-based optimization routine
of MATLAB1 fmincon is used.

2) A Microstrip-Fed Patch Antenna: The EM-FAST is also
integrated with an in-house MoM solver, which performs anal-
ysis of layered structures. The analysis technique is based on
the electric field integral equation. Here, we show an application
with the BLC to the optimization of a microstrip-fed rectangular
patch antenna. The length and the width of the patch are
optimized for a maximum real input impedance. The objective
function to be minimized is defined as

(13)

The geometry is shown in Fig. 4. The patch is printed on a
substrate of relative dielectric constant and height

mm. The initial design is given by mm
and mm. The operating frequency is set at 2 GHz.

1MATLAB is a registered trademark of The MathWorks, Natick, MA.

Fig. 5. BLC and the perturbed mesh related to the design parameter x .

Fig. 6. Progress ofR = <Z of the patch antenna during the optimization.

TABLE II
DESIGN PARAMETERS OF THE PATCH AT EACH ITERATION

The BLC is applied as illustrated in Fig. 5. The calculation
of the derivative matrices and is sig-
nificantly faster than one matrix fill. A matrix fill is equiva-
lent to integrations, where and show
the number of discrete steps along the length and the width of
the patch, respectively. On the other hand, the estimations of

and with the BLC are equivalent to
and numerical integrations, respec-

tively.
The progress of the objective function is shown in Fig. 6 in

terms of . The changes of the design parameters with each
design iteration are listed in Table II.

B. The Broyden-Update Approach to Matrix Derivative
Estimation

The Broyden update is a classical rank-one formula proposed
by Broyden [21] for the approximation of the Jacobian
of a vector function . If the approximated Jacobian
is denoted as at the th iteration, Broyden’s formula is
written as

(14)
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Fig. 7. Geometry of the Yagi–Uda array.

TABLE III
OPTIMIZATION OF THE INPUT IMPEDANCE OF THE YAGI–UDA ARRAY WITH BROYDEN-FAST

where is the increment vector in the design
parameter space. It has elements corresponding to the incre-
ment of each design parameter. Broyden’s update has been used
in a number of applications such as gradient-based optimization
where analytical sensitivities are not available [22], the aggres-
sive space mapping technique [23], etc.

We apply Broyden’s update to estimate iteratively the deriva-
tive matrices , which are subsequently
used in the sensitivity expression (9). We refer to this modified
adjoint-based technique as Broyden-FAST. In the implementa-
tion of (14), every complex-valued matrix coefficient

is a nonlinear function of the design parame-
ters. We define as a vector which consists of the real and imag-
inary parts of all elements of the matrix, and as a matrix
which consists of their derivatives. To construct the vector , we
stack all the columns of in a vector followed by the vector
formed by all columns of . Thus, when is an ma-
trix, is a vector with elements. A row of the matrix
contains the derivatives of the respective element of the vector

with respect to all design parameters. Therefore,
is a matrix.

The approximate derivative matrices generated by the
Broyden formula are typically less accurate [22] than those
obtained by perturbations in the EM-FAST. Our experience
shows that as the optimization proceeds, the response sensitivity
estimates produced by Broyden-FAST converge toward the
exact sensitivities. As a precaution, in the case of a diverging
objective function, the algorithm defaults to the conventional
EM-FAST technique.

The advantage of the Broyden update is that it is problem-in-
dependent and does not require any modifications of the analysis
algorithm. Moreover, its computational requirements are negli-
gible in comparison with the EM-FAST. The response and its
gradient are obtained by a single system analysis with practi-
cally no overhead regardless of the number of design parame-
ters .

The potential of the Broyden update is demonstrated by two
examples: the optimization of a Yagi–Uda array and the opti-
mization of a microstrip-fed patch antenna.

1) Optimization of a Yagi–Uda Array: An initial design of
the six-element Yagi–Uda antenna is given in Fig. 7. All dimen-
sions are normalized with respect to the free-space wavelength

. We vary the normalized lengths of the reflector and the driven
element, and , as well as the normalized
separation distances and . Thus, the
vector of design parameters is . The ob-
jective function is set as in (11) with . The progress of
the optimization is summarized in Table III where the changes
of the design parameters, the input impedance and the objective
function are recorded at each iteration. An optimal solution is
reached in nine iterations.

