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Abstract—This paper deals with the Space Mapping (SM) 
approach to engineering design optimization. We attempt here 
a theoretical justification of methods that have already proven 
efficient in solving practical problems, especially in the RF and 
microwave area. A formal definition of optimization 
algorithms using surrogate models based on SM technology is 
given. Convergence conditions for the chosen subclass of 
algorithms are discussed and explained using a synthetic 
example, the so-called generalized cheese-cutting problem. An 
illustrative, circuit-theory based example is also considered. 

I. INTRODUCTION 
Mapping (SM) technology involves well-established and 

efficient optimization methods [1-4]. The main idea behind 
SM is that direct optimization of a so-called (accurate but 
computationally expensive) fine model of interest is replaced 
by the iterative optimization and updating of a corresponding 
so-called coarse model (less accurate but cheap to evaluate). 
Provided their misalignment is not significant, SM based 
algorithms are able to converge after only a few evaluations 
of the fine model. SM was originally demonstrated on 
microwave circuit optimization [1], where fine models may 
be based on electromagnetic simulators, while coarse models 
are physics-based circuit models. 

SM techniques have recently solved modeling and 
optimization problems in a growing number of areas, not 
only RF and microwave design [1-4] but also structural 
design [5], vehicle crashworthiness design [6], magnetic 
systems [7], and others. For a review see [4]. 

Although SM algorithms have been developed that solve 
practical optimization problems, the unified formulation and 
theory of SM, including convergence proofs (with the 
exception of a subclass of algorithms based on trust-region 
methods [8]) is lacking. Besides the theoretical importance 
of a unified formulation and classification of SM methods, 
there are two important questions an SM theory should be 
able to answer: (i) how good the coarse model should be 
(compared with the fine model) in order to make an SM 
algorithm converge, (ii) how to design better (more efficient) 
algorithms. We try to answer these questions for algorithms 
based on the so-called Output Space Mapping (OSM). 

II. OPTIMIZATION USING SURROGATE MODELS 
We are concerned with a class of optimization algorithms 

that use surrogate models. Let Rf : Xf → Rm denote the 
response vector of the so-called fine model of a given object, 
where Xf⊆Rn. Our goal is to solve 

* arg min ( ( ))
f

f X
U

∈
= fx

x R x                            (1) 

where U is a suitable objective function and Rspec∈Rm is a 
given specification vector. In many engineering problems, 
we are concerned with so-called one-sided specifications: if  
Rf=(Rf.1,..,Rf.m),  Rspec=(Rsp.1,…,Rsp.m), and Il,Iu⊂{1,2,…,m} 
are such that l uI I∩ = ∅ , then we require that 

. .f i sp iR R≤  for 

i∈Iu and
. .f i sp iR R≥  for i∈Il. Typically, U is defined as 

{ }. . . .( ) max max( ),max( )
u l

f i sp i sp i f ii I i I
U R R R R

∈ ∈
= − −fR        (2) 

In some problems, U can be defined by a norm, i.e.,  
( ) || ||U = −f f specR R R           (3) 

We shall denote by *
fX  the set of all x∈Xf satisfying (1) and 

call it the set of fine model minimizers. 
We consider the fine model to be expensive to compute 

and solving (1) by direct optimization to be impractical. 
Instead, we use surrogate models, i.e., models that are not as 
accurate as the fine model but are computationally cheap, 
hence suitable for iterative optimization. We consider a 
general optimization algorithm that generates a sequence of 
points x(i)∈Xf, i=1,2,…, and a family of surrogate models 

( ) :i m
s fX R→R , i=0,1,…, so that 

( )( 1) ( )arg min ( )
f

i i
sX

U+

∈
=

x
x R x          (4) 

and ( 1)i
s

+R  is constructed using suitable matching conditions 
with the fine model at x(i+1) (and, perhaps, some of x(k), 
k=1,…,i). If the solution to (4) is non-unique we may impose 
regularization. We may match responses, i.e.,  

( ) ( ) ( )( ) ( )i i i
s = fR x R x           (5) 

and/or match first order derivatives 
( )

