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 Abstract—We review recent trends in the art of Space 
Mapping (SM) technology for modeling and design of 
engineering devices and systems.  The SM approach aims 
at achieving a satisfactory solution with a handful of 
computationally expensive so-called “fine” model 
evaluations.  SM procedures iteratively update and 
optimize surrogates based on fast physically-based 
“coarse” models.  Parameter extraction is an essential SM 
subproblem.  It is used to align the surrogate (enhanced 
coarse model) with the fine model.  Recent developments 
including TLM-based modeling and design using SM and 
the SM-based interpolating surrogates framework are 
discussed.  Some practical applications are reviewed. 
 

Index Terms—CAD, design automation, EM simulation, 
optimization, parameter extraction, space mapping. 

I.  INTRODUCTION 
RADITIONAL optimization techniques for 
engineering design [1,2,3] exploit simulated 

responses and possible derivatives w.r.t. design 
parameters.  Schemes combining the speed and 
maturity of circuit simulators with the accuracy of EM 
solvers are possible.  Through a Space Mapping (SM), a 
suitable surrogate can be obtained: faster than an EM-
based “fine” model and at least as accurate as an 
empirical “coarse” model on which it is based. 

We review the state of the art of SM, conceived by 
Bandler in 1993.  Bandler et al. [4,5] demonstrated how 
SM intelligently links companion “coarse” (simplified, 
fast or low-fidelity) and “fine” (accurate, practical or 
high-fidelity) models of different complexities.  For 
example, an EM simulator could serve as a fine model.  
A low fidelity EM simulator or an empirical circuit 
model could be a coarse model (see Fig. 1). 

II.  HISTORY OF SPACE MAPPING 
The first algorithm was introduced in 1994 [4].  A 

linear mapping between the coarse and fine parameter 
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spaces is evaluated by a least squares solution of the 
equations which result from associating points (data) in 
the two spaces.  The corresponding surrogate is a 
piecewise linearly mapped coarse model. 

The Aggressive Space Mapping (ASM) approach [5] 
exploits each fine model iterate immediately.  This 
iterate, determined by a quasi-Newton step, in effect 
optimizes the corresponding surrogate model. 

Parameter Extraction (PE) is key to establishing 
mappings and updating surrogates.  PE attempts to 
locally align a surrogate with a given fine model, but 
nonuniqueness may cause breakdown of the algorithm 
[6].  Multi-point PE [6,7], a statistical PE [7], a penalty 
PE [8], aggressive PE [9] and a gradient PE approach 
[10] attempt to improve uniqueness. 

The trust region aggressive SM algorithm [11] 
exploits trust region (TR) strategies [12] to stabilize 
optimization iterations.  The hybrid aggressive SM 
algorithm [13] alternates between (re)optimization of a 
surrogate and direct response matching.  The surrogate 
model based SM [14] algorithm combines a mapped 
coarse model with a linearized fine model and defaults 
to direct optimization of the fine model. 

Neural space mapping approaches [15,16,17] utilize 
Artificial Neural Networks (ANN) in EM-based 
modeling and design of microwave devices.  A full 
review of ANN applications in microwave circuit 
design including the SM technology is found in [18]. 

Several SM-based model enhancement approaches 
have been proposed: the SM tableau approach [19], 
space derivative mapping [20], and SM-based 
neuromodeling [15]. 

A comprehensive review of SM is presented in [21]. 
In Implicit SM (ISM) [22] an auxiliary set of 

preassigned parameters, e.g., dielectric constants or 
substrate heights, is extracted to match the surrogate 
with the fine model.  The resulting calibrated coarse 
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Fig. 1.  Linking companion coarse (empirical) and fine (EM) models 
through a mapping. 



model is then reoptimized to predict the next fine 
model.  ISM is effective for microwave circuit 
modeling and design using EM simulators and is more 
easily implemented than [23]. 

