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Abstract—In this paper, we study the use of space-mapping (SM)
techniques within the transmission-line matrix (TLM) method en-
vironment. Previous work on SM relies on an “idealized” coarse
model in the design process of a computationally expensive fine
model. For the first time, we examine the case when the coarse
model is not capable of providing an ideal optimal response. We ex-
ploit a coarse-grid TLM solver with relaxed boundary conditions.
Such a coarse model may be incapable of satisfying design specifi-
cations and traditional SM may fail. Our approach, which exploits
implicit SM (ISM) and the novel output SM (OSM), overcomes
this failure. Dielectric constant, an expedient preassigned param-
eter, is first calibrated to roughly align the coarse and fine TLM
models. Our OSM scheme absorbs the remaining deviation be-
tween the “implicitly” mapped coarse-grid and fine-grid TLM re-
sponses. Because the TLM simulations are on a fixed grid, response
interpolation is crucial. We also create a database system to avoid
repeating simulations unnecessarily. Our optimization routine em-
ploys a trust region methodology. The TLM-based design of an
inductive post, a single-resonator filter, and a six-section H-plane
waveguide filter illustrate our approach. In a few iterations, our
coarse-grid TLM surrogate, with approximate boundary condi-
tions, achieves a good design of the fine-grid TLM model in spite of
poor initial responses. Our results are verified with MEFiSTo sim-
ulations.

Index Terms—Computer-aided design (CAD), electromagnetic
(EM) optimization, EM simulation, filter design, space mapping
(SM), transmission-line matrix (TLM) method.

I. INTRODUCTION

THE space-mapping (SM) technique [1], [2] calibrates an
enhanced “coarse” (simplified, fast, or low-fidelity) model

to permit acceptable, near optimal design of a computationally
expensive “fine” (practical, accurate, or high-fidelity) model
with a minimal number of fine-model function evaluations [3].
This CAD methodology embodies the learning process of a
designer [3].
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In previous implementations of SM technology, utilizing ei-
ther an explicit input mapping [1], [2] or implicit [4] or output
mappings [5], an “idealized” coarse model is assumed to be
available. This coarse model, usually empirically based, pro-
vides a target optimal response with respect to (w.r.t.) the prede-
fined design specifications while SM algorithms try to achieve
a satisfactory “space-mapped” design .

For the first time, we explore the SM methodology in the
TLM [6] simulation environment. We design a CPU-intensive
fine-grid TLM structure utilizing a coarse-grid TLM model
with relaxed boundary conditions. Such a coarse model may not
faithfully represent the fine-grid TLM model. Furthermore, it
may not even satisfy the original design specifications. Hence,
SM techniques such as the aggressive SM [2] will fail to reach
a satisfactory solution.

To overcome the aforementioned difficulty, we combine the
implicit SM (ISM) [4] and output SM (OSM) [5] approaches.
Parameter extraction (PE), equivalently called surrogate cali-
bration, is responsible for constructing a surrogate of the fine
model. As a preliminary PE step, the coarse model’s dielectric
constant, a convenient preassigned parameter, is first calibrated.
If the response deviation between the two TLM models is still
large, an output SM scheme absorbs this deviation to make the
updated surrogate represent the fine model. The subsequent sur-
rogate optimization step is governed by a trust region strategy.

The TLM simulator used in the design process is a Matlab [7]
implementation. A set of design parameter values represents a
point in the TLM simulation space. Because of the discrete na-
ture of the TLM simulator, we employ an interpolation scheme
to evaluate the responses, and possibly derivatives, at off-grid
points [8], [9]. A database system is also created to avoid re-
peatedly invoking the simulator, to calculate the responses and
derivatives, for a previously visited point. The database system
is responsible for storage, retrieval, and management of all pre-
viously performed simulations [9].

Our proposed approach is illustrated through an inductive
post, a single-resonator filter, and a six-section H-plane wave-
guide filter. We can achieve practical designs in a handful of iter-
ations in spite of poor initial surrogate model responses. The re-
sults are verified using the commercial time-domain TLM sim-
ulator MEFiSTo [10].

