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Abstract—We justify and elaborate in detail on a powerful
new optimization algorithm that combines space mapping (SM)
with a novel output SM. In a handful of fine-model evaluations,
it delivers for the first time the accuracy expected from classical
direct optimization using sequential linear programming. Our new
method employs a space-mapping-based interpolating surrogate
(SMIS) framework that aims at locally matching the surrogate
with the fine model. Accuracy and convergence properties are
demonstrated using a seven-section capacitively loaded impedance
transformer. In comparing our algorithm with major minimax
optimization algorithms, the SMIS algorithm yields the same
minimax solution within an error of 10 15 as the Hald–Madsen
algorithm. A highly optimized six-section -plane waveguide
filter design emerges after only four HFSS electromagnetic sim-
ulations, excluding necessary Jacobian estimations, using our
algorithm with sparse frequency sweeps.

Index Terms—Computer-aided design (CAD) algorithms,
electromagnetics, filter design, interpolating surrogate, microwave
modeling, optimization, output space mapping (OSM), space
mapping (SM), surrogate modeling.

I. INTRODUCTION

E LECTROMAGNETIC (EM) simulators, long used by
engineers for design verification, need to be exploited in the

optimization process. However, the higher the fidelity (accuracy)
of the EM simulations, the more expensive direct optimization
becomes. For complex problems, EM direct optimization may
be prohibitive. Space mapping (SM) [1] aims to combine the
speed and maturity of circuit simulators with the accuracy
of EM solvers. The SM concept exploits “coarse” models
(usually computationally fast circuit-based models) to construct
a surrogate that is faster than the “fine” models (typically CPU-
intensive full-wave EM simulations) and at least as accurate
as the underlying “coarse” model [1]–[4]. The surrogate is
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iteratively updated by the SM approach to better approximate
the corresponding fine model.

From the mathematical motivation of SM [4], it was found
that SM-based surrogate models provide a good approximation
over a large region, whereas the first-order Taylor model is better
close to the optimal fine-model solution. Based on this finding
and an explanation of residual misalignment, Bandler et al..
[5] proposed the novel output space mapping (OSM) to further
correct residual misalignment close to the optimal fine-model
solution. OSM reduces the number of computationally expen-
sive fine-model evaluations, while improving accuracy of the
SM-based surrogate.

This paper elaborates on a new SM algorithm. Highly accu-
rate space-mapping interpolating surrogate (SMIS) models are
built for use in gradient-based optimization [6]. The SMIS is re-
quired to match both the responses and derivatives of the fine
model within a local region of interest. It employs an output
mapping to achieve this.

The SMIS framework is formulated in Section IV. An
algorithm based on it is outlined in Section V. Convergence
is compared with two classical minimax algorithms, and a
hybrid aggressive space-mapping (HASM) surrogate-based
optimization algorithm using a seven-section capacitively
loaded impedance transformer. Finally, the SMIS algorithm is
implemented on a six-section -plane waveguide filter [7].

II. DESIGN PROBLEM

A. Design Problem

The original design problem is

(1)

Here, is the fine-model response vector, e.g.,
at selected frequency points is the

number of response sample points, and the fine-model point is
denoted , where is the number of design parameters.

is a suitable objective function, and is
the optimal design.

III. OSM

OSM addresses residual misalignment between the optimal
coarse-model response and the true fine-model optimum re-
sponse . In the original SM [1], an exact match between
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Fig. 1. Error plots for a two-section capacitively loaded impedance
transformer [4] exhibiting the quasi-global effectiveness of SM (light grid)
versus a classical Taylor approximation (dark grid). See text.

the fine model and mapped coarse model is unlikely. For ex-
ample, a coarse model such as will never match the
fine model around its minimum with any mapping

. An “output” or response mapping can
overcome this deficiency by introducing a transformation of the
coarse-model response based on a Taylor approximation [8].

The results of Bakr et al. [4] indicate that “input” SM-based
surrogates are good approximations to the fine model over a
large region, which makes them useful in the early stages of an
optimization process. The residual misalignment between the
corresponding mapped coarse model(s) and the fine model ren-
ders an exact match between them unlikely. Consequently, con-
vergence to should not be expected.