At the th design iteration, we update the four derivative
matrices , with Broyden’s formula and
use them to compute the response sensitivities according to
(9). The response sensitivities are then used by the optimiza-
tion algorithm (fmincon) to produce the next design iterate.
The Broyden-FAST sensitivities are then compared with the
sensitivities calculated off-line where the derivative matrices
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Fig. 8. Sensitivity of the objective function with respect to the length of the
reflector during the optimization of Z of the Yagi–Uda antenna.

Fig. 9. Sensitivity of the objective function with respect to the length of the
driven element l during the optimization of Z of the Yagi–Uda antenna.

are obtained by the finite-difference approach of our original
technique, the EM-FAST [17]. The sensitivity curves are
plotted in Figs. 8–11. At the first iteration only, we compute the
derivative matrices using our original approach with forward
finite differences and 1% perturbation over the initial design
parameters and assign those to . That is why, at the first
iteration, the Broyden-FAST sensitivities and the EM-FAST
sensitivities are identical. For all subsequent design iterations,
Broyden-FAST uses (14). It is evident that our approach based
on the Broyden update produces sufficiently accurate sensi-
tivity results that converge toward the exact sensitivities as the
optimization progresses.

To quantify the accuracy of the derivative matrices produced
by the Broyden update in the FAST, we compute their global
relative errors in norm

(15)

Fig. 10. Sensitivity of the objective function with respect to the separation s
during the optimization of Z of the Yagi–Uda antenna.

Fig. 11. Sensitivity of the objective function with respect to the separation s
during the optimization of Z of the Yagi–Uda antenna.

Fig. 12. Global error in the ZZZ-matrix derivative estimates of Broyden-FAST
and EM-FAST.

Here, the exact derivative is computed using an analytical for-
mula valid for this specific MoM solver [24]. Note that the error
estimate (15) operates on complex matrix elements. The errors
associated with the normalized separation distances and
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Fig. 13. Sensitivities of the objective function in the optimization of the Yagi–Uda antenna using the direct Broyden update: comparison with reference sensitivities
computed with the EM-FAST.

are plotted in Fig. 12. For comparison, we also plot the global
errors of the matrix derivatives of the forward finite differencing
in the original FAST computed for the same design iterates.
As expected, the original FAST is robust while the accuracy of
the Broyden estimates may vary throughout the optimization.
These variations lead to the small (but observable) differences
between the EM-FAST response derivatives and the respective
Broyden-FAST estimates (see Figs. 10 and 11). Notice that close
to the optimum solution where the optimizer takes very small
steps (see Table III), the Broyden update may not perform very
well for all design parameters, e.g., , due to the nearly iden-
tical -matrices of the consecutive design iterates; see (14). If
necessary, this can be avoided by defaulting to EM-FAST when
sufficiently small value of the objective function is achieved.
The improved accuracy of the sensitivity estimates may thus im-
prove the convergence of the optimization at its final stages. The
hybrid approaches, however, are not a subject of our current dis-
cussion.

The Broyden update, of course, can be applied directly to
the objective function . However, the objective function usu-
ally exhibits strongly nonlinear behavior and sharp sensitivities
with respect to the designable parameters. At the same time, the
Broyden formula is based on a local linear approximation of the
function and thus it performs better with only mildly nonlinear
functions. The -matrix elements, on the other hand, are smooth
functions of the shape or material parameters. In fact, the ma-
jority of the MoM matrix elements are almost insensitive to

shape perturbations except for the diagonal (self-impedance) el-
ements due to the intrinsic dependence on the distance between
observation and integration points. Thus, when the Broyden up-
date is applied at the level of the system matrix, better conver-
gence of the sensitivity estimates and of the overall optimization
process is expected.

In support of this observation, we repeat the Yagi–Uda
antenna design, this time using Broyden’s update directly at the
level of the objective function in order to estimate its derivatives
(direct Broyden approach). We keep the optimization set-up
identical to that before: (1) the initial design is as shown in
Fig. 7; (2) the objective function is defined as in (11) with

; (3) the same optimization function fmincon of
MATLAB is used; (4) the stop criteria
and are the same; and (5) the value of
the response sensitivity at the first iteration is supplied by the
EM-FAST estimate. The direct-Broyden derivatives are used
by the optimizer to determine the subsequent design iterates.
We also compute the objective function derivatives with the
EM-FAST technique off-line in order to supply reference values
for comparison.