In Section II, we review the basic concepts of TLM, implicit
SM, output SM and trust region methodology. Our proposed
approach is presented in Section III, explaining the surrogate
calibration and surrogate optimization steps. We propose an al-
gorithm in Section IV. Examples are illustrated in Section V,
including the design of a six-section H-plane waveguide filter
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with MEFiSTo verification. Conclusions and suggested future
developments are drawn in Section VI.

II. BASIC CONCEPTS

A. Transmission-Line Matrix (TLM) Method

The TLM method is a time and space discrete method for
modeling electromagnetic (EM) phenomena [11]. A mesh of
interconnected transmission lines model the propagation space
[6]. The TLM method carries out a sequence of scattering and
connection steps [11]. For the th nonmetalized node, the scat-
tering relation is given by

(1)

where is the vector of incident impulses on the th node at
the th time step, is the vector of reflected impulses of the
th node at the th time step, and is the scattering

matrix at the th node which is a function of the local dielectric
constant .

The reflected impulses become incident on neighboring
nodes. For a nondispersive TLM boundary, a single time step
is given by

(2)

where is the vector of incident impulses for all nodes at the
th time step. The matrix is a block diagonal matrix whose
th diagonal block is is the connection matrix and

is the source excitation vector at the th time step.

B. Design Problem

Our design problem is given by

(3)

where is a vector of responses of the model,
e.g., at selected frequency points. In a TLM-based en-
vironment, is a function of for all time steps .

is the vector of fine-model design parameters and
is a suitable objective function. For example,

could be a minimax objective function with upper and lower
specifications. is the optimal solution to be determined.

C. Implicit Space Mapping (ISM)

In the ISM approach, an auxiliary set of parameters is em-
ployed to calibrate the surrogate against the fine model. The
surrogate can then be optimized to predict the next fine-model
iterate [4]. In ISM, selected preassigned parameters denoted
by are extracted in an attempt to match the
coarse model to the fine model. Examples of preassigned pa-
rameters in a microwave structure are dielectric constant and
substrate height [12]. With these parameters fixed in the fine
model, the calibrated (implicitly mapped) coarse model denoted
by , at the th iteration, is optimized w.r.t.
the design parameters as

(4)

Then, the optimized parameters are assigned to the fine model.
This process repeats until the fine-model response is sufficiently
close to the target response [4].

D. Output Space Mapping (OSM)

Although the fine and coarse models usually share the same
physical background, they are still two different models and a
deviation between them in the response space (i.e., the range)
always exists. This deviation cannot be compensated by only
manipulating the parameters (i.e., the domain) through the reg-
ular SM. OSM is originally proposed to fine
tune the residual response deviation [5] between the fine model
and its surrogate, in the final stages. In this case, the surrogate
incorporates a faithful coarse model and could be given by the
following composite function:

(5)

E. Trust Region (TR) Methods [13]

TR strategies are employed to assure convergence of an op-
timization algorithm and to stabilize the iterative process [14].
The TR approach was first introduced in the context of SM with
the aggressive SM technique in [15].

The aim of TR methods is to adjust the length of the step
taken at each iteration, in an optimization routine, based on how
well an approximate model predicts the objective function of
the actual model. The approximate model is trusted to repre-
sent the objective function only within a region of specific ra-
dius around the current iteration. The local-model minimum in-
side the trust region is found by solving a TR subproblem. If
the model minimum achieves sufficient actual reduction in the
objective function, the TR size is increased. If insufficient reduc-
tion is achieved, the TR is reduced. Otherwise, the TR is kept
unchanged.

III. PROPOSED APPROACH

In this study, we propose an approach to create a surrogate of
the fine model that exploits an input implicit mapping (model
domain) and encompasses the response deviation between the
fine model and its surrogate (model range) through an output
mapping. The proposed output SM scheme absorbs possible re-
sponse misalignments through a response linear transformation
(shift and scale). Fig. 1 describes a conceptual scheme for com-
bining an input parameter mapping (implicit in our case) along
with an output response mapping.

