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Derivative Free
and

Surrogate
Optimization

Introduction by the Editor

This issue of SIAM/Optimization Views-and-
News focuses on Derivative Free and Surrogate Op-
timization. Hopefully, other issues in this area will
appear in the near future, since a numbers of rele-
vant topics were not covered yet.

I am extremely pleased to announce the three pa-
pers published now. In the first one, Abramson,
Audet, and Dennis describe their mesh adaptative
direct search (MADS) methods. These methods cir-
cumvent a drawback of the popular generalized pat-
tern search (GPS) framework for nonsmooth prob-
lems. The usefulness of GPS and MADS partially
relies on the explicit search/poll steps algorithmic
framework.

Toint also covers direct and pattern search meth-
ods, but the goal of his paper is to show the use
of partial separability in Derivative Free Optimiza-
tion (DFO). In this paper, trust region interpolation
based methods, a very efficient class of methods for
DFO, is also considered.

The third paper is more along the lines of Surro-
gate Optimization (SO). Note that SO is revelant by
itself and necessary also to make methods like MADS
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or GPS more efficient in their use of the search step.
The paper by Bandler, Koziel, and Madsen intro-
duces to our audience the concept of space mapping,
which allows to build useful surrogates when course
models are available for fine tune models.

I would like to thank all the authors for their
excellent contributions and to thank also Ana Lúısa
Custódio (New University of Lisbon) for reviewing
some of the material in this issue.

Lúıs N. Vicente, January 2006.
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Abstract This paper is intended not as a survey,
but as an introduction to some ideas behind the
class of mesh adaptive direct search (MADS) meth-
ods. Space limitations dictate a brief description of
various key topics to be provided along with several
references, which themselves provide further refer-
ences.

The convergence theory for the methods presented
here make a case for closing the gap between non-
linear optimizers and nonsmooth analysts. However
these methods are certainly not of purely theoret-
ical interest; they are successful on difficult prac-
tical problems. To encourage further use, we give
references to available implementations. MADS is
implemented in the direct search portion of the
MathWorks MATLAB Genetic Algorithm and Di-
rect Search (GADS) Toolbox.

1. Introduction – the problem and
its properties

For us, derivative-free optimization excludes meth-
ods that use standard finite difference approxima-
tions to derivatives in a Newton or SQP algorithmic

1 Audet’s work was supported by FCAR grant NC72792
and NSERC grant 239436-05. Dennis was supported by
LANL/DOE 94895-001-04 34, LBNL/DOE 671590, and both
were supported by AFOSR F49620-01-1-0013, the Boeing
Company, and ExxonMobil Upstream Research Company.
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framework. Those are well established and valu-
able methods. Indeed, there are many reasons to
use them in place of really derivative-free methods
like the ones treated here if one can. However, our
target class of problems are not amenable to such an
approach.

Since this is to be only one of several papers de-
voted to derivative-free optimization, we will con-
centrate on summarizing our work without making
an attempt to give a survey of the topic. This is a
relief because derivative-free optimization is already
a diverse area of optimization, and it is growing fast,
due in part to the importance of these algorithms for
applications.

Our interest in the topic of direct search meth-
ods came directly from users, and our interaction
with users continues to be our strongest influence.
However, it would be incorrect to assume that these
methods are not interesting for their own sake. We
have found all the theoretical challenge we would
wish for in this area. This leads to another point we
will try to make: derivative-free optimization will
and should form closer ties between computational
optimization and nonsmooth analysis. We believe
that nonsmooth analysis should be included in any
curriculum meant to train nonlinear optimization re-
searchers.

In this paper, we consider the general nonlinear
optimization problem:

min
x∈Ω

f(x) (1)

where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn and
f, cj : X → Rn ∪ {∞} for all j ∈ J = {1, 2, . . . ,m},
and where X is a subset of Rn. No differentiability
assumptions on the objective and constraints are re-
quired for these algorithms. However, the strength
of the optimality results at a limit point are closely
tied to the local smoothness of the functions there
and to properties of the tangent cone to Ω at a limit
point produced by the algorithm.

