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Abstract—A new practical approach to sensitivity analysis of the
network parameters of high-frequency structures with commercial
full-wave electromagnetic (EM) solvers is proposed. We show that
the computation of the linear-network parameter derivatives in the
design-parameter space does not require an adjoint-problem solu-
tion. The sensitivities are computed outside the EM solver, which
simplifies the implementation. We discuss: 1) features of commer-
cial EM solvers which allow the user to compute network param-
eters and their sensitivities through a single full-wave simulation;
2) the accuracy of the computed derivatives; and 3) the overhead of
the sensitivity computation. Through examples based on FEMLAB
and FEKO simulations, comparisons are made with the forward fi-
nite-difference derivative estimates in terms of accuracy and CPU
time.

Index Terms—Adjoint-variable methods, design automation,
frequency-domain analysis, sensitivity analysis.

I. INTRODUCTION

THE importance of the design sensitivity analysis of dis-
tributed systems stems from the need to improve their per-

formance or to know their uncertainties [1]. The design sensi-
tivity comprises the response derivatives with respect to shape
or material parameters. Manufacturing and yield tolerances, de-
sign of experiments and models, and design optimization are
aspects of the overall design, which can benefit greatly from the
availability of the response sensitivity.

The adjoint-variable method is known to be the most efficient
approach to design sensitivity analysis for problems of high
complexity where the number of state variables is much greater
than the number of the required response derivatives [1]–[3].
General adjoint-based methodologies have been available for
some time in control theory [1], and techniques complemen-
tary to the finite-element method (FEM) have been developed
in structural [2], [3] and electrical [4]–[9] engineering. How-
ever, feasible implementations remain a challenge. The reason
lies mainly in the complexity of these techniques.
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Recently, a simpler and more versatile approach has been
adopted [10]–[13] for analyses with the method of moments
(MoM) and the frequency-domain transmission-line method.
The effort to formulate analytically the system matrix deriva-
tive—which is an essential component of the sensitivity
formula—was abandoned as impractical for a general-purpose
sensitivity solver. Instead, approximations of the system-matrix
derivatives are employed using either finite differences [10]
or discrete step-wise changes [12], [13] as dictated by the
nature of the discretization grid. Neither the accuracy nor the
computational speed is sacrificed.

All of the above approaches require the analysis of an ad-
joint problem whose excitation is response-dependent. Not only
does this mean one additional full-wave simulation, but it also
requires modification of the electromagnetic (EM) analysis en-
gine due to the specifics of the adjoint-problem excitation. No-
tably, Akel and Webb [6] have pointed out that, in the case of
the FEM with tetrahedral edge elements, the sensitivity of the

-matrix can be derived without an adjoint simulation.
Here, we formulate a general self-adjoint approach to the sen-

sitivity analysis of network parameters. It requires neither an
adjoint problem nor analytical system matrix derivatives. We
focus on the linear problem in the frequency domain, which is
at the core of a number of commercial high-frequency simula-
tors.1 Thus, for the first time, we suggest practical and fast sen-
sitivity solutions realized entirely outside the framework of the
EM solver. These standalone algorithms can be incorporated in
an automated design to perform optimization, modeling, or tol-
erance analysis of high-frequency structures with any commer-
cial solver, which exports the system matrix and the solution
vector.

In Section II, we state the adjoint-based sensitivity formula
and the definition of a self-adjoint problem. In Sections III and
IV, we introduce the self-adjoint formulas for network-param-
eter sensitivity calculations. In Section V, we outline the features
of the commercial EM solvers, which enable independent net-
work-parameter sensitivity analysis. Numerical validation and
comparisons are presented in Section VI. Section VII discusses
the computational overhead associated with the sensitivity anal-
ysis. We give recommendations for further reduction of the com-
putational cost whenever software changes are possible, and
conclude with a summary.

1The network-parameter sensitivities with time-domain solvers deserve sep-
arate treatment and will be considered elsewhere.
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II. BACKGROUND

A. Sensitivities of Linear Complex Systems

A time-harmonic EM problem involving linear materials can
be cast in a linear system of complex equations by the use of a
variety of numerical techniques2

(1)

The system matrix is a function of the shape
and material parameters, some of which comprise the vector of
designable parameters , i.e., . Thus, the vector
of state variables is a function of . The
right-hand side results from the EM excitation and/or the in-
homogeneous boundary conditions. Typically, in a problem of
finding the sensitivities of network parameters, is independent
of , because the waveguide structures launching the incident
waves (the ports) serve as a reference and are not a subject to
design changes: .3

For the purposes of optimization, the system performance
is evaluated through a scalar real-valued objective function

. In tolerance analysis or model generation, we may
consider a set of responses, some of which are complex. We
first consider a single, possibly complex, function , and we
refer to it as the response. It is computed from the solution
of (1) for a given design.