( ) ( )( ) ( )i
s

i i=
fRR

J x J x           (6) 

where 
( )i
sRJ  and 

fRJ  denote jacobians of the surrogate and  

fine models, respectively. More precisely, we try to define 
models so that conditions such as (5) and (6) are satisfied. 
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III. SM BASED SURROGATE MODELS 
The family of surrogate models { ( )i

sR } can be 
implemented in various ways. SM assumes the existence of a 
so-called coarse model that describes the same object as the 
fine model: less accurate but much faster to evaluate. Let 
Rc : Xc → Rm denote the response vectors of the coarse 
model, where Xc⊆Rn. In the sequel, we assume for simplicity 
that Xc=Xf. By *

cx  we denote the optimal solution of the 
coarse model, i.e., 

* arg min ( ( ))
cX
U

∈
=c cx

x R x           (7) 

We denote by *
cX  the set of all x∈Xc satisfying (7) and call it 

the set of coarse model minimizers. In the SM framework, 
the family of surrogate models is constructed from the coarse 
model in such a way that each ( )i

sR  is a suitable distortion of 
Rc, such that given matching conditions are satisfied. 
 

A. Original SM Based Surrogate Model 
The original SM approach assumes the existence of the 

mapping P : Xf → Xc such that Rc(P(xf))≈Rf(xf) on Xf at least 
on some subset of Xf which is of interest. The proximity of 
Rc and Rf is measured using a suitable metric; in the ideal 
case we have Rc(P(xf))=Rf(xf). For any given xf∈Xf, P(xf) is 
defined using parameter extraction:  

( ) arg min || ( ) ( ) ||= −f c f fx
P x R x R x         (8) 

The surrogate model ( )i
sR  can be defined as 

( ) ( ) ( ) ( )( ) ( ( ) ( ))i i i i
s = + ⋅ −cR x R P x B x x         (9) 

for i=0,1,…, where P is defined by (8) and B(i) is an 
approximation of JP(x(i)), the jacobian of P at x(i), obtained, 
e.g., by solving a Parameter Extraction (PE) problem of the 
form ( ) ( ) ( ) ( )argmin || ( ) ( ( ) ( )) ||

c

i i i i= − + ⋅ − ⋅
fR RB

B J x J P x B x x B . 
 

B. Output SM Based Surrogate Modeling 
The Output Space Mapping (OSM) aims at reducing 

misalignment between the coarse and fine models by adding 
a difference (residual) between those two to Rc. Let us define 
function ∆R:Xf∩Xc→Rm as  

( ) ( ) ( )= −f c∆R x R x R x         (10) 
We construct surrogates that use (local) models of ∆R, 
denoted as ∆Rm. A generic surrogate model defined by OSM 
is 

( ) ( )( ) ( ) ( , )i i
s c= + mR x R x ∆R x x        (11) 

We consider the zero-order model ∆Rm(x,x(i))=∆R(x(i)) 
which leads to the surrogate 

( ) ( )( ) ( ) ( )i i
s c= +R x R x ∆R x        (12) 

Model (12) is based on the matching condition (5). 
The second model is a first-order approximation of ∆R of 

the form ( ) ( ) ( ) ( )( , ) ( ) ( ) ( )i i i i= + ⋅ −m ∆R∆R x x ∆R x J x x x , where 
J∆R(x(i)) denotes the jacobian of ∆R at x(i). This leads to 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )i i i i
s c= + + ⋅ −∆RR x R x ∆R x J x x x      (13) 

Instead of the exact jacobian (usually unavailable) we 
can use its approximation produced by the Broyden update. 
Model (13) is based on matching conditions (5) and (6). 
 

 

C. Implicit Space Mapping Based Surrogate Modeling 
Implicit Space Mapping (ISM) assumes that the coarse 

model depends on additional parameters, i.e., we have 
Rc:Xc×Xp→Rm where Xp⊆Rp is the domain of such 
preassigned parameters.  

An ISM optimization algorithm aims at predistortion of 
the coarse model by adjustment of its preassigned parameters 
xp so that, at the current point x(i), the fine and coarse model 
response vectors coincide. The predistorted model becomes a 
surrogate which, in turn, is optimized in order to obtain the 
next point x(i+1). Thus, the surrogate model defined by ISM is 

( ) ( )( ) ( , )i i
s = c pR x R x x         (14) 

where ( )i
px  is determined by solving a PE problem of the 

form 
( ) ( ) ( )argmin || ( ) ( , ) ||i i i= −p f cx

x R x R x x       (15) 

The model (14), (15) is based on the matching condition (5). 

