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Space Mapping: A Novel Design
and Modeling Methodology
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Abstract—We review the Space Mapping (SM) and the
SM:based surregate (modeling) concepts and their
‘applications im engineering modeling and design
optimization. The aim of SM is to achieve a satisfactory
solution with a minimal number of computationally
‘expensive “fine” model evaluations. SM procedures
iteratively update and optimize surrogates based on a
fast physically-based “coarse” model. We review the
original, aggressive and implicit SM (ISM) techniques. A
“cheese-cutting” problem Hlustrates the ISM concept,
Significamt recent practical applications are reviewed.

Index  Terms—CAD, design
simulation, engineering optimization, filter design,
optimization, parameter extraction, space mapping

I. INTRODUCTION

PTIMIZATION technologies have been used by

engineers for device, component and system
modeling and CAD for decades [1]. The goal for
component design is to determine physical parameters
of components to satisfy design specifications.
Traditional optimization techniques [2,3] directly
exploit simulated responses and possible response
derivatives.

Circuit-theory based CAD tocls using empirical
device models are fast  Electromagnetic (EM)
simulators should be exploited in the optimization
process but the higher the smulation fidelity
(accuracy) the more expensive direct optimization.

Schemes combining the speed and maturity of
circuit simulators with the accuracy of EM solvers are
desirable. The exploitation of iteratively refined
surrogates of fine, accurate or high-fidelity models,
and the implementation of space mapping (SM)
methodologies address this issue. Through a space
mapping, a suitable surrogate can be obtained: faster
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than the “fine” model and at least as accurate as the
“coarse” model on which it is based (see Fig. 1)
Table I shows the classification of the models:

We review the state of the art of SM [4]: the
original SM [5], the aggressive SM (ASM) [6] and
recent implicit SM (ISM) optimization [7]. We
indicate recent. implementations of SM technology.

. REVIEW OF SPACE MAPPING

The first algorithm (original SM) was introduced in
1994 [5]. A linear mapping is assumed between the
coarse and fine parameter spaces. It is evaluated by a
least squares solution of the linear equations resulting
from associating corresponding points (data) in. the
two spaces. Hence, the surrogate is a piecewise
linearly mapped coarse model.

The ASM approach [6] eliminates the simulation

TABLEI
CLASSIFICATION OF MODELS
Model Classification
Companion coarse
Low Fidelity coarse
High Fidelity fine
Empirical coarse
Physics-based coarse of fine
Device under Test fine
Electromagnetic fine or coarse
Simulation fine or coarse
Computational fine or coarse
Mapped Coarse Model surrogate
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Fig. 1. Linking companion coarse (empirical) and fine (EM) models
through a mapping.
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"Fig. 2. Nllusiralion of ISM

‘overhead of the original SM [5] by immeédiately
exploiting éach fine model iterate. This iterate,
determined by a quasi-Newton step, in effect
‘optimizes the (current) surrogate model.

‘

L. IMPLICIT SPACE MAPPING OPTIMIZATION [7]

Implicit SM (ISM) selects auxiliary (preassigned)
parameters, €.g., dielectric constant and substrate
height, to match the coarse and fine models. They are
varied in the coarse model only. See Fig. 2. With
these parameters fixed, the calibrated coarse model
‘(the surrogate) is reoptimized and the optimized
parameters are assigned to the fine model This
process repeats until the fine model response is
sufficiently close to the target response. The idea of
using preassigned parameters was introduced in 8]
within an expanded SM design framework,

The ISM algorithm is outlined as follows.

Step 1 Select candidate’ preassigned parameters.

Step'2  Setj=0and initialize.

Step 3 Obtain the optimal (calibrated) coarse model
parameters.

Step 4 Assign the coarse model parameters to the

' fine model parameters.

Step 5 Simulate the fine model.

.Step6 Terminate if a stopping criferion (eg.,
response meets specifications) is satisfied.

Step7 Calibrate the coarse model by extracting
(parameter extraction step) the prea551gned '
parameters.

Step 8 Incrementjand go to Step 3.

The ISM process ¢an be demonstrated by a simple
-example, the cheese-cutting problem, depicted in Fig.
3. The goal is to deliver a segment of cheese of

width=13
coarse model length =10, — ‘@lmﬁe

A

P length = 10 _a

- Fig. 3. Coarse and finc models for the “cheese-cutting” problem in
the first iteration.

fine model

weight 30 units (target “response™). The “coarse”

‘model is 2 cuboidal block (the top block in Fig, 3). A

unity density and a cross-section of 3 by 1 units are
assumed. -The “fine” model has a corresponding
cuboidal shape with a defect of & missing units of
weight (the lower block in Fig. 3),

We select the width of the coarse model as a

preassigned parameter (Step 1). We set the counter to

0 and start the ISM algorithm (Step 2). - We optimize
the coarse model (Step 3). A length of 10 units will
give 30 units of weight for the coarse model An
unbiased cut of the same length (Step 4) in the fine
model weighs 24 units (Step 5, fihe model
evaluation). The specification is not satisfied (Step 6).
The width (preassigned parameter) of the (coarse)
model 1s shrunk to 2.4 units to match the fine model
weight. (Step 7, parameter extraction). We increase

"the counter {Step 8) and go back to Step 3. A

reoptimization of the length of the calibrated coarse
model (the surrogate) is performed. The new length
of 12.5 units 15 assigned (Step 4) to the irregular block
(fine model). We continue until the irregular block is
sufficiently close. to the desired weight of 30 units.
The error reaches 1% after 3 iterations.