Fig. 1 depicts model effectiveness plots [4] for a two-sec-
tion capacitively loaded impedance transformer at the final it-
erate , approximately . Centered at ,

the light grid shows . This
represents the deviation of the mapped coarse model (using the
Taylor approximation to the mapping, i.e., a
linearized mapping) from the fine model. The dark grid shows

. This is the deviation of the fine
model from its classical Taylor approximation .
The gradient of the two-section capacitively loaded impedance
transformer, used in the Taylor approximation, was obtained an-
alytically using the adjoint network method [9]. The light grid
surface passing over the dark grid surface near the center of
Fig. 1 verifies that the Taylor approximation is most accurate
close to , whereas the mapped coarse model is best over a
larger region. The reason that the Taylor approximation is best
in the vicinity of is that the Taylor approximation inter-
polates at the development point, whereas the mapped coarse
model does not.

Based on the above finding, Bakr et al. [10] use a surrogate
that is a convex combination of a mapped coarse model and a
first-order Taylor approximation of the fine model. Madsen and
Søndergaard [11] prove convergence of such HASM algorithms.

Fig. 2. Error plots for a two-section capacitively loaded impedance
transformer [4] exhibiting the quasi-global effectiveness of SM-based
interpolating surrogate, which exploits OSM (light grid) versus a classical
Taylor approximation (dark grid). See text.

In this paper, we introduce a novel method to ensure con-
vergence of the SM technique. OSM is incorporated into SMIS
to ensure that we obtain the same solution as classical direct
gradient-based optimization. Fig. 2 depicts model effectiveness
plots for the two-section capacitively loaded impedance trans-
former corresponding to Fig. 1. Centered at , the light grid
shows . This represents the de-
viation of the SMIS surrogate from the fine model. The dark
grid shows the deviation of the fine model from its classical
Taylor approximation as in Fig. 1. Thus, Fig. 2 demonstrates
that the SMIS surrogate, because of its interpolating properties,
performs better than the first-order Taylor approximation even
close to .

IV. SMIS FRAMEWORK

A. Surrogate

The SM-based interpolating surrogate is
defined as a transformation of a coarse model
through input and output mappings at each sampled re-
sponse. Fig. 3 illustrates the SMIS framework. Here,

, where ,
[1], [2] is an input mapping for the th coarse response ,
and [8] is an output mapping applied to the
coarse response. Using the function
with individually adjusted coarse responses, defined as

, where
, the surrogate can be expressed as

a composed mapping .
We wish to consider individual mappings of each coarse re-

sponse . These (nonlinear) mappings will be
approximated by a sequence of local linear mappings. The th
linearized input mapping at the th iteration is assumed to be of
the form

(2)
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Fig. 3. Illustration of the SMIS concept. The aim is to calibrate the mapped
coarse model (the surrogate) to match the fine model using different input and
output mappings for each sampled response.

where the matrix and vector . The th output
mapping is defined as

(3)

where are the th components of . is defined
as , where is a constant vector. Defining

similarly, the th component of the surrogate becomes

(4)

We now discuss how to determine the constants
defining the linear mappings

and . Assume we have reached the th iterate in the

iterative search for a solution. At , the surrogate must
agree with the fine response [12]

(5)

We also aim to align the surrogate with the fine-model re-
sponse at the previous points in the iteration, as well as aim to
have agreement between the Jacobians at the current point, i.e.,

(6)

where and are the Jacobians of the surrogate

and fine model at , respectively.
The constants are determined

in such a way that the alignment (5) holds and the requirements
in (6) are satisfied as well as possible (in some sense to be spec-
ified). The alignment (5) is satisfied by choosing and ap-
propriately. If we let , then (5) only depends on the
choice of .

Thus, the th surrogate of response number is

and (7)

where

(8)

In the first iteration, the mapping parameters
and are used, which

ensure that . For , the parameter
is utilized, which ensures (5).

In summary, the surrogate used in the th iteration is given by

(9)

In each iteration, the surrogate is optimized to find the next it-
erate by solving

(10)

B. Surface Fitting Approach for Parameter Extraction (PE)

PE is a crucial step in any SM algorithm. In this paper,
we employ a surface fitting approach for PE, which involves
the minimization of residuals between the surrogate and fine
models, and extracting the parameters , and

.
Assume has been found. We now wish to find the

th set of mapping parameters . Since
(5) is automatically satisfied by using (7), the aim is to ensure
the matching (6). Thus, for finding , we
aim to minimize the following set of residuals in some sense [6]:

... (11)

where and are the th columns of and , respec-
tively. The residual (11) is used during the PE optimization
process

(12)

which extracts the mapping parameters for the th response, and
for iteration . Hence, we have the complete set of mapping
parameters after PE optimizations.

V. PROPOSED SMIS ALGORITHM

Our proposed algorithm begins with the coarse model as the
initial surrogate. The algorithm incorporates explicit SM [1] and
OSM [5] to speed up the convergence to the optimal solution.