IV. CONVERGENCE PROPERTIES OF OSM ALGORITHM 
In this section we examine the convergence properties of 

the algorithm (4) using the OSM based surrogate model (12). 
We give sufficient conditions for convergence. We assume 
that Xf=Xc=X⊆Rn. We also assume that X is a closed subset 
of Rn. We denote by YR the range of ∆R=Rf-Rc, i.e., 
YR=∆R(X)⊆Rm. 
Definition 1. Let * : n

RY R→cR  be the function defined as 
*( ) arg min ( ( ) )

X
U

∈
= +c cx

R R R x R        (16) 

Theorem 1. Suppose that X is a closed subset of Rn and 
(i) the function *

cR  is Lipschitz continuous on YR, i.e.,  
* *

2 1 2 1|| ( ) ( ) || || ||CL− ≤ −c cR R R R R R         (17) 
for any R1,R2∈YR, where *

2( )cR R  is the solution to (16) 
which is closest in norm to *

1( )cR R , whereas LC∈R+, 
(ii) the function ∆R is Lipschitz continuous, i.e.,  

|| ( ) ( ) || || ||RL− ≤ −∆R y ∆R x y x        (18) 
for any x,y∈X, where LR∈R+, 
(iii) LR and LC are such that LRLC<1.  
Then, for any x(0)∈X the sequence {x(i)} defined by (4), (12) 
is convergent, i.e., there is x*∈X such that x(i) → x* for 
i → ∞. Moreover, for any *

fX∈x  we have the estimate  
* * *( ( )) ( ( )) ( ( ) ( ))U U U≤ = +f f cR x R x R x ∆R x      (19) 

A proof of Theorem 1 is given in the Appendix. 
This result shows that there are basically two 

fundamental (and natural) requirements for convergence of 
OSM based algorithms: (i) regularity of the perturbed coarse 
model optimal solution with respect to the perturbation 
vector, and (ii) similarity between the fine and coarse model 
in terms of the difference between their first-order 
derivatives. 

Let Umin be defined as 
min min ( ( ))

fX
U U

∈
= fx

R x . We have 

Corollary 1. Suppose that for any R∈YR there is xR∈X such 
that U(Rc(xR)+R)≤Umin and assumptions of Theorem 1 are 
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satisfied. Then * *
fX∈x , where * ( )lim i

i→∞
=x x  is the limit of 

the sequence {x(i)} defined by algorithm (4), (12). 
Proof. Convergence of the sequence {x(i)} follows from 
Theorem 1. Assumption of the corollary implies, that 
U(Rc(x(i+1))+∆R(x(i)))≤Umin  for any i=1,2,… . In the limit 
(i→∞), we have Rc(x(i+1))+∆R(x(i))→Rc(x*)+∆R(x*)=Rf(x*) 
so  U(Rf(x*))=Umin and * *

fX∈x .  
Under similar assumptions (and the requirement that the 

jacobian of function ∆R is bounded and Lipschitz continuous 
on X) one can show convergence of the algorithm (4) using 
the OSM based surrogate model (13). It can also be shown 
that the convergence rate of algorithm (4), (13) is much 
better (we have ( 2) ( 1) ( 1) ( ) 2

2|| || || ||i i i iC+ + +− ≤ ⋅ −x x x x ) than 
algorithm (4), (12) (we have ( 2) ( 1) ( 1) ( )

1|| || || ||i i i iC+ + +− ≤ ⋅ −x x x x  
in this case). 

We consider an illustration of the convergence 
conditions. We analyze a generalized “cheese-cutting” 
problem [4]. The fine model is the irregular two-dimensional 
object of Fig. 1a. Its upper edge is defined by a positive 
function f. The corresponding coarse model is a rectangle of 
height H (Fig. 1b). Both models use the design parameter x 
(length). 