We treat X and C(x) =
(c1(x), c2(x), . . . , cm(x))T ≤ 0 differently be-
cause they are intended to model different classes
of constraints. The set X includes the set of points
to which x must belong in order that the functions
f(x) and C(x) can be evaluated. We only require
that the user provides a routine that says whether

or not x is in X. We refer to these constraints as
“yes/no” or oracular constraints.

Another interesting aspect of these problems is
that even when x ∈ Ω, we may not get a value
for f(x) or C(x), though it may take as long to
find that out as it would have if we had been able
to get a value. We model this situation by setting
f(x) = +∞. This happens, for example, in some
multi-disciplinary optimization (MDO) problems, in
which getting a value depends on runtime linking of
legacy PDE solvers [17].

Every trial point, as well as the initial point, must
satisfy the X constraints, but C(x) ≤ 0 is only re-
quired to hold at the solution. In fact, the user is
often interested in how much optimality is possible
with a slight relaxation of these constraints. We call
these open constraints, and we treat them by a mod-
ification given in [14] of the filter method.

Filter algorithms were introduced by Fletcher and
Leyffer [31] as a way to globalize sequential linear
and quadratic programming (SLP and SQP) without
using any merit function for weighting the relative
merits of improving feasibility and optimality. A fil-
ter algorithm introduces a function that aggregates
constraint violations and then treats the resulting
biobjective problem. A trial point is accepted if it
either reduces the value of the objective function or
that of the constraint violation; otherwise it is said to
be filtered. Although this clearly is less parameter-
dependent than a penalty function, specifying a con-
straint violation function still implies an assignment
of relative weights to reducing the violation of each
constraint. The algorithm maintains feasibility with
respect to X by modifying the aggregate constraint
violation for Ω to be +∞ outside of X.

A key feature of the optimization problems we
most often meet in practice is that they involve run-
ning an expensive simulation to get ancillary vari-
ables needed to evaluate the blackbox function codes
that define f and C. This means that we need to
be parsimonious with function and constraint values,
and it also implies that there are likely to be few cor-
rect digits in the output. As a result, derivatives are
unlikely to exist everywhere, and if they do exist,
difference quotients are not likely to give derivative
approximations suited to use in derivative-based al-
gorithms.

Often in practice, users express a desire to obtain
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the “global optimizer” of f(x) on Ω. As we have
described the problems, this is not something any
algorithm can guarantee in practice. Still, global
optimization algorithms generally find useful solu-
tions when they can be applied to real problems.
Indeed, with some attention to globality, the algo-
rithms we outline here give equally useful solutions.
We believe that this is because of synergy between
this user request and another important user desire
– robustness. In this context, one can think of a
robust optimizer as one occurring in a broad val-
ley. Such“global optimizers” are rather easier to find
than those belonging to a narrow, but deeper basin.

2. What are mesh adaptive direct
search (MADS) methods?

The methods we consider here are direct search
methods. As the name mesh adaptive direct search
(MADS) implies, these methods generate iterates on
a tower of underlying meshes on the domain space.
However, also as the name implies, they perform an
adaptive search on the meshes including controlling
the refinement of the meshes. The reader interested
in the rather technical details should read [12, 13].
Here we ask the reader to imagine an underlying
mesh and an algorithm for generating trial points
on the mesh and adapting the fineness of the mesh
to approach a local optimizer. We stress that the
full mesh is never explicitly generated.

It is possible to dispense with the mesh as in
[43, 44], which seems a simplification on the face
of it. The argument against doing away with the
mesh is that one must then use a sufficient decrease
condition rather than accepting any point that pro-
vides simple decrease. Sufficient decrease conditions
in the derivative-free situation are not as simple as a
backtracking Goldstein-Armijo strategy in the quasi-
Newton case [30]. Our suspicion is that whether or
not to use the mesh is a matter of taste, not of al-
gorithmic effectiveness, though we have no actual
experience without the mesh on real problems.

Above, we mentioned the utility of nonsmooth
analysis in derivative-free optimization. MADS is
a case in point. We discovered MADS as a direct re-
sult of weaknesses in the generalized pattern search
(GPS) class of algorithms [47], when applied to non-

smooth problems, which were exposed when we used
nonsmooth analysis to analyze GPS [12, 14].