Step 1) Select a coarse and fine model.
Step 2) Set , and initialize .



2596 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 11, NOVEMBER 2004

Fig. 4. Seven-section capacitively loaded impedance transformer: “Fine”
model.

Fig. 5. Seven-section capacitively loaded impedance transformer: “Coarse”
model.

TABLE I
FINE MODEL CAPACITANCES, AND THE CHARACTERISTIC IMPEDANCES FOR THE

SEVEN-SECTION CAPACITIVELY LOADED IMPEDANCE TRANSFORMER

Step 3) Optimize the surrogate (9) to find the next iterate
by solving (10).

Step 4) Evaluate .
Step 5) Terminate if the stopping criteria are satisfied.
Step 6) Update the input and output mapping parameters

through PE
by solving (12).

Step 7) Set , and go to Step 3.
As stopping criteria for the algorithm in Step 5, the relative
change in the solution vector, or the relative change in the ob-
jective function, could be employed.

VI. EXAMPLES

A. Seven-Section Capacitively Loaded
Impedance Transformer

We consider the benchmark synthetic example of a seven-sec-
tion capacitively loaded impedance transformer [4]. We apply
the proposed SMIS algorithm to that example. The objective
function is given by . We consider a
“coarse” model as an ideal seven-section transmission line (TL),
where the “fine” model is a capacitively loaded TL with capac-
itors pF. The fine and coarse models are shown
in Figs. 4 and 5, respectively. Design parameters are normalized
lengths with respect to the
quarter-wave length at the center frequency of 4.35 GHz.
Design specifications are

for 1 GHz GHz (13)

with 68 points per frequency sweep. The characteristic imped-
ances for the transformer are fixed as shown in Table I. The

Fig. 6. Seven-section capacitively loaded impedance transformer: optimal
coarse-model response (- -), the optimal minimax fine-model response (—),
and the fine-model response at the initial solution or at the optimal coarse-model
solution (�).

TABLE II
OPTIMIZABLE PARAMETER VALUES OF THE SEVEN-SECTION

CAPACITIVELY LOADED IMPEDANCE TRANSFORMER

Fig. 7. Seven-section capacitively loaded impedance transformer: optimal
coarse-model response (- -), the optimal minimax fine-model response (—),
and the fine-model response at the SMIS algorithm solution obtained after five
iterations (six fine-model evaluations) (�).

Jacobians of both the coarse and fine models were obtained
analytically using the adjoint network method [9]. We solve
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Fig. 8. (a) First 25 iterations of the difference between the fine-model
objective function U obtained using the SMIS algorithm (�) and the
fine-model objective function at the fine-model minimax solution U obtained
by the Hald–Madsen algorithm ( ), the HASM surrogate optimization
algorithm using exact gradients (r), and the HASM surrogate optimization
algorithm using the Broyden update (�). (b) The corresponding difference
between the designs.

the PE problem using the Levenberg–Marquardt algorithm for
nonlinear least squares optimization available in the MATLAB

Optimization Toolbox.1

Optimizing the fine model directly using the gradient-based
minimax method of Madsen [13], and Hald and Madsen [14]
confirms that the problem has numerous local solutions. Starting
from the optimal coarse-model solution (the initial solution for
the SMIS method), the Hald–Madsen minimax algorithm needs
13 iterations, or 13 fine-model evaluations, to converge to the
fine-model minimax solution. Note that both the direct opti-
mization method of Hald and Madsen and the SMIS approach
employ exact gradients.

The fine-model response at the optimal coarse-model solu-
tion is shown in Fig. 6. Table II shows the lengths for solutions
obtained using the SMIS algorithm and the fine-model direct
minimax optimization solution [13], [14]. Our SMIS algorithm

1MATLAB, ver. 6.1, MathWorks Inc., Natick, MA, 2001.

Fig. 9. (a) Difference between the fine-model objective function U obtained
using the SMIS algorithm (�) and the fine-model objective function at the
fine-model minimax solution U obtained by the Hald–Madsen algorithm ( ),
the HASM surrogate optimization algorithm using exact gradients (r), and
the HASM surrogate optimization algorithm using the Broyden update (�).
(b) The corresponding difference between the designs.

took six fine-model evaluations or five iterations to reach the
same accurate solution as the Hald–Madsen direct minimax op-
timization algorithm.

Fig. 7 shows the fine-model response at the SMIS algorithm
solution. The difference between the minimax objective func-
tion at the optimal minimax fine-model response and the re-
sponse obtained using the SMIS algorithm is shown in Figs. 8
and 9.