Through is an implicit function of . It may also have
an explicit dependence on . Explicit dependence on a shape
parameter arises when depends on the
field/current solution at points whose coordinates in space are
affected by a change in . An example is the explicit depen-
dence of an antenna gain on the position/shape of the wires
[10] carrying the radiating currents. Explicit dependence with
respect to a material parameter arises when depends on the
field/current solution at points whose constitutive parameters
are affected by its change. An example is the stored energy in a
volume of changing permittivity. The network parameters, how-
ever, are computed from the solution at the ports, whose shape
and materials do not change. Thus, when is a network param-
eter, .

The derivatives of a complex response
with respect to the design parameters

can be efficiently calculated using the adjoint-variable sensi-
tivity formula [9], [13]

(2)
In a compact gradient notation, (2) becomes

(3)

We refer to as the response sensitivity. The adjoint-vari-
able vector is the solution to

(4)

2All matrices are in bold italics (one-dimensional matrices are lowercase, ma-
trices of higher dimensions are uppercase). Vectors in space, e.g., field vectors,
are bold uppercase.

3We define the gradient operator as a row operator [1], [3], e.g., for a scalar
function f; rpppf = [@f=@p � � � @f=@p ]. In the case of a column fff ; r fff
is a matrix whose rows are the gradients of the respective elements of fff .

where is a row of the derivatives of with respect to
the state variables , evaluated at the current
solution . In the case of complex systems, it involves the
real and the imaginary parts of the state variables.

As detailed in [13], the complex-response analysis (2)–(4)
is valid if is an analytic function of the state variables , in
which case, the Cauchy–Riemann conditions [14] are fulfilled.
A convenient form of the adjoint excitation is

(5)

B. Sensitivity Expression for Linear-Network Parameters

For a network parameter sensitivity, the gradients and
vanish, which reduces (3) to

(6)

We emphasize that, in (6), is fixed, and only is differenti-
ated, as in (2).

The sensitivity formula (6) uses three quantities: the solution
of the original problem (1), the set of system matrix derivatives

, and the solution to the adjoint problem
(4). The first one is available from the EM simulation. Also,
we assume that the system matrix derivatives have been already
computed, e.g., using finite differences [10] or Broyden’s update
[15], [16]. We next show that, in the case of the network parame-
ters, the adjoint solution is equal to multiplied by a complex
factor . Thus, the solution of (4) is unnecessary. We employ the
above adjoint-variable theory to determine for different net-
work parameters. For that, we also need to know the dependence
of the particular network parameter on the distributed field/cur-
rent solution. We delineate this dependence below.

III. SELF-ADJOINT -PARAMETER SENSITIVITIES

The -parameters are extracted differently depending on
whether the numerical solution is in terms of field vectors (e.g.,
FEM) or current distributions (e.g., MoM).

A. -Parameter Sensitivities With Field Solutions

To obtain the full scattering matrix of a -port structure for
a particular mode solutions of (1) are carried out with
one of the ports being excited while the rest of the ports are
matched. We assume that the th port is excited and define the

parameters as

-

-

(7)
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Here,4 is the incident field of the mode at the th port,

is the resulting -field solution, is the unit normal to

the respective port surface, and , are the normal-
ized real vectors representing the -mode -field distribution
across the respective ports. The modal vectors form an or-
thonormal basis

-

(8)

where if the modes and are the same, and
otherwise. They are obtained either analytically or numerically
[17], [18]. The analytical expressions for the modes of a
rectangular waveguide can be found in [17].

Our formulation (7) uses the approach in [17] where the
output power wave in the th port is obtained by projecting
the transverse components of the transmitted/reflected -field
onto the transverse components of the port modal vector .
In the denominator, the input power wave in the th port is
obtained in the same manner. For a single-mode analysis, the
typical incident field setup is where is
a user-defined magnitude. Usually, . We note that an
alternative formulation, see, e.g., [18], uses the orthonormal set
(8) as well as its dual ( -field) vector set. Both -parameter
definitions lead to the same final sensitivity result. We choose
to work with (7).

Since we consider the -parameter sensitivities of a single
mode, for simpler notations, the superscript is omitted but
implied in all formulas hereafter. Thus, with the th port being
excited, the respective right-hand side of (1) is denoted by ,
and its respective solution vector is . It represents the field
solution . such solutions , are available
from the -parameter analysis of the structure.

