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Abstract This paper presents a theoretical discussion of the necessary and
sufficient conditions for optimality in generalized nonlinear least pth
approximation problems for p+», In the limit the conditions for a minimax
approximation are derived, as is to be expected. Numerical examples
involving the modelling of a fourth-order system by a second-order model,
and quarter-wave transmission-line transformers illustrate the results.

INTRODUCTION

Of great practical importance to network and system designers wishing
to approximate a specified response by a network or system response, or
desiring to meet or exceed certain design specifications is the optimality
of their approximation. A number of workers interested in minimax approxi-
mation [1,2,3] have independently arrived at similar conditions for non-
linear minimax approximation problems. These are naturally derivable from
the Kuhn-Tucker conditions for a constrained optimum because of the close
relationship between nonlinear minimax approximation and nonlinear
programming. Bandler [3], in particular, derived the appropriate conditions
in a general form suitable for such problems as filter design.

Because of the widespread interest in nonlinear least pth approximation
[4], and because of recent results [5] that permit least pth objectives in a
more generalized sense to be directly applicable to such problems as meeting
or exceeding design specifications as in filter design it is felt that a
detailed mathematical discussion of conditions for optimality is highly
relevant. Thus, the present paper allows for situations more general than
the conventional problem of approximation to a single continuous function on
a closed interval. '

DEFINITIONS AND ASSUMPTIONS

Define real error functions related to the "upper" and "lower"
specifications, respectively, as [5], [6]

eu($,¥) & w (V) (F(9,¥)-5,(¥)) W
1
eg($,9) & wo(w) (F(g,¥)-55(¥))

where .
F($,¢) is the approximating function (actual response)

Su(¥) is an upper specified function (desired response bound)
5¢(¥) is a lower specified function (desired response bound)
wy(¥) is an upper positive weighting function
we(¥) is a lower positive weighting function
is a vector containing the k independent parameters
¥ is an independent variable (e.g., frequency or time)
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In practice, we will evaluate all the functions at a finite discrete
set of values of y taken from one or more closed intervals. Therefore, we
will let

eui(z) & eu(g’Wi) 1e Iu ' (2)

A

where it is assumed that a sufficient number of sample points have been
chosen so that the discrete approximation problem adequately approximates
the continuous problem. I, and Iy, are appropriate index sets.

Case 1 - Specification Violated 1In the case when the specification is
violated some of the eyi (§) or -egi($) are positive. In an effort to meet
the specification we can propose the following objective function to be

minimizedl 1
U = (] [eyy(IP+ [ [-ep (9)1PIP 3
¢ 1edy u 4 iedp 4 ¢ :
where '
J, 4 {1|eui($) 20, 1el}
%)
Jp & {if-epy(9) 20, 1e 1)
and p>1.
The larger the value of p the more nearly would we expect the ma#imum
error to be emphasized, since 1
maxfe ; (9)s ~epy ()] = Lim { | [e (@)I%+ [ [-e, (9)]PP . (5)
i pre ieJu ier

Case 2 - Specification Satisfied For the case when the specification is
satisfied all the -eyi(¢) and efi(9) will be positive. This time, in an
effort to exceed the specification by as much as_possible, we can propose
the following objective function to be minimized

U = (] fe TP+ I [ep 1P P )
where we assume

e ($) >0 | iel

eUI( ) >0 i Iu At

218 €Iy

and p21.

The larger the value of p the more nearly would we expeAct the minimum
"error" to be emphasized, since N : ‘ 1

min[-e ;(8), ep ()] = Un{ [ [-e (DIP+ ]| [e, (]P} P. (8

a8 epy (8 po 151 Ut 2 e, 2

- Assumptions It is assumed that a minimum exists in a closed and bounded
region of points ¢ and that eyi (¢) and egj(¢) are continuous for all i with
continuous partial derivatives at least in the neighborhood of the minimum.

1Since, in this paper, the conditions for optimality are of interest,
it is convenient to use slightly different objective functions from those
pProposed in an earlier work [5].
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Then the objective functions proposed are continuous with continuous
partial derivatives in the neighborhood of the minimum.