We could also call the methods considered search
– poll methods because each iteration consists of
two steps, search and poll . The goal of an it-
eration is to find unfiltered points in X. If search
fails to find an unfiltered point, then poll is exe-
cuted, and if poll does not succeed, then the mesh
is refined.

The search step is crucial in practice because it
is so flexible, but it is a difficulty for the theory for
the same reason. search can return any point on
the underlying mesh, but of course, it is trying to
identify an unfiltered point. Any aspirations to find
a local minimizer in a deeper basin than the one we
start in is concentrated in the search step. When
we discuss some search strategies, we will justify
this point.

The poll step is more rigidly defined, though
there is still some flexibility in how this is imple-
mented. Since the poll step is the basis of the
convergence analysis, it is the part of the algorithm
where most research has been concentrated.

Lewis and Torczon [39] recognized that poll
should consider points on the mesh neighboring the
incumbent solution in a set of directions whose non-
negative linear combinations span the space. This
may seem simple, but it is a crucial observation.
Coope and Price [21, 22, 23] extended this notion
to the idea of frames, which can be thought of as do-
ing away with the requirement that the poll points
be mesh neighbors. Audet and Dennis [13] suggested
MADS as a way to implement frames so that the di-
rections used in infinitely many poll steps generate
a dense set in the tangent cone at a MADS limit
point x̂ ∈ X. This allows strong convergence re-
sults [13, 5] and excellent computational results for
the MADS algorithms [15, 16, 41].

2.1 Some search strategies

The search step can be empty. By this we mean
that the algorithm can be implemented as a sequence
of poll steps only. This is a reasonable choice when
a local minimizer in the same basin as the initial
guess is sufficient. Another reasonable strategy is
to try a step in the same direction as a previously
successful poll step. It must be said that although
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this seems reasonable, we understand that some re-
searchers have found this approach of limited value
at best.

We have experimented with random search as a
search strategy. This has some success on the ini-
tial iteration, but it seems to be a waste of function
values after that.

In our experience, the best search strategies in-
volve the use of surrogates for f and C. We use sur-
rogate to mean an inexpensive function that the user
can employ to look extensively on the current mesh
for points that the surrogate predicts will improve
the current incumbent solution. Surrogates gener-
ally are of two types, simplified physics simulations
and surfaces fit to a set of points in X usually chosen
by some space filling design. We use the term sur-
rogate rather than approximation because we do not
want to imply that anything is required with respect
to how well the surrogates approximate the problem
functions [18].

Boeing uses DACE surrogates [46] in their Design
Explorer filter implementation [10]. They generate
data sites by an orthogonal array, and then fit a
DACE model to the data. The search consists of
a global Newton SQP method applied to the sur-
rogate problem to try to generate several good lo-
cal optimizers for that problem. Then they use the
expensive “true” problem functions at those points
to decide whether the search has been successful.
Whenever new values of the true problem functions
have been computed, they are used to recalibrate the
surrogates. This surrogate management framework
leads to very successful methods. Details are given
in [10].

Alison Marsden has solved trailing edge shape
design problems using both types of surrogates in
an insightful way. She generates trial points us-
ing the MATLAB DACE surrogate package [40] and
then uses a less expensive turbulence model to check
whether a trial point is in X. If it is, then she runs
the more accurate simulation. Her search consists
of applying an evolutionary algorithm to the DACE
surrogates. See [41] for details.

Another interesting application of surrogates is
in [15], where a framework to identify good algo-
rithmic parameter values is given. To illustrate this
framework, MADS was applied to an objective func-
tion that measured the CPU time required by a

trust-region algorithm [32] to solve a set of difficult
problems. A natural surrogate function was con-
structed by having the trust-region method to solve
a different list of easy problems.

2.2 The poll step

The poll step is more rigidly defined than the
search step. It is necessarily called when the
search fails to produce an unfiltered point. The
poll step consists of a local exploration around the
current incumbent solution. The trial points are gen-
erated in some directions scaled by a mesh size pa-
rameter. When either the search or the poll step
is successful, then the mesh size parameter is either
kept constant or increased. Otherwise, when both
steps fail to generate an unfiltered point, the incum-
bent is declared to be a mesh local optimizer [21] and
the mesh size parameter is decreased.