At the th iteration, a surrogate of the fine model is given by

(6)

where is the preassigned parameter vector whose value
is the evaluation of the implicit mapping at . The scaling di-

agonal matrix and the shifting vector
are the output mapping parameters. The preassigned param-

eters and the output mapping parameters are evaluated through
a surrogate calibration, i.e., the parameter extraction process.
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Fig. 1. ISM and OSM concepts. We calibrate the surrogate against the fine
model utilizing the preassigned parameters xxx, e.g., dielectric constant, and the
output response mapping parameters: the scaling matrix ��� and the shifting
vector ���.

A. Parameter Extraction (Surrogate Calibration)

The PE optimization process is a key element in any SM al-
gorithm. It is performed here to align the surrogate (6) with the
fine model by calibrating the mapping(s) parameters.

The deviation between the fine model and the surrogate re-
sponses at the current fine-model point is given by

(7)

At the th iteration, is first extracted keeping the output
mapping parameters fixed as follows:

(8)

where a multipoint PE (MPE) scheme [16], [17] is employed.
We calibrate the surrogate model against the fine model at a set
of points with , where is the number
of fine-model points utilized at the th PE iteration. At each PE
iteration, we initially set . Then, some fine-model
points of the previous successful iterates are included into the set

and hence more information about the fine model could be
utilized.

Then, we calibrate the surrogate by manipulating
at and to absorb the response deviation

(9)

and are ideally and , respectively. The PE (9) is penalized
such that and remain close to their ideal values. and
are user-defined weighting factors. A suitable norm, denoted by

, is utilized in (8) and (9), e.g., the norm.

B. Surrogate Optimization (Prediction)

We optimize a suitable objective function of the surrogate (6)
in effort to obtain a solution of (3). We utilize the TR method-
ology to find the step in the fine space at the th iteration [12],
[14]

(10)

where is the trust region size at the th iteration. The tenta-
tive step is accepted as a successful step in the fine-model
parameter space if there is a reduction of the fine model objec-
tive function, otherwise the step is rejected

(11)
The TR radius is updated according to [14].

C. Stopping Criteria

The algorithm stops when one of the following stopping cri-
teria is satisfied.

1) A predefined maximum number of iterations is
reached.

2) The step length taken by the algorithm is sufficiently small
[18], e.g., , where is a user-
defined small number.

3) The trust region radius reaches a minimum allowed
value , i.e., .

IV. ALGORITHM

Given .

Comment. The initial trust region radius is and the nom-
inal preassigned parameter value is

Step 1) Initialize and .
Step 2) Solve (4) to find the initial surrogate optimizer.
Comment. The initial surrogate is the coarse model
Step 3) Evaluate the fine model response .
Step 4) Find surrogate parameters

through PE (8) and (9).
Step 5) Obtain by solving (10).
Step 6) Evaluate .
Step 7) Set according to (11).
Step 8) Update according to the criterion in [14].
Step 9) If the stopping criterion is satisfied (see Sec-

tion III-C), terminate.
Step 10) If the TR step is successful, increment and go

to Step 4), else go to Step 5).

V. EXAMPLES

A Matlab implementation of a two-dimensional (2-D) TLM
simulator is utilized. We employ the dielectric constant as a
scalar preassigned parameter (i.e., ) for the whole region
in all of the coming examples.
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Fig. 2. Inductive post in a parallel-plate waveguide. (a) Three-dimensional
plot. (b) Cross section with magnetic side walls.

A. Inductive Obstacle in a Parallel-Plate Waveguide

Fig. 2 shows an inductive post centered in a parallel-plate
waveguide with fixed dimensions. Thickness and width
of the inductive obstacle are design parameters. We are studying
the TEM mode propagation. Due to symmetry, only half of the
structure is simulated.

We use the fine model with a square cell
mm, while the coarse model utilizes a square cell

mm. We utilized 21 frequency points in the frequency range
0.1 GHz 2.5 GHz. The objective function is defined to
match the real and imaginary parts of and of a given
target response.