THEOREMS

. v
Theorem 1 At an optimum point 9., for a minimax approximation problem

I ouy eui(é;) = T uy ¥ ezi(éa)
1eK iekK

L
Z u Z u,, =1
1eK ui 1eK, 4
u, >0 ' iek
uli -~ u
. uﬂi > ie KZ
where
A 9 9 9 ,T
N Fyey o

8¢1 3¢2 8¢k
v .
and where eui(é;) for i € K, and —epi($,) for i e KZ are the equal maxima.

Proof for Case 1 Differentiating equation (%)

VWg) = { ] [e (9I°P+ T [, ()]P}° ~
W = e ig% 0@

Y le @Iy e () - L [-eps @177 g ey (@)}
ieJ L

={] [e (1P + [-e <>1Pﬂ’
: iZJu ut 1§_Jz e'?

) [eui(g)]p . - . e, @
5, T q@IP+ ] Log@F u®
ied ied
u - L
[-ep, (1P RINCY | |
i P 1P (65, @1 | @
(dedp Lley @17+ T [-epy (917 oW
eJ ieJ
u L
The necessary conditions for an optimum of U(g) are that
VU(QP) =0 ‘ (10)

where % denotes the optimum parameter vector for particular values of p.

Let P
u,(p) = “1($P)]
i v
e ($ 1P + [-e,, (s )]P
1§J Pui Qp 1§J e1'%p
u , ya
[-e,, (¢ )1P
A (p) = 21°%p (12)

\ 4 p v p
1§J leyy (817 + 1§J [~ep; (4]
u )4
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uyg = lim w,(p) A (13)

u
p-no
u,, = lim A, (p) ’ (14)
24 . i

Then it is clear that as p+~, the necessary conditions for optimality
applied to equation (9) yield ,

i¢K ' .
u u (15)
ui <[2 0 ieKk
: u
w, {7° 1£% o (16)
20 ie K2
and z z ' '
u, + u,, =1 (17)
ieK ul ieK u .
u L
Therefore, as pw,
v v .
1§x uy Ve (8 = 1Zx upy ¥ ey () (18)
o :

and the theorem is proved.

Proof for Case 2 Following a similar procedure to the one used for Case 1,
the same conditions can be derived but in this case we let

[e; 417

ui(P) = v - v —_— (19)
[-e (3 )]7P + le,. (3)17P
151 ut A 121 ety
u _ L :
e (4 017P | .
M@= ) [-:i (2 NP+ T lepy(4017P o .
ieIu ul *p ieIz £ Qp

v
Theorem 2 If the relations in Theorem 1 are satisfied at a point and
the e . (¢$) are convex for i ¢ I, and the egj(9) are concave for 1 ¢ Ip then
is optimal. '

Proof for Case 1 Assuming the e,;(¢) are convex and the ‘éti(Q) are convex

ia

et (108 + 1 g5 < (-ne g1 + 2 e @)

: 1 2 1 2 (21
—ep ((1=2)g" + X 97) < -(l-l)ezi(% ) - A ep (87
for 0 <X <1 . Therefore, for p 3‘1, _ 1
U] ley (=0t + 2 gHIP + L [-ep, (-0g + 1 g2)]PIP
ieJ
u g
<] [a-ve >+Ae L@D1P
ieJ ¢ % py
+ ] [- -(1-Ney 4D - A ey, (92]PIP
ier
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1

1,,p 1,,pP

< (@=-0{) [e @DIP+ ] [-e,, (1P}
- 1& ut 1ed, 21

A 1
,2y1P 2,1PP
+Al ) [e @DIP+ ] [-e, (DIPIP (22)
1§J ut - 1eJ, a4 ‘
from Minkowski's inequality [7]. Hence,
vc-0gh + 2 gH < -0 uh + 0 ugd @

Therefore,U(g) is convex and Theorem 2 follows.