In GPS, the poll directions were restricted to be-
long to some finite set. The GPS convergence re-
sults [12, 4] are closely tied to these fixed directions.
Furthermore, there are some known examples [9] for
which GPS falls short of converging to a satisfactory
solution because of this restriction.

MADS overcomes this limitation by allowing a
larger set of poll directions. In fact, as k (the iter-
ation counter) goes to infinity, the union of the nor-
malized poll directions over all k becomes dense in
the unit sphere. This algorithmic construction al-
lows stronger convergence results [13].

In some cases, incomplete derivative information
may be available. For example, in some MDO prob-
lems, derivatives for some disciplines may be avail-
able, but not for others, and derivatives across mul-
tiple disciplines are not available. If the full gradient
is available, directions can be chosen so that all but
one are ascent directions, which can be ignored, thus
reducing the required number of function evaluations
to one per iteration [6]. In this case, MADS reduces
to an approximation of steepest descent. Even if only
some partial derivatives are known, MADS can ex-
ploit this information to reduce the number of func-
tion evaluations in each poll step [6] without sacri-
ficing theoretical convergence properties. In related
work, Custódio and Vicente [26] compute a simplex
gradient from a subset of previously evaluated points
having certain geometrical properties, and they have
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studied its use as a potential direction of descent in
an effort to speed convergence.

Since MADS is opportunistic, in that it moves im-
mediately to a new improved mesh point as soon
as it is found, the order in which poll points are
evaluated can impact performance. One approach
in which we have witnessed such improvement is
what we call dynamic polling, in which the most
recent successful direction is moved to the front of
the queue after each successful poll step. Dynamic
polling was shown useful in [13] on a chemical en-
gineering parameter fit problem [33]. If we were to
use a surrogate in the search step, then evaluating
the surrogate at each poll point and then ordering
them by surrogate function value would also be a
wise choice. Custódio and Vicente [26] have also seen
a reduction in function evaluations by computing a
simplex gradient and ordering poll points according
to how small an angle the corresponding poll direc-
tions make with the negative of the simplex gradient.
One must keep in mind, however, that these strate-
gies (dynamic polling, surrogate and simplex gradi-
ent ordering) do not necessarily lead to improved
computational times in all cases.

3. Why study these methods

In previous sections, we have mentioned some ap-
plications of MADS. In this section, we will make
some general remarks about applications, but since
the interested reader can find all the details we can
furnish in the referenced papers, we save space here.

Also in this section we will discuss the theoretical
support for MADS. We hope that other derivative-
free optimization researchers will consider using non-
smooth analysis to analyze their methods. The dis-
covery of MADS was a direct result of our nons-
mooth analysis of GPS, and that has made us en-
thusiastic about building a bridge to this advanced
theoretical part of our discipline.

3.1 Importance in practice

It is likely that every paper in these special issues
will make a case for the practical importance of
derivative-free optimization methods. We second ev-
erything the other authors say, but we will use our
space here to try to make a couple of points that

other authors may not make.
The first point is that, in spite of the formidable

aspects of our target class of problems, we are of-
ten able to solve them quite efficiently. The main
reason we were the first to solve them is that there
are barriers to applying traditional derivative-based
methods, and heuristic searches use too many func-
tion evaluations for these relatively expensive prob-
lem functions.

These problems typically take minutes to weeks
for each function value, and many of them have what
Tim Kelley [19], who also sees such problems, likes to
call “hidden constraints”. This second point means
that one calls the simulation codes that must be run
to evaluate the functions for perfectly innocuous ar-
guments, and they fail. Furthermore, they fail after
running for about the same length of time as when
they succeed. In [18], this sort of failure happens to
us roughly twice in every three function calls.

The main reason we have seen for these evaluation
failures is that the function evaluations depend on
runtime linking of single discipline solvers; e.g., sep-
arate structures and fluids codes. This is characteris-
tic of multidisciplinary design optimization (MDO)
problems [25, 8]. The interested reader will find a
vast amount of MDO literature on the web.