ISM is effective for microwave modeling and
design using full-wave EM simulators. This technique
is more easily implemented than [8]. There are no
matrices to keep track of A high-temperature
superconducting (HTS) coupled-line microstrip filter
is designed within Agilent ADS [9] and Momentum
[10] or Sornet’s em [11].

Fig. 4 shows the HTS filter {6, 12] A lanthanum
aluminate. substrate i 1s used. Design parameters are Xy
=L L L3 S, $: 8] . Lo = 50 mil, thickness H = 20
mil, ¥ = 7 mil, dielectric constant & — 23.425, loss
tangent = 3x107%; the metalization is considered
lossless. Design specifications are | Sy | = 0.95 for
4.008 GHz < o < 4.058 GHz |8y < 0.05 for o <
3.967 GHz and @ > 4.099 GHz.

Our Agilent ADS [9] coarse model consists of
empirical models for single and coupled microstrip
transmission lines, with ideal open stubs. TFig. 4
indicates 4 symmetrical structure. The fine model is
simulated first by Agilent Momentum [10]. The
algorithm requires 2 iterations (3 fine model
simutations). The total time taken is 26 min (one fine
model simulation takes approximately 9 min on an
Athlon 1100 MHz). Sonnet em [11] has also been
used as a fine mpdel. It takes 74 minutes to complete
a sweep on an Intel P4 2200 MHz machine, Two fine
model simulations are used to reach the solution.

IV. IMPLEMENTATION AND APPLICATIONS

A.  RF and Microwave Implementation
The required interaction between coarse models,
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Fig. 4. HTS quarter-wave parallel coupled-line microstrip filter
[6,12] and a representation of its coarse madel.

fine models and optimization tools .can make SM
difficult to automate within existing simulators.
Design or preassigned parameter values and frequency
data have to be sent to different simulators and
corresponding responses retrieved.

Various softwdre packages have been investigated.
Packages such as OSA90 or Matlab can provide
coarse model analyses as well as optimization tools.
Empipe and Momentum driver [13] have been
designed to drive and communicate with Sonnet’s.em
and Agilent Momentum [10] as fine models. ASM
optimization of 3D structures [14] has been automated
using a two-level Datapipe architecture of OSA90: the
algorithm carries out the nested optimization loops in
tWO separate processes.

Agilent ADS provides “coarse” models and
optimization tools. Its component S-parameter file
enables §-parameters to be imported in Touchstone
file format from different EM simulators {fine model)
such a5 Sonnet’s em and Agilent Momentum.
Imported S-parameters can be matched (parameter
extraction) with the ADS circuit (coarse) model
responses. We have developed an ADS design
framework [15] which makes these major steps of SM
friendly for engineers to apply.

B, Major Recent Contributions to Space Mapping
Leary et.al {16] apply the SM technique in civil
engineering structural design. Devabhaktuni ¢t al
[17] propose a technique for generating microwave
neural-models of high accuracy using less accurate
data. Swanson, Jr. et al [18] introduce a design
approach baséd on the SM concept and commercial
FEM solvers. Harscher et af [19] use a technique
combining EM simulations with'a minimum prototype

filter network (surrogate). Draxler [20] introduces a
methodology for CAD of integrated passive elements
on Printed Circuit Board (PCB) in¢orporating: Surface

‘Mount. Techhology ‘(SMT). Ye and Marnsour [21]

apply SM steps. to reduce the simulation :overhead
required in microstrip filter desigh.  Snmel [22]
proposed the SN téchnique in RF filter design for
power amplifier circuits. Pavio et al [23] apply
typical SM techniques in optimization of high-density
multilayer RF and microwave circuits. Lobeek [24]
demonstrates the design of a DCS/PCS. outpuit match
of a.cellular power amplifier using SM. Safavi-Naeini.
et al. [25] consider a 3-level design methodology for
complex RF/microwave structire using an. SM.
concept. Pelz [26] applies SM in realization of
narrowband coupled resonator filter structures. Wu-el.
al. [27] present an explicit knowledge embedded
space mapping optimization technique. Wu et al. [28]
propose a concept called the dynamic coarse model
and apply it to the optimization design of LTCC
multilayer RF circuits with the ASM technique. Steyn
et al. [29] consider the design of irises in multi-mode
coupled cavity filters. Soto et al [30] apply the ASM
procedure to build an automated design of inductively
coupled rectangular waveguide filters. Redhe et al
{31] apply the SM technique and surrogate models
together with response surfaces to structural.
optimization of crashworthiness problems. Choi et al
[32] utilize SM to design maghetic systems. Feng
[33] et al sapply the SM technique for design
optimization of antireflection coatings for photonic
devices such as semiconductor ‘optical amplifiers.
Feng and Huang [34] employ a .géneralized space
mapping technique for modeling and simulation of
photonic devices. = Ismail et el [35] apply SM
optimization with FEM (fine model) to design a 5-
pole dielectric resonator loaded filter and a 10-channel
output multiplexer. Gentili ef al [36] implemeht an.
accurate design of microwave comb filters using.SM.
Zhang et al. [37] introdyce a new Neuro-SM approach
for nonlinear device modeling and large signal circuit
simulation. "

V.CONCLUSIONS

The SM technique and the SM-oriented surrogate
(modeling) concept follow thé traditional experience
and intuition of engineers. The aim and advantages of
SM are described. Interesting SM elgorithms and
applications are reviewed.  They indicate that.
exploitation of properly managed. “space mapped”
surrogates delivers significant efficiency in RF and
microwave engineering design.
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