In the FEM, within each surface element at a port, the
field is approximated via the -field components

, tangential to the edges of the element [17]

(9)

Here, is the unit normal to the surface element,
, and are the vector basis functions

of the element. The column has the vectors as its
elements, . Note that the vector of edge
field components is a subset of the solution of (1).

If is the response whose sensitivities we need, i.e.,
, we must consider the solution of the adjoint

problem (4) where the respective adjoint excitation becomes
. Instead of dealing with the global adjoint

excitation vector , we can consider its elemental
subset .

4If the S-parameters are computed at planes different from their respective
ports, deembedding is applied. It is in the form of an additional exponential
factor, e.g., for the reflection coefficient, it is e where  is the waveguide
propagation constant and L is the distance between the port and the plane of
deembedding. Also, if the ports have different impedances, a factor of Z =Z
multiplying (7) must be included. These factors are parameter-independent and
do not change the derivations which follow. They are omitted for brevity.

From (7), we see that is a linear and, therefore, analytic
function of the field solution , as well as of , as implied by
the linear relation (9). Then, the analysis with (4) and (6) applies.
We first write (7) in terms of the field of the surface elements of
the th port as

-

-
(10)

where has been already defined in (7). Making use of (9),
we have

-

(11)

From (11), we find the derivatives of with respect to the
edge field components of the element at the th port

-

-
(12)

where is the number of edges of the element. In gradient
notation, (12) becomes

-

-

(13)

After the assembly of the FEM equations, each of the elements
of becomes an element of the global adjoint exci-
tation vector .

We now compare the elements of the adjoint excitation (13)
with the elements of the excitation for the element of the th
port in the original FEM problem [17]

-

(14)

where

(15)

for a single-mode incident field. Here, is the normalized
modal vector, is a user-defined magnitude (usually set as 1),
and is the modal propagation constant of the port. The com-
parison reveals a simple linear relationship between the original
and adjoint excitation vectors, and , given as follows:

-

(16)

Both and are obtained from their respective elemental
excitations, and , through identical system-as-
sembly procedures.
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Next, we turn to the adjoint solutions resulting from
. We note that the FEM system matrix

is symmetric (see, e.g., [17]),

(17)

From (16) and (17), we conclude that all adjoint solutions
needed for the -parameter sensitivities can be calculated from
the original solution vectors , by a simple
multiplication with a known complex constant

-

(18)

They are then substituted into (6) where can be any of the
elements of the -matrix.

The self-adjoint nature of the solution derived above shows
that the information necessary to compute the -parameter sen-
sitivities is already contained in the full-wave solution provided
by the FEM simulator. The sensitivity analysis is thus reduced to
a relatively simple and entirely independent post-process, which
does not require additional full-wave solutions.

B. -Parameter Sensitivities With Current Solutions

Similarly to the case of the field solution considered above,
the -parameters depend on the current density solutions pro-
duced by the MoM solvers through simple linear relations. More
specifically, the current solution at the ports is needed.

Consider the calculation of the -parameters of a network of
system impedance by FEKO [19]

(19)

Here, is the th port voltage source (usually set equal to 1)
of internal impedance , and is the resulting current at the

th port when the th port is excited (the rest of the ports are
loaded with ). The right-hand side of (1) corresponding to

is .
If the structure consists of thin wires discretized into seg-

ments,5 the currents are the elements of the solution vector
obtained with . Then, each partial derivative

(20)

gives the only nonzero element of the respective adjoint excita-
tion vector . Its position corresponds exactly to the position
of the only nonzero element of the original excitation at the

th port . This is because is computed at the very same
segment where is applied when the th port is excited. Thus,

(21)

5FEKO is primarily an antenna CAD software. It uses the electric-field inte-
gral equation (EFIE) for metallic objects and the EFIE with specialized Green’s
functions for planar layered (printed) circuits. For dielectric objects, it uses a
coupled field integral equation (PMCHW) technique. It also employs a fast mul-
tipole method (MLFMM) for large problems. The latter does not support spe-
cialized Green’s functions.

If the structure and, in particular, its ports involve planar or
curved metallic surfaces, FEKO applies triangular surface ele-
ments accordingly and computes the surface current distribution
[19]. In this case, each of the port currents is obtained from the
current densities at the edge of its port

(22)

where denotes the port where the current is computed, and
denotes the port being excited. is the component of the

surface current density normal to the edge of the th element of
port whose length is . The current densities ,
are elements of the solution vector , and is the set of their
indices.