An interpolation scheme is used [8] in optimizing the surro-
gate (calibration and prediction steps). The least-squares Lev-
enberg–Marquardt algorithm available in Matlab [7] is utilized
to solve both the PE problem and the TR subproblem in each
iteration. The PE is designed to match the fine model with the
surrogate at the current point in both (8) and (9), i.e.,

. and are set to zero.
The algorithm converges in seven iterations. The progression

of the optimization iterates on the fine modeling grid is shown
in Fig. 3. The target, fine-model, and surrogate responses at the
initial and the final iterations for are shown in Fig. 4. Fig. 5
illustrates the reduction of the fine model and the corresponding
surrogate objective functions along iterations. The optimization
results are summarized in Table I.

Fig. 3. Progression of the optimization iterates for the inductive post on the
fine modeling grid (D andW are in millimeters).

Fig. 4. Optimal target response (—), the fine-model response (�), and the
surrogate response (- - -) for the inductive post (jS j) at (a) the initial design
and (b) the final design.

Our proposed approach, without the database system, takes
34 min versus 68 min for direct optimization. Utilizing the data-
base system reduces the execution time to 4 min.
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Fig. 5. Reduction of the objective function (U) of the fine model (—) and the
surrogate (- - -) for the inductive post.

TABLE I
OPTIMIZATION RESULTS FOR THE INDUCTIVE POST

A statistical analysis of the surrogate at the final design is
carried out with 100 samples. The relative tolerance used is 2%.
The results show good agreement between the fine model (75
min for 100 outcomes) and its surrogate (7 min for 100 out-
comes). The real and imaginary parts of for both the fine
model and its surrogate at the final design are shown in Fig. 6.

B. Single-Resonator Filter

A single-resonator filter is shown in Fig. 7. The design param-
eters are the resonator length and the septum width . The
rectangular waveguide width and length are fixed as shown in
Fig. 7. The propagating mode is with a cutoff frequency
of 2.5 GHz.

We use the fine model with a square cell
mm, while the coarse model utilizes a square cell

mm. The frequency range is 3.0 GHz 5.0 GHz with
steps of 0.1 GHz.

The fine model employs a Johns matrix boundary [19]–[21]
as an absorbing boundary condition while the coarse model uti-
lizes a single impulse reflection coefficient calculated at the

Fig. 6. Statistical analysis for the real and imaginary parts of S of the
inductive post with 2% relative tolerances (a) using the fine model and (b) using
the surrogate at the final iteration of the optimization. One hundred outcomes
are used.

Fig. 7. Topology of the single-resonator filter.

center frequency (4.0 GHz). Hence, we do not need to calcu-
late the Johns matrix for the coarse model each time we change
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Fig. 8. Surrogate response (- - � - -) and the corresponding fine model
response (— � —) at (a) the initial design and (b) the final design (using linear
interpolation) for the single-resonator filter.

. This introduces another source of inaccuracy in the coarse
model.

A minimax objective function is used in the design process
with upper and lower design specifications

for GHz GHz

for GHz GHz

for GHz GHz (12)

The Matlab [7] least-squares Levenberg–Marquardt algo-
rithm solves the PE problem. The TR subproblem (10) is solved
by the minimax routine described in [22]. An interpolation
scheme with database system is used [8]. The surrogate is
calibrated to match the fine model at the last two points in (8)
and the current point in (9). The weighting factors are set to

and .
The algorithm converges in five iterations to an optimal fine

model response although the coarse model initially exhibits
a very poor response [see Fig. 8(a)]. Fig. 8(b) depicts the
fine-grid TLM response along with its surrogate response at
the final design. The reduction of the objective function of the
fine model and the surrogate versus iteration and the progres-

Fig. 9. Reduction of the objective function (U) of the fine model (—) and the
surrogate (- - -) for the single-resonator filter.

Fig. 10. Progression of the optimization iterates for the single-resonator filter
on the fine modeling grid (d and W are in millimeters).

TABLE II
OPTIMIZATION RESULTS FOR THE SINGLE-RESONATOR FILTER

sion of the optimization iterates are shown in Figs. 9 and 10,
respectively. The optimal design reached by the algorithm is
given by 32.99 mm and mm (see Table II for
the optimization summary).