The direct-Broyden and the reference sensitivity curves are
plotted in Fig. 13 for all four designable parameters. The
progress of the optimization is summarized in Table IV. It is
evident that the direct-Broyden derivatives do not converge
well toward the reference values, and the objective function
converges to a different (worse) solution than that of the
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TABLE IV
OPTIMIZATION OF THE INPUT IMPEDANCE OF THE YAGI–UDA ARRAY WITH DIRECT BROYDEN UPDATE OF THE OBJECTIVE FUNCTION

Fig. 14. Progress of the objective function during the optimization of the microstrip-fed patch antenna.

Broyden-FAST optimization. This is due mostly to three inter-
related factors: (1) the objective function is very sensitive to the
designable parameters (especially and ); (2) the Broyden
sensitivity estimation can not track well such a rapidly changing
function; (3) the incorrect sensitivity information misleads the
optimizer. Possible solutions to the problems encountered with
the direct Broyden sensitivity analysis are provided by the trust
region optimization approaches. This topic, however, is outside
of the scope of our work. With this example, we only illustrate
the improved convergence of both the sensitivity analysis and
the optimization when the Broyden update is applied at the level
of the system matrix.

2) Optimization of a Microstrip-Fed Patch Antenna: We
now apply the Broyden-FAST to the optimization of the patch
antenna in Fig. 4. The length and the width of the patch
are optimized for a minimum magnitude of the reflection
coefficient. Thus, the objective function to be minimized is

(16)

Here, is the input impedance of the antenna, and is the
characteristic impedance of the feeding microstrip line, which

approximately equals 50 in this example. The operating fre-
quency is 2 GHz. The initial values of the designable parame-
ters are mm and mm. The patch is meshed
with rectangular segments. The number of segments along the
length and the width of the patch are 11 and 17, respectively.
One segment is used along the width of the feeding microstrip
line. The optimization is carried out using the fmincon function
of MATLAB.

We compute the sensitivities of the objective function with
three methods: 1) the direct-Broyden update; 2) the traditional
EM-FAST which employs finite differences to approximate the
derivative matrices (without a boundary layer); and 3) the pro-
posed Broyden-FAST which employs the Broyden update at the
level of the system matrix. This time, we run three optimiza-
tions, each being driven by the respective sensitivity analysis
technique. The three objective functions are plotted in Fig. 14
versus the optimization iteration number. The design parameters
versus the iteration number are plotted in Fig. 15. It is clear from
both figures that the direct-Broyden method fails in meeting the
optimum design while the other two methods, EM-FAST and
Broyden-FAST, are capable of achieving the optimum design.
The obtained optimal patch dimensions are mm
and mm.
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Fig. 15. Progress of the design parameters during the optimization of the microstrip-fed patch antenna.

The reason that Broyden-FAST succeeded where the direct-
Broyden approach failed is similar to the reason outlined in
the previous example with the Yagi–Uda antenna. The direct-
Broyden approach is incapable to represent properly the fast
variations in the sensitivities especially close to an optimal so-
lution, which is associated with a resonance. On the other hand,
Broyden-FAST deals with the sensitivities of the -matrix ele-
ments, which are slowly varying functions unaffected by reso-
nance.

IV. CONCLUSION

We propose a novel technique for accelerated gradient based
optimization. It integrates the recently developed feasible
adjoint sensitivity technique for full-wave EM analysis [17]
with methods for accelerated estimation of the derivatives
of the system matrix. We consider two such methods: the
boundary-layer concept and the Broyden update, and investi-
gate their accuracy and versatility. We show that the Broyden
update of the matrix derivatives is efficient, problem-inde-
pendent and sufficiently accurate for the purpose of gradient
based optimization. When integrated with our feasible ad-
joint sensitivity technique, it allows the computation of the
system response and its gradient in the design parameter space
through a single system analysis. The overhead associated
with the gradient estimation is negligible in comparison with
the computational requirements of the full-wave analysis.
Our Broyden-FAST technique combines the efficiency of the
adjoint-variable sensitivity analysis with the simplicity of the
Broyden update. Its implementation is straightforward and does
not require any analytical preprocessing.
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