We compute the elements of the adjoint excitation vector
as the derivatives of with respect to as follows:

(23)

All elements, for which , are zero.
On the other hand, the excitation vector , corresponding to

the th port excitation of the original problem, also has nonzero
elements, whose indices are those in . Moreover, to ensure
uniform excitation across the port, these excitation elements are
equal to the applied excitation voltage , scaled by the edge
element [20] as

(24)

Comparing (23) and (24), we conclude that the adjoint vectors
relate to the original excitation as in (21).

If the MoM matrix fulfills the symmetry condition ,
then the adjoint solution vectors obtained
from the adjoint excitations relate to the original solution
vectors as6

(25)

Thus, with the MoM, we have arrived at a self-adjoint relation
similar to the case of the FEM field solution (18).

However, the matrices arising in the large variety of MoM
techniques are not always symmetric when a nonuniform un-
structured mesh is used, which is usually the case. It would seem
that, in the case of an asymmetric MoM matrix, the solution of
the adjoint problem is unavoidable. On the other hand, a linear
EM problem is intrinsically reciprocal, and, in the limit of an in-
finitely fine mesh, most MoM techniques tend to produce nearly
symmetrical system matrices. In Section VI, we show an im-
portant result: if the mesh is suficiently fine to achieve a solu-
tion convergence error below 10%, then the asymmetry of the
system matrix is negligibly small as far as the sensitivity cal-
culation is concerned. Consequently, the self-adjoint sensitivity
analysis using (25) is adequate with a convergent MoM solution.
Its sensitivities are practically indistinguishable from those pro-
duced by solving the adjoint problem.

6A similar relation also exists ifAAA is a Hermitian matrix:AAA = AAA = (AAA ) .
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C. -Parameter Sensitivity Expression for Linear Systems

To summarize the above theory, we state the sensitivity for-
mula for the self-adjoint -parameter problem

(26)

Here, is a constant, which depends on the powers incident
upon the th and th ports, as per (18) and (25).

IV. SELF-ADJOINT SENSITIVITIES OF

OTHER NETWORK PARAMETERS

The -parameters relate to all other types of network param-
eters through known analytical formulas [21]. Thus, the -pa-
rameter sensitivities can be converted to any other type of net-
work-parameter sensitivities using chain differentiation.

On the other hand, the MoM is well suited for the compu-
tation of the input impedance of one-port structures, e.g.,
antennas. Input-impedance sensitivities have been already con-
sidered in [10], [15], and [16]. There, the self-adjoint nature of
the problem has not been recognized. As a result, the implemen-
tation uses in-house MoM codes, which are modified to carry
out the adjoint-problem solution.

Below, we give the coefficient in the self-adjoint sensitivity
expression for computed with the MoM.

Making use of the MoM port representation explained previ-
ously, the relation between the adjoint and the original excitation
vectors is obtained as

(27)

regardless of whether the port consists of a single or multiple
wire segments or metallic triangles. Thus, the self-adjoint sen-
sitivity formula for is the same as (26) after replacing
with and with . Here, is the complex current at
the port known already from the system analysis.

V. GENERAL PROCEDURE AND SOFTWARE REQUIREMENTS

Assume that the basic steps in the EM structure analysis have
already been carried out. These include: 1) a geometrical model
of the structure has been built through the graphic user interface
of the simulator; 2) a mesh has been generated; 3) the system
matrix has been assembled; and 4) the system equations have
been solved for all port excitations, and the original solution
vectors , of the nominal structure have been
found with sufficient accuracy. The self-adjoint sensitivity anal-
ysis is then carried out with the following steps.

Step 1) Parameterization: Identify design parameters
.

Step 2) Generation of Matrix Derivatives:7 For each , per-
turb the structure slightly (with about 1% of the
nominal value) while keeping the other parame-
ters at their nominal values. Re-generate the system
matrix , where is a
vector whose elements are all zero except the th

7The described procedure uses forward finite differences to obtain the system
matrix derivatives. In optimization, a more computationally efficient approach
would be the Broyden update [15], [16].

one, . Compute the derivatives of the
system matrix via finite differences

(28)

Note that (28) is applicable only if and are
of the same size, i.e., the two respective meshes
contain the same number of nodes and elements.
Moreover, the numbering of the nodes and elements
must correspond to the same locations (within the
prescribed perturbation) in the original and per-
turbed structures, i.e., the mesh topology must be
preserved.

Step 3) Sensitivity Computations: Use (26) with the proper
constant .