Our proposed approach, without the database system, takes
88 min versus 172 min for direct optimization. Utilizing the
database system reduces the execution time to 15 min.
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Fig. 11. Final design reached by the algorithm (— � —) versus the
simulation results using MEFiSTo 2-D with the rubber cell feature (—) for the
single-resonator filter (a) jS j and (b) jS j.

We utilize the time-domain TLM simulator MEFiSTo [10]
to verify our results. We employ the rubber cell feature [10] in
MEFiSTo to examine our interpolation scheme. Using the TLM
conformal (rubber) cell [23], the dimensions of the underlying
structure, which are not located at multiple integers of the mesh
size, will not be shifted to the closest cell boundary. Rather, a
change in the size and shape of the TLM boundary cell, due to
an irregular boundary position, is translated into a change in its
input impedance at the cell interface with a regular computa-
tional mesh [23]. Fig. 11 shows a good agreement between the
interpolated results of the final design obtained from our algo-
rithm and the MEFiSTo simulation utilizing the rubber cell.

C. Six-Section H-Plane Waveguide Filter

We consider the six-section H-plane waveguide filter [24],
[25] [see the 3-D view and 2-D cross section in Fig. 12(a)
and (b), respectively]. A waveguide with a width of 1.372 in
(3.485 cm) is used. The propagation mode is with a
cutoff frequency of 4.3 GHz. The six-waveguide sections are
separated by seven H-plane septa, which have a finite thickness
of 0.0245 in (0.6223 mm). The design parameters are the

Fig. 12. Six-section H-plane waveguide filter. (a) The 3-D view. (b) One half
of the 2-D cross section. (c) The equivalent empirical circuit model.

three waveguide-section lengths and and the septa
widths , and . A minimax objective function is
employed with upper and lower design specifications given by

for GHz GHz

for GHz

for GHz (13)

We use the fine model with a square cell
mm. The number of TLM cells in the and directions are

and , respectively. A Johns matrix boundary
[19]–[21] is used as a dispersive absorbing boundary condi-
tion with time steps. We utilize 23 points in the
frequency range 5.0 GHz 10.0 GHz. We consider the
filter design using two different coarse models: empirical coarse
model and coarse-grid TLM model. In both cases, we use the
least-squares Levenberg–Marquardt algorithm in Matlab [7] for
the PE. A linear interpolation scheme with a database system is
utilized for the surrogate optimization using the minimax rou-
tine given in [22]. The PE is designed to match the fine model
with its surrogate utilizing the most recent three points in (8) and
the current point in (9). We set the weighting factors to
and .

Case 1: Empirical Coarse Model: A coarse model with
lumped inductances and dispersive transmission-line sections
is utilized. We simplify formulas due to Marcuvitz [26] for
the inductive susceptances corresponding to the H-plane septa.



2808 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 9, SEPTEMBER 2005

TABLE III
INITIAL AND FINAL DESIGNS FOR THE SIX-SECTION H-PLANE WAVEGUIDE

FILTER DESIGNED USING THE EMPIRICAL COARSE MODEL

Fig. 13. Surrogate response (- - � - -) and the corresponding fine model
response (— � —) at (a) the initial design and (b) the final design (using linear
interpolation) for the six-section H-plane waveguide filter designed using the
empirical coarse model.

They are connected to the transmission-line sections through
circuit theory [27]. The model is implemented and simulated
in the Matlab [7] environment. Fig. 12(c) shows the empirical
circuit model.

The algorithm converges to an optimal solution in ten itera-
tions. The initial and final designs are shown in Table III. The

Fig. 14. Reduction of the objective function (U) of the fine model (—) and
the surrogate (- - -) for the six-section H-plane waveguide filter designed using
the empirical coarse model.

Fig. 15. Final design reached by the algorithm (—�—) compared with
MEFiSTo 2-D simulation with the rubber cell feature (—) for the six-section
H-plane waveguide filter designed using the empirical coarse model.

final value of . The initial and final responses for the
fine model and its surrogate are illustrated in Fig. 13. Fig. 14 de-
picts the reduction of objective function of the fine model and
its surrogate. The final design response using our algorithm is
compared with MEFiSTo in Fig. 15.