Thus, to get the ancillary variables needed to eval-
uate the objective and constraints, one must do a
multidisciplinary analysis, meaning the runtime link-
ing of the codes. In our experience, an MDA can
be thought of as solving a large system of nonlinear
equations for which no Jacobian information is prac-
tical. In such a circumstance, there is little one can
try except simple successive substitution or nonlin-
ear Gauss-Seidel. This is sensitive to the order in
which the blocks are processed, and it is apt to fail.

Another difficulty inherent to some of the target
problems is that the functions are often contami-
nated with noise. It is not infrequent that evaluat-
ing a function twice at the same value of x returns
slightly different values.

3.2 Theoretical support

These algorithms are intended to be applied to non-
smooth problems, or to any problems for which
derivatives are impractical, even by finite differences.
Typically, both the objective function and the con-
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straints are evaluated by running a black box com-
puter code. There is no way one can measure the
smoothness of these functions.

The convergence results state that if the MADS
algorithm is applied to such problems, then some op-
timality conditions are guaranteed. In [12] and [13]
we give a hierarchy of convergence results based on
various degrees of smoothness of the objective and
constraints.

At the bottom of the hierarchy, we have a result
that if the iterates produced by the algorithm are
bounded, then there is an x̂, which is the limit of
mesh local optimizers on meshes that get infinitely
fine. Assuming a bounded sequence of iterates is a
standard assumption in nonlinear optimization, and
it holds for our algorithms if the initial level set is
bounded.

Then, by adding more smoothness, the local op-
timality results become successively stronger for a
limit point x̂. At the smoothest end of the hierar-
chy, we have that if f is strictly differentiable near
x̂, and if the constraint qualification that the tan-
gent cone TΩ(x̂) to the feasible region Ω at x̂ ∈ Ω is
non-empty and full-dimensional, then the directional
derivative f ′ satisfies

f ′(x̂; d) ≥ 0 for every d ∈ TΩ(x̂).

This is the KKT first-order optimality condition:
there are no feasible strict descent directions. In the
unconstrained case, the tangent cone is the entire
space, and this last condition becomes ∇f(x̂) = 0.

The intermediate results of the convergence anal-
ysis are based on different degrees of smoothness.
The directional derivatives f ′ are not appropriate to
deal with non-smooth functions, as they are unde-
fined. We turned to the nonsmooth community and
found exactly the analytical tool that we needed to
analyze the convergence of our methods: the Clarke
Calculus [20].

Clarke proposes a generalization f◦(x̂; d) of the
directional derivative for locally Lipschitz functions,
and generalizations [45, 20, 35] of the tangent
cone; namely, the hypertangent cone TH

Ω (x̂), the
Clarke tangent cone TCl

Ω (x̂), and the contingent cone
TCo

Ω (x̂). Armed with these definitions, we can show
that depending on the smoothness, the limit point x̂
generated by MADS satisfies

f◦(x̂; d) ≥ 0

for every

d ∈ TH
Ω (x̂), TCl

Ω (x̂) or in TCo
Ω (x̂).

Furthermore, in [5], we discover that with more
smoothness (namely, that f is twice strictly differen-
tiable near x̂), x̂ satisfies a second-order Clarke-KKT
necessary condition for optimality that depends on
a generalization of the Hessian matrix [34]. In fact,
with additional assumptions, x̂ satisfies a second-
order Clarke-KKT sufficient condition for optimal-
ity, thus ensuring convergence of MADS to a local
minimizer [5].

In stating these results, we make the assumption
that the set of directions used infinitely often is dense
in the hypertangent cone at x̂. As stated earlier,
MADS is designed specifically so that this can be
accomplished, but in order to do it in practice, our
selection of positive spanning directions is done ran-
domly. Consequently, most of our convergence re-
sults are with probability one.

4. What is still needed

There are practical issues we still need to deal with
for the class of problems discussed above. Anyone
who has worked with users has had the experience
of being told that the problem has a certain property,
e.g., ten design variables, only to be told after solving
the problem that it would be nice to be able to deal
with one hundred design variables. This is a sure
sign of progress in the project. In this section, we
will give brief descriptions of some of the main issues
raised by users after an initial success with the first
formulation.

