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.Abstract—We present advances in microwave and RF device 
modeling exploiting Space Mapping (SM) technology. We 
propose new SM modeling formulations utilizing input 
mappings, output mappings, frequency scaling and quadratic 
approximations.  Our aim is to enhance circuit models for 
statistical analysis and yield-driven design.  We illustrate our 
results using a capacitively-loaded two-section impedance 
transformer, a single-resonator waveguide filter and a six-section 
H-plane waveguide filter. 

Index Terms—CAD, EM modeling, modeling techniques, 
microwave filters, space mapping, surrogate modeling. 

I. INTRODUCTION 

Full-wave EM simulations of microwave structures are 
CPU intensive.  Statistical analysis and yield optimization, 
crucial for manufacturability-driven designs in a time-to-
market development environment, demand accurate and fast 
models.  The Space Mapping (SM) concept [1]–[2] can help 
address this issue. 

SM assumes the existence of “fine” and “coarse” models.  
The “fine” model may be a high fidelity CPU-intensive EM 
simulator which may not be desirable for direct statistical 
analysis and design.  The “coarse” model can be a simplified 
representation such as an equivalent circuit with empirical 
formulas.  SM modeling techniques [3], [4], [5] exploit the 
speed of the coarse model and the accuracy of the fine model 
to develop fast, accurate enhanced models valid over a wide 
range of parameter values. 

Our new SM modeling formulations utilize input mappings, 
output mappings, frequency scaling and quadratic approx-
imations.  Examples include a single-resonator waveguide 
filter and a six-section H-plane waveguide filter.  The filters 
exploit MEFiSTo [6] as the fine (validation) model using 
MEFiSTo’s electromagnetically oriented rubber cell feature to 
perform response interpolation. 
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II. THE MODELS 

Let Rf : Xf → Rm and Rc : Xc → Rm denote the fine and 
coarse model response vectors, where Xf⊆Rn and Xc⊆Rn are 
design variable domains of the fine and coarse models, 
respectively. For example, Rf(x) and Rc(x) may represent the 
magnitude of a transfer function at m chosen frequencies. 

We denote by XR⊆Xf the region of interest in which we 
want enhanced matching between the surrogate and the fine 
model. We assume that XR is an n-dimensional interval in Rn 
with center at reference point x0=[x0.1 … x0.n]T∈Rn: 
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where 1[ ... ]T n
n Rδ δ += ∈δ  determines the size of XR.  We use 

XR(x0,δ) to denote the region of interest defined by x0 and δ. 
The number of fine model evaluations used to construct a 

surrogate should be small since we assume that each 
evaluation is expensive. But, we have to account for 
dimension of the design variable space. We use the set of 
evaluation points (also called the base set) denoted by XB, to 
consist of 2n+1 points, where n=dim(Xf).  We have 

0 1 2{ , ,..., }n
BX = x x x              (2) 

where x0 is the reference point, and 
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where uk=[0 … 0 1 0 … 0]T is a unit vector with 1 at kth 
position; δk is the size of the region XR along the kth axis. This 
distribution of base points is called the star distribution [4]. 

Our basic SM-based surrogate model Rs1 : Xf → Rm is 
defined as 

1( ) ( )s c= +R x R Bx c              (4) 
where matrices 

n nM ×∈B  and 
1nM ×∈c  are obtained using the 

parameter extraction 
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Rs1 is based on the original SM concept [1]. 
The second model Rs2 : Xf → Rm  is defined as 

2 ( ) ( )s c= ⋅ +R x A R Bx c             (6) 
where matrices 

1{ ,..., }mdiag a a=A , 
n nM ×∈B  and 

1nM ×∈c  are 
obtained using the parameter extraction 
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Rs2 augments the output SM concept [7] to Rs1. 
Rs3 : Xf → Rm is a variation of Rs2 and is defined as 

3( ) ( ) ( )s c= ⋅ + +R x A R Bx c q x                      (8) 
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with matrices A , B , and c  obtained by (7). 
q(x)=[q1(x)  …  qm(x)]T, is a function that approximates the 
residuals between the fine model responses and the Rs2 model 
responses using the maximally flat quadratic approximation 
[8] set up using the residuals at all base points x0, x1,…, x2n. 

Model Rs4, is an enhancement of Rs2, which is defined as in 
(6), but the coarse model is evaluated at a different frequency 
than the fine model by using the transformation: 
ω → w0+w1ω, where 2

0 1( , )w w R= ∈w  is obtained together 
with matrices A , B  and c  using a parameter extraction 
process similar to (7). 