Proof for Case 2 Using equation (21) we have, for p > 1,

1
UL Ty (gt +x gD P+ T e, (gl 2 gD P
iEIu : 1EI£
> 0] [-Q-ve @h -2 e 4HIP
iel 1
T 1-ne, @4 + 2 ey DI P
ie;z
20T (e @DIP+ ] e, gH1 PP
iel iel
u yé _1
AT e DI+ T [ep 4D PY P (24)
iel iel

£

Space does not permit a proof of this inequality, which is a counterpart to
Minkowski's inequality. Hence,

LU+ A g2) > =m0 uh - a v (25)
Therefore,.U(g) is convex and Theorem 2 follows. ‘
EXAMPLES
Example 1 The first example is to find a second-order model of a fourth-

order system when the input to the system is an impulse for different
values of p. The transfer function of the fourth-order system is

(s+1) (s “+4s+8) (s+5)
The transfer function of the second-order model considered is
H(s) = —F— (27)
(s+a)® + B
Therefore, in our case we have
S(t) = %6 exp(-t) + %E-exp(-SC) - Eizégggl (3sin2t + 1llcos2t) (28)
F($,t) = ¢ exp(-at) sin Bt (29)
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g=[a 8 a7 | (30)

L7B 0<t <20 (31)
e(g,t) = F(p,¥) - s(¥) ' (32)
1(211I ® % .
Uu(g) = { e(¢,t)|"} . (33)
2 & £t

The above objective function, which corresponds to the situation
Sy=S¢=S and wy=wyp=1 in Case 1, was set up using 101 uniformly spaced points
over the range O and 20 sec. The values of p used for optimization2 were
2, 6, 10, 20, 30, 40, 50, 70, 80, 100, 200, 1000 and 10,000. See Figure 1.

The values of u, (p) and Ay(p) were calculated for different values of
p and for different Values of t. Seven values of t were considered, of
which four were the points where the approximately equal extrema occurred.
Figure 2 demonstrates the validity of equations (15) and (16).

Example 2 Here, we consider the design of 109 to 1Q quarter-wave
transmission-line transformers taking, for convenience, 0.3 as an upper
specification for the magnitude of the reflection coefficient p over a
specified 100% frequency band. The basic problem has been previously
defined and analyzed in the context of optimality by Bandler [3]. See also
[9] and [10]. The optimum 2-section transformer violates the specification.
The optimum 3-section transformer, on the other hand, satisfies the
specification. The value of p for both cases in the optimization process2
was 10,000. 101 uniformly spaced sample points were used.

The maximum values of eui(§p), where F = |p| and S, = 0.3, and the
frequencies at which they occur are shown in Tables I and II. Using
equation (11) and Table I non-zero multipliers in the ratio

3.001 : 2.001 : 1.000
and using equation (19) and Table II non-zero multipliers in the ratio
2.999 : 2.807 : 1.759 : 1.000

can be found. These results may be compared with those of Bandler [3].
CONCLUSIONS

It has been shown [5] that, for violated specifications in generalized
least pth approximation, we have a close analogy with minimization of a
penalty term designed to bring one closer to the boundary of the feasible
region, whereas, for satisfied specifications, we have an analogy with
minimization of a penalty term designed to steer a feasible solution deeper
into the feasible region. Conventional approximation problems fit into the
former category, but conditions of optimality are required for both.

In the limit the conditions for a minimax approximation are obtained
as is to be expected. It is felt that new insight into minimax algorithms
is gained, since appropriate algorithms might attempt to force these
conditions in an iterative manner by using extremely large values of p.

2Techniques for least pth approximation with extremely large values of
p are described elsewhere [8].
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TABLE I
OPTIMUM 2-SECTION TRANSFORMER WITH p=104
(SPECIFICATION VIOLATED - CASE 1)

Maximum of , '

e (v ) ‘ 0.12857552 -0.12857031 0.12856139

ui Qp ' '
Frequencies (GHz)
at which 0.5 1.0 1.5
maximum occurs

TABLE II
OPTIMWM 3_-SECTION TRANSFdRMER WITH p=104
(SPECIFICATION SATISFIED - CASE 2)
Maximum of ’ ’ .
v ) 0.10270671 0.10270739 - 0.10271219 0.10271799

~eui ($p)
Frequencies (GHz)
at which 0.5 0.77 1.23 1.5

maximum occurs
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