The above steps show that the EM simulator must have cer-
tain features, which enable the self-adjoint sensitivity analysis.
First, it must be able to export the system matrix so that the user
can compute the system matrix derivatives with (28). Second, it
must allow some control over the mesh generation, so that (28)
is physically meaningful. Third, it must export the field/current
solution vector so that we can compute the sensitivities with
(26). The second and third features are available with practi-
cally all commercial EM simulators. The first feature deserves
more attention. The system matrix is typically very large. In the
FEM, it is sparse and can be compressed and further stored in the
computer RAM or in a disk file without excessive time delay. In
the MoM, however, the matrix is dense, and writing to the disk
may be time consuming. Also, only a few of the commercial
simulators give access to the generated system matrices. This
is why our numerical experiments are carried out with FEKO
[19] and with FEMLAB [22]. The first solver, which is based
on the MoM, has the option to export the system matrix to a file
stored on the disk. It also exports the solution vector with the
computed current distribution. FEMLAB is based on the FEM
and supports all of these features. Moreover, we can access its
system and solution matrices directly without the need to write
to the disk.

VI. VALIDATION

We compute the network-parameter sensitivities with our
self-adjoint formula and compare the results with those ob-
tained by a forward finite-difference approximation applied
directly at the level of the response. This second approach
requires a full-wave simulation for each designable parameter.
In all plots, our results are marked with SASA (for self-adjoint
sensitivity analysis), while the results obtained through direct
finite differencing are marked with FD.

A. Sensitivity Solutions With FEM (FEMLAB)

Here, we present two of our validation examples [23]: an
-plane waveguide bend and a dielectric resonator filter [24],

both analyzed in their dominant TE mode. Their -plane
views are shown in Fig. 1. The only design parameter in the
waveguide-bend example is the miter length (the angle is fixed
at 45 ). We compute the -parameter derivatives with respect
to in a frequency band from 5.16 to 7.74 GHz (15 frequency
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Fig. 1. Top view of the waveguide structures used to validate the sensitivity
analysis with the FEM. The waveguide (WR-137) cross section is the same in
both examples, a�b = 3:48�1:6 cm. (a) H-plane bend where d is the design
parameter, ppp = [d]. (b) Dielectric-resonator filter with three identical dielectric
posts (" = 38:5; tan � = 2� 10 ); ppp = [r=a s=� t=a] .

Fig. 2. Derivatives of ReS and ImS with respect to d in the
waveguide-bend example at f = 7:74 GHz.

points). The range of parameter values is cm with
steps of 1 mm. Fig. 2 shows the derivatives of the real and imag-
inary parts of with respect to at 7.74 GHz. Fig. 3 shows
the derivatives of at the same frequency. The perturbation of

used in the computation of the system matrix derivative is 1%.
The same perturbation is used in the FD computations as well.
The agreement between the two sets of data plotted in Figs. 2
and 3 is excellent. This is true for the whole frequency band of
interest.

The dielectric-resonator filter [24] is built from three identical
rectangular ceramic posts. The material of the posts has com-
plex permittivity , where is the
permittivity of vacuum. The design parameters are: the width of
the posts normalized to the waveguide width , the distance
between the posts normalized with respect to the guided wave-
length , and the length of the posts normalized with respect
to the waveguide width . Figs. 4–6 show the derivatives of

and with respect to and , respectively.8

The results are for a frequency GHz. Again, very good
agreement is observed between the self-adjoint derivatives and
the respective finite-difference estimates.

8The derivative of the magnitude jF j of a complex response F = F + jF
is obtained from the derivatives of its real and imaginary parts = jF j �

F + F .

Fig. 3. Derivatives of ReS and ImS with respect to d in the
waveguide-bend example at f = 7:74 GHz.

Fig. 4. Derivatives of jS j and jS j at 6.88 GHz for the dielectric-resonator
filter with respect to r=a. The other design parameters are fixed at t=a =
0:2; s=� = 0:32.

Fig. 5. Derivatives of jS j and jS j at 6.88 GHz for the dielectric-resonator
filter with respect to s=� . The other design parameters are fixed at r=a =
0:06; t=a = 0:2.
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Fig. 6. Derivatives of jS j and jS j at 6.88 GHz for the dielectric-resonator
filter with respect to t=a. The other design parameters are fixed at r=a =
0:06; s=� = 0:32.

Fig. 7. Top view of the printed structures used to validate the sensitivity
analysis with the MoM. (a) Microstrip-fed patch antenna with design
parameters ppp = [LW ] . (b) Microstrip bandstop filter with design parameters
ppp = [L W ] . The views show the actual mesh.