The last model we consider (or, rather, a family of models) 
is Rs5.l which consists of l separate Rs2 models defined on 
disjoint frequency sub-bands and considered as a one model. 
We assume a uniform division of the frequency band.  In 
particular, if Rs2.i is the Rs2 type model defined for the partial 
fine model response 

. . ( 1) / 1 . /( ) [ ( ) ... ( )]T
f i f i m l f im lR R− +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=R x x x , 

i=1,…, l, then we have Rs5.l(x)=[Rs2.1(x)T … Rs2.l(x)T]T. 

III. EXAMPLES 

The models are constructed using 2n+1 base points (n is the 
number of design variables) as described in Section II. For 
each example, we perform statistical analysis of the model 
error using the set of test points randomly chosen in the region 
of interest (with uniform distribution).  The error is measured 
as an l2 norm of the difference between the fine and the 
surrogate model responses. 

A. Single Resonator Filter [9] 
Fig. 1 shows a single-resonator filter.  Design parameters 

are resonator length d and septum width W.  The rectangular 
waveguide width and length are fixed.  The frequency range is 
3.0GHz≤ω ≤5.0GHz with a step of 0.04 GHz. The reference 
point is x0=[33.00 14.59]T mm. The fine model employs 
MEFiSTo [6] in a 2D mode with 1mm×1mm mesh size 
utilizing the rubber cell feature to perform interpolation. The 
coarse Matlab model consists of lumped inductances and 
dispersive transmission line sections connected by circuit 
theory.  The inductive susceptances, simplified formulas due 
to Marcuvitz, are used to model the resonator septa. 
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Fig. 1.  Topology of the single-resonator filter [9]. 
 

We consider two different sizes of the region of interest: 3% 
and 10% deviation from x0 (i.e., δ=0.03x0, and δ=0.1x0). 
Table I shows the statistical analysis of the modeling error for 
100 random test points.  Figs. 2 and 3 show error plots for the 
coarse model Rc and model Rs2, respectively, for a 10% 
region, while Figs. 4a and 4b show |S21| versus frequency for 
the fine model (–), the coarse model (×), and the Rs2 model (ο) 
at x0 (reference point) and at a test point. 

 
TABLE I 

ERROR STATISTICS FOR THE SINGLE RESONATOR FILTER USING 100 RANDOM 
TEST POINTS IN THE REGION OF INTEREST 

Region of interest size 3% Region of interest size 10%  

Model Mean Error Max. Error Mean Error Max. Error 
Rc 0.587 0.789 0.567 0.889 
Rs1 0.131 0.253 0.134 0.280 
Rs2 0.118 0.247 0.128 0.280 
Rs3 0.106 0.334 0.149 0.344 
Rs4 0.119 0.254 0.133 0.270 
Rs5.2 0.117 0.246 0.127 0.281 
Rs5.3 0.117 0.248 0.141 0.291 

 

 
Fig. 2. Error plots for the Rc model (modulus of the difference between Rf and 
Rc) for the single resonator filter (10 test points); 10% region. 

 
Fig. 3. Error plots for the Rs2 model (modulus of the difference between Rf and 
Rs2) for the single resonator filter (10 test points); 10% region. 

 
     (a)                                                  (b) 

Fig. 4. |S21| vs. frequency for the single resonator filter for a 10% region of 
interest: the fine model (–), the coarse model (×), and the Rs2 model (ο); (a) at 
x0, and (b) at a test point. 
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B. Capacitively-loaded 10:1 Impedance Transformer [10] 

We consider an ideal two-section transmission line (TL) 
“coarse” model, and a capacitively-loaded TL “fine” model 
with capacitors C1=C2=C3=10pF.  See Fig. 5. The electrical 
lengths L1 and L2 at 1GHz are chosen as design parameters.  
The frequency range is 0.5GHz≤ω≤1.5GHz with a step of 
0.05GHz.  The reference point x0=[74.25°  79.24°]T.  The 
characteristic impedances are kept fixed at the optimal values 
Z1=4.4721Ω and Z2=2.2361Ω.  The fine and coarse models 
are implemented in Matlab. 
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Fig. 5. Two-section capacitively-loaded 10:1 impedance transformer: (a) fine 
model, (b) coarse model [10]. 

 
As before we consider two sizes of the region of interest, 

namely, 3% and 10% deviation from x0.  Table II shows the 
statistical analysis of the modeling error for 100 random test 
points.  Figs. 6-8 show error plots for the coarse model Rc, the 
model Rs1 and the model Rs2, respectively, for a 10% region. 