The coarse model deviates from the fine model.  We 
proposed Output SM (OSM) [24] to tune the residual 
response misalignment between the fine model and its 
surrogate. 

We currently utilize ISM and OSM within the TLM 
simulation environment.  We design a CPU intensive 
fine-grid TLM structure by utilizing a coarse-grid TLM 
surrogate model.  The dielectric constant is employed to 
compensate for the coarseness of this surrogate. 

We propose an SM-based interpolating surrogate 
(SMIS).  Highly accurate SMIS models are built for use 
in gradient-based optimization.  The SMIS surrogate is 
forced to match both the responses and derivatives of 
the fine model within a local region of interest [25]. 

III.  TLM-BASED DESIGN AND MODELING USING SM 
We construct a surrogate of the fine model iteratively 
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where, at the jth iteration, the preassigned parameter 
vector is ( )j p∈x \ .  The diagonal matrix ( )jα and the 
shifting vector ( )jβ are output mapping parameters.  The 
surrogate and the coarse model responses are denoted 

( ) ( ) and j j m
s c ∈R R \ . 

A. Parameter Extraction (Surrogate Calibration) 
We extract the parameters of the surrogate (1) to 

match the fine model by varying the preassigned 
dielectric constant εr (i.e., x = εr).  We also tune α  and 
β  to improve the surrogate.  The PE step is given by 
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B.  Surrogate Optimization (Prediction) 
We optimize the objective function of the surrogate 

(1) in an effort to find the optimal fine model design.  
We utilize TR strategies to find the step ( )jh [11,23,26] 
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where ( )jδ is the trust region size at the jth iteration.  
The tentative step is accepted as a successful step in the 
fine space if there is a reduction of the objective 
function of the fine model otherwise it is rejected.  The 
TR radius is updated according to [26]. 

We consider a single-resonator filter (Fig. 2).  Design 

parameters are W and d.  The fine model has a square 
cell ∆x = ∆y = 1.0 mm, while the coarse model utilizes 
∆x = ∆y = 5.0 mm.  The frequency range is 3.0GHz ≤ ω 
≤ 5.0GHz.  The coarse model simulates 23 times faster 
than the fine model.  We utilize a minimax objective 
function with upper and lower design specifications. 

The Matlab [27] least-squares Levenberg-Marquardt 
algorithm solves the PE problem.  The TR subproblem 
(3) is solved by the minimax routine described in [28].  
A linear interpolation scheme is used [29]. 

The algorithm converges in 5 iterations to an optimal 
fine model response although the coarse model exhibits 
a poor response at the initial design (see Fig. 3).  Fig. 4 
depicts the fine-grid TLM responses at the final design 
using linear interpolation.  The optimal design is given 
by W = 14.56 mm and d = 32.97 mm. 
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Fig. 3.  The fine model and (–•–) the surrogate (--•--) responses at the 
initial design using linear interpolation. 
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Fig. 4.  The fine model and (–•–) the surrogate (--•--) responses at 
the final design using linear interpolation. 
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Fig. 2.  Topology of the single-resonator filter. 



IV.  SPACE MAPPING INTERPOLATED SURROGATES 
(SMIS) FRAMEWORK 

A. The Surrogate 
The SM-based interpolating surrogate [25] 
( ) :j n m
s →\ \R , used in the jth iteration, aims at 

satisfying the interpolation conditions 
( ) ( ) ( )( ) ( )j j j
s f f f=R x R x  (4)
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s f f f=J x J x  (5)

where ( ) ( )( )j j
s fJ x  and ( )( )j

f fJ x  are the Jacobians of the 

surrogate and fine model at ( )j
fx , respectively. 