Corresponding results reached by the Hald–Madsen method
are shown in Figs. 8 and 9. In these figures, we show the
HASM surrogate exploiting exact gradients. The minimax
objective function and solution reached by the HASM surro-
gate optimization approach using the Broyden update [10] are
also shown. The four methods converged to the same highly
accurate solution.

The optimization methods used for solving (1) and a compar-
ison is shown in Table III. Using the adjoint technique, the SMIS
algorithm was able to obtain the same optimum solution as the
Hald–Madsen algorithm within an error of 10 after only five
iterations.
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TABLE III
OPTIMIZATION METHODS USED ON THE SEVEN-SECTION

CAPACITIVELY LOADED IMPEDANCE TRANSFORMER

Fig. 10. Six-section H-plane waveguide filter [7]. (a) Physical structure.
(b) Coarse model as implemented in MATLAB .

In contrast to SMIS, the standard minimax optimizer avail-
able in MATLAB was able to reach the same optimum direct op-
timization result in 14 iterations (153 fine-model evaluations),
while the Hald–Madsen algorithm reached the optimum fine-
model solution in 13 iterations (13 fine-model evaluations). The
HASM algorithm exploiting exact gradients took 25 iterations
(26 fine-model evaluations) to reach the optimum fine-model
solution to the same error of 10 .

The Hald–Madsen algorithm exploits sequential linear pro-
gramming (SLP) using trust regions, combined with a Newton
iteration. The MATLAB minimizer (fminimax) exploits a sequen-
tial quadratic programming (SQP) method with line searches.

B. Six-Section -Plane Waveguide Filter

The physical structure of the six-section -plane waveguide
filter is shown in Fig. 10(a) [7]. We simulate the fine model using
Agilent High Frequency Structure Simulator (HFSS).2 The de-
sign parameters are the lengths and widths, namely,

2Agilent HFSS, ver. 5.6, HP EESof, Agilent Technol., Santa Rosa, CA, 2000.

Fig. 11. H-plane filter optimal coarse-model response (—), and the HFSS
(fine-model) response: (a) at the initial solution (�) and (b) at the SMIS
algorithm solution reached after three iterations (�).

TABLE IV
OPTIMIZABLE PARAMETER VALUES OF THE SIX-SECTION

H-PLANE WAVEGUIDE FILTER

Design specifications are

for 5.4 GHz GHz

for GHz

for GHz

with 23 points per frequency sweep.
A waveguide with a cross section of 1.372 in 0.622 in

(3.485 cm 1.58 cm) is used. The six sections are separated by
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seven -plane septa, which have a finite thickness of 0.02 in
(0.508 mm). The coarse model consists of lumped inductances
and dispersive TL sections [see Fig. 10(b)]. There are various
approaches to calculate the equivalent inductive susceptance
of an -plane septum. We use a simplified version of a for-
mula due to Marcuvitz [15]. The coarse model is simulated
using MATLAB . The fine model exploits the Agilent HFSS sim-
ulator. One frequency sweep takes 2.5 min on an Intel Pentium 4
(3 GHz) machine with 1-GB RAM and running in Windows XP
Pro. Seven fine-model simulations, due to the seven 0.01-in per-
turbations, are required to find the fine-model Jacobian offline
using the finite-difference method. Thus, the time taken for fine
model and Jacobian calculation is 21 min/iteration on an Intel
P4 machine. Fig. 11(a) shows the fine-model response at the
initial solution. Fig. 11(b) shows the fine-model response after
running our SMIS algorithm using HFSS. The total time taken
was 126 min on an Intel P4 3-GHz machine. Table IV shows
the initial and optimal design parameter values of the six-sec-
tion -plane waveguide filter.

VII. CONCLUSION

We have presented a powerful algorithm based on a novel
SMIS framework that delivers the solution accuracy expected
from direct gradient-based optimization using SLP, yet con-
verges in a handful of iterations. It aims at matching a surrogate
(mapped coarse model) with the fine model within a local
region of interest by introducing more degrees of freedom into
the SM. Convergence is demonstrated through a seven-section
capacitively loaded impedance transformer. We compare the
SMIS algorithm with major direct minimax optimization al-
gorithms. It yields the same solution within an error of 10
as the Hald–Madsen algorithm. A highly optimized -plane
filter design emerges after only four EM simulations (three
iterations), excluding necessary Jacobian estimations, using the
new algorithm with sparse frequency sweeps.
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