B. Sensitivity Solutions With MoM (FEKO)

The calculations of the sensitivities of the -parameters and
the input impedance are validated through a number of FEKO
analyses [20], two of which are described next (see Fig. 7). As
before, our self-adjoint results are compared with the response
derivatives obtained with the finite-difference approximation,
which uses 1% parameter perturbation.

1) Input Impedance Sensitivities of a Microstrip-Fed Patch
Antenna: The microstrip-fed patch antenna [15] is printed on a
substrate of relative dielectric constant and height

mm. The design parameters are its width and
length shown in Fig. 7(a). The figure shows also the mesh
of the metal layer. We compute the sensitivities of the antenna
input impedance . Our derivatives with respect to the antenna
length ( mm) for a width mm and a
frequency of 2.0 GHz are plotted together with the finite-differ-
ence results in Fig. 8.

2) -Parameter Sensitivities of the Bandstop Filter: This
simple microstrip filter [see Fig. 7(b)] is printed on a substrate
of and mm. It is analyzed at GHz.
The design parameters are the width and length of the
open-end stub. We compute the sensitivities of the -parameter

Fig. 8. Derivatives of Z with respect to the length L of the patch antenna at
f = 2:0 GHz. Width is at W = 85 mm.

Fig. 9. Derivatives of the S-parameter magnitudes of the bandstop filter with
respect to the stub length L at f = 4:0 GHz. Width is W = 4:6 mm.

magnitudes and phases.9 Fig. 9 shows the derivatives of
and with respect to the stub length when mm.
Fig. 10 shows the derivatives of the respective phases.

The self-adjoint sensitivities calculated with the MoM solver
disregard the asymmetry of the system matrix as discussed in
Section III-B. In Table I, we give quantitative assessment of this
asymmetry in the two examples considered above in terms of
three measures.

1) Maximum measure:

(29)

2) measure:

(30)

9The derivative of the phase � of a complex response jF je = F + jF
is obtained from the derivatives of its real and imaginary parts = jF j �

F � F .
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Fig. 10. Derivatives of the S-parameter phases of the bandstop filter with
respect to the stub length L at f = 4:0 GHz. Width is W = 4:6 mm.

TABLE I
ASYMMETRY MEASURES OF MoM MATRICES IN VALIDATION EXAMPLES

Fig. 11. Folded dipole and one of its coarse nonuniform segmentations in
FEKO (32 segments). The radius of the wire is a = 10 � and the spacing
between the wires is s = 10 �. L is a design parameter, 0:2� � L � 1:2�.
The arrow in the center of the lower wire indicates the feed point.

3) measure:

(31)

The excellent agreement between the self-adjoint sensitivities
and the finite-difference sensitivities shown in Figs. 8–10 asserts
that the asymmetry measures summarized in Table I are minor
as far as the sensitivity calculations are concerned. We need,
however, a robust criterion, which can assure the accuracy of the
sensitivity result without the need to check against a reference.

3) MoM Matrix Symmetry Versus Convergence of Solu-
tion: We carry out the following experiment. We analyze
the folded dipole shown in Fig. 11. The radius of the wire
is and the spacing between the two wires is

. The length varies from to . The
response is the antenna input impedance . We force the
maximum segment size on one of the two parallel wires to
be five times larger than that on the other wire. This leads to
very different segment lengths along the two parallel wires (see
Fig. 11). Since the two wires are very close, the MoM matrix
is quite asymmetric. We emphasize that this is an abnormal
(not recommended) segmentation allowing us to investigate a
worst case scenario. Normally, the user sets a global maximum

TABLE II
CONVERGENCE ERROR AND MATRIX ASYMMETRY MEASURES

IN THE MESH REFINEMENT FOR THE FOLDED DIPOLE

segment length, which is applied to the entire structure, with
the result being a relatively uniform segmentation or mesh.

We next perform mesh refinement starting from a coarse
mesh of 32 segments. Each iteration of the mesh refinement
involves: 1) a decrease of the mesh elements by a certain factor
and 2) full-wave analysis with the current mesh. We decrease
the maximum element size by approximately 50% for each of
the two parallel wires of the folded dipole. The ratio of 5 be-
tween them is preserved. The mesh refinement continues until
a convergence error less than 1% is achieved. The convergence
error at the th iteration is defined as

(32)

Here, and are the complex input impedances com-
puted at the th and th analyses. Convergence is achieved
with a mesh of 1088 segments.

At each of the above analyses, we compute the matrix asym-
metry measures, which are summarized in Table II. We see that,
as soon as convergence is achieved, the asymmetry measures

and become comparable to those in the validation ex-
amples (see Table I).