The conditions (4) and (5), and global match 
condition are satisfied by transforming a coarse model 

: n m
c →\ \R , through various linear input and output 

mappings.  : n n
i →\ \P  [5] is an input mapping 

applied to the ith response, and ,c i iR D P  is the mapped 
ith response of the coarse model.  The corresponding 
response of the surrogate is a composed mapping 
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where ( )j
iα ∈\ , ( )j

iR ∈\ , 1, ,i m= …  are the output 
mapping parameters.  The input mapping is defined as 

( ) ( ) ( )( )j j j
i f i f i= +P x B x c  (7) 

where ( )j n n
i

×∈\B , ( )j n
i ∈\c , 1, ,i m= …  are the input 

mapping parameters. 
The surrogate used in the jth iteration is given by 
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The surrogate is optimized to find the next iterate by 
solving 
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In the first iteration, the mapping parameter values 
(0)
i =B I , (0)

i = 0c , (0) 1iα =  and (0) (0)
, ( )i c i fR R= x  ensure 

that (0) ( ) ( )s f c f=R x R x . For 0j > , the parameter 
( ) ( )( )j j

f f=R R x  is utilized. 

B.  The Surface Fitting Approach for PE 
We employ a surface fitting approach for PE, which 

involves the minimization of residuals between the 
surrogate and fine model, and extracting the parameters 

( )j
iB , ( )j

ic  and ( )j
iα , 1, ,i m= … . 

We require a strict match of responses (4) and 
derivatives (5), and aim at a global match between the 
surrogate and the fine model by satisfying 

( ) ( ) ( )( ) ( )j k k
s f f f=R x R x , 1, ,k j= … +1.  Updating the 

surrogate from iteration j to j+1 involves a residual 
vector.  A residual defined in [25] is used during the PE 
optimization process 
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to obtain the mapping parameters for the ith response, 
and for iteration j+1.  Hence, we have the complete set 
of mapping parameters after m PE optimizations. 

C. The SMIS Algorithm 
The SMIS algorithm is developed in [25].  Accuracy 

and convergence are demonstrated through a seven-
section capacitively-loaded impedance transformer.  
Direct optimization of the fine model starting from an 
arbitrary point is unsuccessful [25].  Starting from the 
coarse minimax optimum (the first step in the SM 
process), it took 14 iterations (153 fine model 
evaluations) to reach the fine model direct minimax 
optimization solution using Matlab’s ‘fminimax’ routine 
[27].  Our SMIS algorithm took 5 fine model 
evaluations or 4 iterations to reach the same accurate 
solution.  Both approaches employed exact gradients. 

V.  RECENT CONTRIBUTIONS TO SPACE MAPPING 
Ismail et. al [30] exploit SM-optimization in the 

design of dielectric-resonator filters and multiplexers.  
Jansson et al. [31] apply the SM technique and 
surrogate models together with response surfaces in 
structural optimization and vehicle crashworthiness 
problems.  Devabhaktuni et al. [32] propose a technique 
for generating microwave neural models of high 
accuracy using less accurate data.  Wu et al. [33,34] 
apply the aggressive SM approach to LTCC RF passive 
circuit design.  Feng et al. [35] employ the ASM 
technique for the design of antireflection coatings for 
photonic devices, such as the semiconductor optical 
amplifiers.  Feng et al. also [36] utilize a generalized 
SM for modeling of photonic devices such as an optical 
waveguide facet.  A full review of practical applications 
of SM in the literature is found in [21]. 

VI.  CONCLUSIONS 
The SM approach and the SM-based modeling 

concepts for engineering design and modeling are 
reviewed.  This CAD methodology embodies the 
traditional experience and intuition of engineers.  
Different algorithms of SM including various 
approaches for the PE subproblem are stated. 

OSM is currently utilized in TLM-based design 
exploiting SM and SM-based interpolating surrogates.  
OSM is utilized to achieve an optimal design in spite of 
a poor initial surrogate response. 

The SMIS approach reaches a highly accurate 
solution in a handful of iterations. 

Recent SM applications are reviewed.  They indicate 



that the SM technology is applicable not only in the RF 
and microwave engineering arena, which it was 
originally applied to, but also in other fields. 
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