We aim at finding x* so that the area of the irregular 
object in Fig. 1a equals Aopt. The fine model Rf : X→R is 
given by  

( )
0

( )
x

x f t dt= ∫fR         (20) 

The coarse model Rc : X→R is given by 
( )x Hx=cR          (21) 

In the sequel, we check the assumptions of Theorem 1 for 
Rf and Rc defined above assuming ( ) sin( )exp( /5)f x H x x= + − , 
H=2, X=[0,10]. Objective function U is defined by a norm 
(cf. (3)). In particular 
(i) we have 

0
{ : ( ( ) ) , }

x

RY y R y f t H dt x X= ∈ = − ∈∫  and 
*( ) arg min || ( ) || ( ) /opt optx A A H= + − = −c cx

R R R R R . Thus, 
* * 1

2 1 2 1 2 1|| ( ) ( ) || || ( ) / ( ) / || || ||opt optA H A H H−− ≤ − − − ≤ −c cR R R R R R R R , 
i.e., assumption (i) is satisfied with LC=H-1. 
(ii) since 

0
( ) ( ( ) )

x
x f t H dt= −∫∆R , we have  

|| ( ) ( ) || ( ( ) ) sup | ( ) | || ||
x

y t X
y x f t H dt f t H y x

∈
− ≤ − ≤ − ⋅ −∫∆R ∆R

 
i.e., assumption (ii) is satisfied with 

( ) sup{| ( ) | : }RL x f t H t X= − ∈ . This estimate is pessimistic, 
because the local Lipschitz constant (i.e., the constant valid 
within some neighborhood of x) is usually much lower, 
(iii) we have sup{| ( ) / 1 | : }R CL L f t H t X= − ∈ . In the worst 
case we have LRLC<1 if f(x)/H<2 on X. For the assumed data 
we have LRLC<0.5, enough to ensure convergence. 
Note that in our example, the assumptions of Corollary 1 are 
satisfied. Indeed, let ∆R be arbitrary except it is not larger 
than Aopt. Then ||Rc(x∆R)+∆R−Aopt||=0=Umin is satisfied for 
x∆R=(Aopt−∆R)/H. Thus, we have ensured convergence to the 
optimal solution of the fine model. 

x

H

x

f(x)

 
(a)                                                                (b) 

 

Fig. 1. The fine (a) and coarse (b) model in a two-dimensional generalized 
cheese-cutting problem. 

 
Fig. 2. Generalized cheese-cutting example: lower limit for the convergence 
rate (solid line), and actual convergence (circles) for Aopt=10 (upper graph), 
and Aopt=2 (lower graph). 
 

Fig. 2 shows convergence of algorithm (4), (12) with the 
starting point being the coarse model optimal solution for 
Aopt=10 (upper graph) and Aopt=2 (lower graph). Solid lines 
denote a lower limit for the convergence rate (i.e., assuming 
LRLC=0.5). Circles denote the actual convergence rate, which 
is faster for Aopt=10 because in this case, all iterations except 
x(0) are located in the interval [4.65,4.70] in which we have 
sup{| ( ) |: [4.65,4.7]} 0.05f t H t− ∈ < , which gives LRLC<0.025 
(the starting point is x(0)=5, and the final solution 
x*=4.64663401). For Aopt=2 convergence is slower, due to 
the fact that the local Lipschitz constant around the optimal 
solution x*=0.77715486 is about LRLC≈0.5. 

V. EXAMPLE 
We discuss the application of OSM based optimization 

algorithms to active filter design. This is a synthetic problem 
that aims at illustrating the performance of algorithm (4) 
with OSM based surrogate models (12) and (13). We 
consider a second-order OTA-C [9] low-pass filter (Fig. 3) 
implementing a Butterworth transfer function of the form 

( ) 2 1
0 ( 2 1)H s s s −= + +         (22) 

A coarse model of the filter is the transfer function 
formula assuming ideal transconductors and no parasitic 
elements: 

 

gb

g

C1 C2

in outg g

 
Fig. 3. Diagram of the second-order OTA-C low-pass filter. 
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( ) 2 2
1 2 1

b
c

g gH s
s C C sC g g

=
+ +

       (23) 

A fine model is the transfer function formula that takes into 
consideration parasitic conductances go and capacitors Cp: 

( ) ( )2 * * * * 2
1 2 1 2(2 ) 2 2 ( 2 )

b
f

o o o o

g gH s
s C C s C g g C g g g g g

=
+ + + + + +

   (24) 

where *
i i pC C C= + , i=1,2. We use normalized elements with 

fixed g=1, go=0.1, Cp=0.1. Optimization variables are C1, C2 
and gb. The optimization problem is to find C1, C2 and gb so 
that the difference between the fine model response vector Rf 
and the target vector Rspec is minimal w.r.t. the l2 norm, 
where Rf=(|Hf(jω1)|,…,|Hf(jωm)|), and 
Rspec=(|H0(jω1)|,…,|H0(jωm)|). We set m=21 and ω1=0.0, 
ω2=0.1, …, ω21=2.0. Optimization variable values that 
correspond to the optimal solution of the coarse model are 
C1=1.4142, C2=0.7071, gb=1.0.  