At every iteration of the mesh refinement, we also compute
the derivative (at ) with our self-adjoint ap-
proach, i.e., ignoring the system matrix asymmetry. We compare
the self-adjoint result for each mesh with its respective reference
sensitivity. The reference sensitivity is computed with our orig-
inal adjoint technique [10], which solves the adjoint problem
(4), i.e., it fully accounts for the asymmetry of the system ma-
trix.10 We define the asymmetry error in the computed response
derivative as

(33)

where is the reference derivative.
In Fig. 12, we plot the asymmetry derivative error for

and the matrix asymmetry measure versus the con-
vergence error of the MoM solution [see (32)]. First, we see
that increases as the convergence error increases with a
slope, which is very similar to that of (unlike and ).
Apparently, is the matrix asymmetry measure, which can
serve as a criterion for an accurate self-adjoint sensitivity cal-
culation. As long as its value is below 2%, we can expect

10We note that FEKO exports not only the MoM system matrix but also itsLLL
and UUU factors. Thus, the adjoint problem solution is very fast [10].
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Fig. 12. Matrix asymmetry measure and the error of the computed derivative
@Z =@L (at L = 0:5�) as a function of the convergence error of the analysis
in the folded-dipole example.

to be well below 1%. Second, we conclude that as soon as an
acceptable convergence is achieved in the response calculation

% , we can have full confidence in the self-adjoint re-
sponse sensitivity calculation since its asymmetry error is
well below , typically by two orders of magnitude.

In summary, if the MoM solution is set up properly and it
yields network parameters of acceptable accuracy,11 it can be
used to compute accurate network-parameter sensitivities with
the self-adjoint approach. This approach is robust and insensi-
tive to the asymmetry of the MoM system matrix.

For completeness, we note that our methodology is applicable
when the MoM matrix is fully computed and is made acces-
sible. The nature of the linear-system solver (direct or iterative)
is unimportant in the self-adjoint analysis since an adjoint so-
lution is not needed. However, MoM techniques based on fast
multipole expansions do not compute the full matrix and are
thus not well suited for adjoint-based sensitivity analysis. For
them, specialized adjoint-based algorithms need to be devel-
oped and, at this stage, applications with commercial solvers do
not seem feasible. Response sensitivities with finite differences,
however, are an option.

VII. COMPUTATIONAL OVERHEAD OF THE SELF-ADJOINT

SENSITIVITY ANALYSIS

A. CPU Time Overhead

The computational overhead associated with the self-adjoint
sensitivity analysis is due to two types of calculations: 1) the
system matrix derivatives, , and 2) the
row-matrix-column multiplications involved in the sensitivity
formula (26). Compared to the full-wave analysis, the sensitivity
formula (26) requires insignificant CPU time, which is often ne-
glected. We denote the time required to compute one derivative
with the sensitivity formula as . In comparison, the calcu-
lation of the system matrix derivatives is much more time
consuming. Whether it employs finite differences or analytical

11Convergence analysis is desirable in order to verify that the solution accu-
racy is “acceptable.” Most commercial MoM solvers do not perform automated
mesh refinement but manual refinement is always possible.

Fig. 13. Ratio between the time required to solve the linear system and the
time required to assemble the system matrix in FEMLAB (FEM) and FEKO
(MoM).

expressions, it is roughly equivalent to matrix fills.12 A matrix
fill, especially in the MoM, can be time-consuming. We denote
the time for one matrix fill as . Thus, the overhead time re-
quired by the self-adjoint sensitivity analysis is

(34)

On the other hand, if we employ forward finite differences
directly at the level of the response in order to compute the
derivatives of the network parameters, we need additional
full analyses, each involving a matrix fill and a linear system
solution. Thus, the overhead of the finite-difference sensitivity
analysis is

(35)

where is the time required to solve (1).
We can define a time-saving factor as the ratio

, which is a measure of the CPU savings offered by
our sensitivity analysis approach

(36)

Since is negligible in comparison with , we have

(37)

Evidently, the larger the ratio is, the larger our
time savings are. Notice that , i.e., our approach would
never perform worse than the finite-difference approach. de-
pends on the size of the problem—it grows as the number of un-
knowns increases. This dependence is stronger in the MoM.