 
TABLE II 

ERROR STATISTICS FOR THE TWO-SECTION IMPEDANCE TRANSFORMER USING 
100 RANDOM TEST POINTS IN THE REGION OF INTEREST 

Region of interest size 3% Region of interest size 10%  

Model Mean Error Max. Error Mean Error Max. Error 
Rc 0.726 0.787 0.757 0.938 
Rs1 0.072 0.082 0.090 0.146 
Rs2 0.015 0.028 0.042 0.099 
Rs3 0.0025 0.011 0.021 0.061 
Rs4 0.016 0.029 0.042 0.078 
Rs5.2 0.0076 0.016 0.029 0.046 
Rs5.3 0.0062 0.015 0.025 0.048 

 

 
Fig. 6. Error plots for the Rc model (modulus of the difference between Rf and 
Rc) for the two-section impedance transformer (10 test points); 10% region. 

 
Fig. 7. Error plots for the Rs1 model (modulus of the difference between Rf and 
Rs1) for the two-section impedance transformer (10 test points); 10% region. 

 
Fig. 8. Error plots for the Rs2 model (modulus of the difference between Rf and 
Rs2) for the two-section impedance transformer (10 test points); 10% region. 

C. Six-Section H-Plane Waveguide Filter [11], [12] 

We use a waveguide of width 1.372 inches (34.85mm).  
The six waveguide sections are separated by seven H-plane 
septa, which have a finite thickness of 0.0245 inches (0.6223 
mm).  Design parameters are the waveguide section lengths 
L1, L2 and L3 and the septa widths W1, W2, W3 and W4 (Fig. 9); 
the reference point x0=[16.16 16.16 16.63 12.78 11.79 11.24 
11.16]T mm.  We use 51 points from 5.0GHz ≤ ω ≤ 10.0GHz. 

The fine model is simulated using MEFiSTo [6] in a 2D 
mode with 0.6223mm×0.6223mm mesh size utilizing the 
rubber cell feature to perform interpolation for the off-grid 
points.  The Matlab coarse model has lumped inductances and 
dispersive transmission line sections.  We simplify formulas 
due to Marcuvitz for the inductive susceptances 
corresponding to the H-plane septa. They are connected to the 
transmission line sections by circuit theory. 

 
Fig. 9.  The six-section H-plane waveguide filter [11], [12]. 

 
As before we consider two sizes of the region of interest, 

namely, 3% and 10% deviation from x0.  Table III shows the 
statistical analysis of the modeling error for 100 random test 
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points.  Figs. 10 and 11 show error plots for the models Rc and 
Rs2, respectively, for a 10% region. 

 
TABLE III 

ERROR STATISTICS FOR THE SIX-SECTION H-PLANE WAVEGUIDE FILTER USING 
100 RANDOM TEST POINTS IN THE REGION OF INTEREST 

Region of interest size 3% Region of interest size 10%  

Model Mean Error Max. Error Mean Error Max. Error 
Rc 0.636 0.739 0.695 1.123 
Rs1 0.287 0.395 0.276 0.532 
Rs2 0.258 0.376 0.239 0.538 
Rs3 0.257 0.454 0.244 0.556 
Rs4 0.259 0.384 0.240 0.552 
Rs5.2 0.258 0.378 0.247 0.504 
Rs5.3 0.259 0.392 0.242 0.543 

 
 

 
Fig. 10. Error plots for the Rc model (modulus of the difference between Rf 
and Rc) for the six-section H-plane waveguide filter (10 test points); 10% 
region. 

 
Fig. 11. Error plots for the Rs2 model (modulus of the difference between Rf 
and Rs2) for the six-section H-plane waveguide filter (10 test points); 10% 
region. 

IV. CONCLUSIONS 

A family of SM-based surrogate models for statistical 
analysis and yield-driven design is presented and verified. Our 
experiments show that our enhanced surrogate models using 
output SM combined with other techniques perform better 
than the basic SM model employing the original SM by itself. 

Besides the already known fact that SM-based surrogates 
provide good accuracy even for a small amount of fine model 
data, our results show that the new surrogates Rs2, . . . , Rs5 
perform better than Rs1 (and, of course, better than the given 
coarse model Rc).  In some cases, quadratic approximations 
and multiple modeling on frequency sub-bands give further 
improvement.  Lack of improvement in other cases suggests 

that to improve accuracy we should employ additional fine 
model information or simply improve the coarse model. 

In future, we will develop SM-based surrogate models by 
combining well-selected and properly utilized additional fine 
model data with more advanced approximation/interpolation 
techniques.  This should lead to better surrogate models, i.e., 
ones that allow us to further decrease the modeling error. 
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