We have applied algorithms (4), (12) and (4), (13) to find 
the fine model solution assuming x(0)=(1.4142,0.7071,1.0). 
We consider (i) the surrogate is constructed directly using Rc 
as in (12) or (13); (ii) the coarse model is improved using the 
so-called input SM [4]. In particular, at the i-th iteration we 
use ( ) ( ) ( )( ) ( )i i i= ⋅ +c cR x R B x c , where B(i) and c(i) are n×n and 
n×1 matrices, respectively, obtained using multipoint PE of 
the form ( ) ( ) ( ) ( )

1,
( , ) argmin || ( ) ( ) ||ii i k k

k=
= − ⋅ +∑ f cB c

B c R x R B x c . 

This improvement reduces misalignment between the coarse 
and fine models so that the Lipschitz constants in 
convergence conditions are smaller. As a result we can 
expect a better convergence rate of the algorithm. 

Fig. 4 shows the convergence properties of our 
algorithms (w.r.t. the l2 norm of the difference between Rspec 
and Rf). The optimal fine model solution is 
x*=(1.157,1.006,1.390). The results show that 
preconditioning of the coarse model by input SM and using a 
higher-order approximation of ∆R (i.e., model (13) versus 
(14)) both improve the convergence rate of the algorithm. 
This complies with the theory of Section IV. 

 

 
Fig. 4. Convergence of our OSM algorithms for the OTA-C design problem: 
algorithm (4), (12) without (o) and with (+) coarse model improvement, and 
algorithm (4), (13) without (×) and with ( ) improvement. 

VI. CONCLUSIONS 
A rigorous formulation of optimization algorithms using 

SM-based surrogate models is presented. Properties of a 
subclass, utilizing Output Space Mapping, are investigated. 
Theoretical results are followed by examples that explain the 
assumptions imposed on the coarse and fine model to ensure 
algorithm convergence. The paper is a first step in an SM 
theory that aims not only at a theoretical justification of SM 
methods but also at guidelines for designing more efficient 
algorithms. 

APPENDIX 
Proof of Theorem 1. Take any x(0)∈X. Define {x(i)} 
according to (4), (12), i.e., ( 1) ( )arg min ( ( ) ( ))i i

cX
U+

∈
= +

x
x R x ∆R x  

for i=1,2,… . From Definition 1 we have that 
( 1) * ( )( ( ))i i+ = cx R ∆R x        (A1) 

We would like to obtain an estimate for ( 2) ( 1)|| ||i i+ +−x x . 
Using (A1), and assumption (i)-(iii) we get 

( 2) ( 1) * ( 1) * ( )|| || || ( ( )) ( ( )) ||i i i i+ + +− = − ≤c cx x R ∆R x R ∆R x  
( 1) ( ) ( 1) ( )|| ( ) ( ) || || ||i i i i

CL q+ +≤ − ≤ −∆R x ∆R x x x     (A2) 
where q=LCLR<1. Now, for any j>i we have 

( ) ( ) ( 1) ( ) ( ) ( 1)|| || || || || ||j i i i j j+ −− ≤ − + + − ≤x x x x x x…  
2 1 ( 1) ( )(1 ... ) || ||j i i iq q q − − +≤ + + + + ⋅ −x x  

1
( 1) ( ) (1) (0)1 || || || ||

1 1

j i i
i iq q

q q

− +
+−≤ − ≤ −

− −
x x x x     (A3) 

which is arbitrarily small for sufficiently large i, i.e., {x(i)} is 
a Cauchy sequence. Thus, there is x*∈X, * ( )lim i

i→∞
=x x . 

Estimate (19) is obvious. This ends the proof of the theorem. 
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