Fig. 13 shows the ratios of the FEKO and
FEMLAB solvers. The FEKO data are generated with a seven-
element Yagi–Uda antenna [10], [25] analyzed with increas-
ingly finer segmentations whereby the number of unknowns in-
creases from 240 to 11 220. The FEMLAB data are generated
with a dielectric-slab waveguide filter [26], [27] where we in-
crease the number of unknowns from 254 to 16 495 through

12If the Broyden update is used to compute the system matrix derivatives, this
overhead is negligible [15], [16].
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TABLE III
FEMLAB COMPUTATIONAL OVERHEAD OF SENSITIVITY ANALYSIS WITH THE

SELF-ADJOINT METHOD AND WITH THE FINITE DIFFERENCES (N = 1)

TABLE IV
FEKO COMPUTATIONAL OVERHEAD OF SENSITIVITY ANALYSIS WITH THE

SELF-ADJOINT METHOD AND WITH THE FINITE DIFFERENCES (N = 1)

TABLE V
FEMLAB COMPUTATIONAL OVERHEAD OF SENSITIVITY ANALYSIS WITH THE

SELF-ADJOINT METHOD AND WITH THE FINITE DIFFERENCES (M = 50000)

TABLE VI
FEKO COMPUTATIONAL OVERHEAD OF SENSITIVITY ANALYSIS WITH THE

SELF-ADJOINT METHOD AND WITH THE FINITE DIFFERENCES (M = 10680)

mesh refinement. The plotted ratios are only representative since
they depend on the type of the mesh (segments or triangles
in FEKO) and on the type of the linear-system solver (direct
or iterative). The trend of the ratio increasing with the size of
the problem is general. We also emphasize that we record the
CPU time only. With large matrices, a computer may run out
of memory (RAM), in which case, part of the data is swapped
to the disk. This causes a significant increase of and ,
which is machine and hard-drive dependent. This is not taken
into account.

In Table III, we show the actual CPU time spent for response
sensitivity calculations with our self-adjoint approach and the
finite-difference approximation using the FEMLAB solver.
Table IV shows the same information for the FEKO analysis.
We consider the case of one design parameter , i.e., a
single derivative is computed. The size of the system varies.
The increase of the time-saving factor as the number of
unknowns increases corresponds closely to the ratio curves

plotted in Fig. 13 in accordance with (37). The
analyzed structures are the same as those used to investigate
the ratios.

We also carry out a time comparison between our approach
and the finite-difference approach when the size of the system

is fixed, but the number of design parameters varies. The
FEM and MoM results are summarized in Tables V and VI, re-
spectively. As predicted by (37), the time savings are practically
independent of the number of design parameters.

B. Possible Further Reduction of Overhead

We reiterate that, in optimization, the Broyden update is a
far more efficient alternative to the computation of the system
matrix derivatives [15], [16]. With it, becomes roughly pro-
portional to , which is normally a very large
ratio. The application of this algorithm in optimization is to be
discussed elsewhere.

It is important to understand that in our implementation we
do not have access to the meshing and matrix-assembly mod-
ules of the EM simulators. As a result, full re-meshing and a
matrix fill are required to obtain the system matrix derivative for
each of the design parameters. If the self-adjoint algorithm is
to be implemented within an EM solver, which already has pa-
rameterization available, the time required for a perturbed-ge-
ometry matrix fill may be drastically reduced [10]. This
is because the parameterization necessarily flags all mesh ele-
ments affected by a parameter perturbation. It is then a relatively
simple task to link the affected mesh elements to the affected
matrix elements, and recompute only the affected elements in-
stead of recomputing the whole system matrix. The number of
affected matrix elements is very small and the system matrix
derivative is very sparse when a shape parameter is perturbed.
When global material parameters are perturbed, many or all of
the matrix elements change, and the system matrix derivative
[12] is dense.

VIII. CONCLUSION

We have proposed an adjoint-variable approach to the com-
putation of the network-parameter sensitivities, which is inde-
pendent of the EM analysis engine. It exploits the self-adjoint
nature of the sensitivity problem in a linear medium thereby
replacing the adjoint-variable solution with the properly scaled
solution of the original problem. Not only does this reduce the
computational overhead of the sensitivity computation but it
significantly simplifies the implementation by making it com-
pletely independent of the EM analysis code. We discuss the
implementation with particular commercial MoM and FEM
EM solvers, which support the features enabling the sensitivity
analysis. Our methodology, however, is general, and with the
proper choice of the complex constant relating the adjoint and
original solutions, it can be applied to other FEM or MoM
simulators.

We provide thorough investigation of the accuracy and the
CPU time requirements of the self-adjoint algorithm. We show
that the CPU time overhead of the sensitivity analysis can
be significantly reduced by using our adjoint technique as
compared to the direct finite differences at the response level.
The larger the size of the problem is, the larger the time savings
factor is.
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