Case 2: Coarse-Grid TLM Model: We utilize a coarse-grid
TLM model with a square cell mm. The
number of TLM cells in the and directions are and

, respectively. The number of time steps is
time steps. A single impulse reflection coefficient calculated
at the center frequency (7.5 GHz) is utilized. We have three
sources of inaccuracy of the coarse-grid TLM model, namely,
the coarser grid, the inaccurate absorbing boundary conditions
and the reduced number of time steps. This reduces the compu-
tation time of the coarse model versus the fine model.

We apply our algorithm. Despite the poor starting surrogate
response [see Fig. 16(a)], the algorithm reaches an optimal so-
lution in 8 iterations. The initial and final designs are shown in
Table IV. The final value of . The initial and final
responses for the fine model and its surrogate are illustrated in
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Fig. 16. Surrogate response (- - � - -) and the corresponding fine model
response (— � —) at (a) the initial design and (b) the final design (using linear
interpolation) for the six-section H-plane waveguide filter designed using the
coarse-grid TLM model.

TABLE IV
INITIAL AND FINAL DESIGNS FOR THE SIX-SECTION H-PLANE WAVEGUIDE

FILTER DESIGNED USING THE COARSE-GRID TLM MODEL

Fig. 16. The reduction of the objective function of the fine model
and its surrogate is shown in Fig. 17. The final design response
obtained using our algorithm is compared with MEFiSTo sim-
ulation in Fig. 18. It shows good agreement.

Fig. 17. Reduction of the objective function (U) of the fine model (—) and
the surrogate (- - -) for the six-section H-plane waveguide filter designed using
the coarse-grid TLM model.

Fig. 18. Final design reached by the algorithm (—�—) compared with
MEFiSTo 2-D simulation with the rubber cell feature (—) for the six-section
H-plane waveguide filter designed using the coarse-grid TLM model.

TABLE V
OUR APPROACH WITH/WITHOUT DATABASE SYSTEM VERSUS DIRECT

OPTIMIZATION FOR THE SIX-SECTION H-PLANE WAVEGUIDE FILTER

DESIGNED USING COARSE-GRID TLM MODEL

Using the proposed approach, the optimization time is re-
duced by 66% w.r.t. direct optimization, as shown in Table V.
The dynamically updated database system, implemented in the
algorithm, reduces the optimization time even more, as reported
in Table V. The run time for the PE process, surrogate optimiza-
tion, and fine-model simulation of our proposed approach are
15, 4, and 58 min, respectively.
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VI. CONCLUSION

For the first time, we investigate the SM approach to mod-
eling and design when the coarse model does not faithfully rep-
resent the fine model. In this study, a coarse-grid TLM model
with relaxed boundary conditions is utilized as a coarse model.
Such a model may provide a response that deviates significantly
from the original design specifications and, hence, previous SM
implementations may fail to reach a satisfactory solution. We
propose a technique exploiting implicit SM and output SM.
The dielectric constant, a convenient preassigned parameter, is
first calibrated for a rough (preprocessing) alignment between
the coarse and fine TLM models. Output SM absorbs the re-
maining response deviation between the TLM fine-grid model
and the implicitly mapped TLM coarse-grid model (the surro-
gate). To accommodate the discrete nature of our EM simu-
lator, we designed the algorithm to have interpolation and dy-
namically updated database capabilities, which is key to effi-
cient design automation. Our approach is illustrated through the
TLM-based design of an inductive post, a single-resonator filter,
and a six-section H-plane waveguide filter. Our algorithm con-
verges to a good design for the fine-grid TLM model in spite of
poor initial behavior of the coarse-grid TLM surrogate.

We consider our results to be promising. Utilizing, as pre-
assigned parameters, different dielectric constants for different
regions of the underlying microwave structure is addressed here
but not implemented. Incorporating Jacobians in the PE process
to improve the construction of the surrogate, e.g., exploiting ad-
joint variable methods, needs future investigation.
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