4.1 Categorical variables

Nonlinear mixed integer problems are hard enough,
but many engineering design problems involve cat-
egorical variables. These are discrete variables con-
strained to a discrete set as a part of X. The prob-
lem functions cannot be evaluated unless all cate-
gorical variables take on feasible discrete values. For
example, simulating an oil field with 25.3 oil wells
is out of the question unless one interpolates and
thereby increases the number of expensive simula-
tions required.
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We use the term mixed variable programming
(MVP) to denote mathematical programming prob-
lems with both continuous and categorical vari-
ables [11]. An example is found in the design of a
fixed-length thermal insulation system [36] in which
the objective is to minimize the power required sub-
ject to some reasonable linear constraints.

In this problem, the system consists of a series of
insulators of various material types and thicknesses,
each pair of which is separated by a metal plate,
called a heat intercept, to which power is applied to
maintain it at a specified temperature. The material
thicknesses and intercept temperatures are the con-
tinuous variables, while the number and types of in-
sulators are categorical. In fact, the insulator types
are not even numeric, although each material type
can be mapped to the numeric value of its index into
a list of seven possible material types that may be
selected. A further interesting complication is that
the number of insulators, which defines the problem
dimension, is itself a design variable. This problem
was solved numerically in [36] using the algorithm
introduced in [11]. Realistic nonlinear constraints
on system mass, tensile yield stress, and thermal
contraction were added to the problem in [3], and
the resulting problem was solved numerically using
a pattern search filter method [7].

Because of the general lack of ordinality with
categorical variables, MVP problems present some
unique challenges. For example, there is no general
notion of local optimality. To overcome this chal-
lenge, the user must provide a set-valued neighbor-
hood function that defines the set of discrete neigh-
bors at every point. Local optimality is then defined
with respect to this function at the limit point. In
the example above, given a design of the system, dis-
crete neighbors were formed in 3 ways: swapping a
single insulator for another of a different material,
adding an insulator and heat intercept at any loca-
tion (and adjusting the continuous variables appro-
priately), or deleting any insulator with its adjacent
intercept. Once the algorithm is appropriately mod-
ified, we guarantee that the resulting solution could
not be improved by moving to a neighboring point,
as defined by these three classes of neighbors.

The main modification to the algorithm consists of
augmenting the poll step to include points in the
set of discrete neighbors, along with other promis-

ing points [11]. Convergence properties of GPS for
MVP problems with a smooth objective function and
bound constraints on the continuous variables were
established in [11] and extended to general linear
constraints and nonsmooth functions in [2]. Con-
vergence results for the GPS filter method for MVP
problems with nonlinear constraints was introduced
in [2, 7].

The class of MVP problems is actually quite com-
mon in practice, even though the field is very new,
and there are some important algorithmic and struc-
tural considerations that merit further research.

4.2 Multiple objectives

It is almost always true that real optimization prob-
lems have multiple objectives. They may not ap-
pear in this form, but scratch the surface and they
will. For example, a client might suggest a bound
constraint on some function γ(x). But, when asked
about the value of the bound, the client will say it
should be as small as possible. In other words, the
constraint is really another objective.

Another way multiple objectives show themselves
is in documenting the problem solution for the client.
Presented with a solution to an optimization prob-
lem, the client (or his/her boss) will want to know
how much better/worse the objective would be if a
certain constraint were to be relaxed/tightened.

The reader will see in both cases the standard ob-
jective synthesis approach of minimizing a weighted
sum of the individual objectives is not helpful. In
both cases, the decision maker wants to trade off one
objective against the others. What we need is to give
the client a notion of the Pareto surface. To see a
simple case of the deficiencies in the the weighted
sum approach, see [29]. We do not recommend this
approach; however, [28] is an interesting way to find
a single important Pareto point.

Since the filter approach is based on multi-
objective ideas, we hope that our filter approach can
be adapted to provide helpful tools. However, this
is not as straight forward as one might hope.

4.3 Ability to handle more decision vari-
ables

It would be useful to extend MADS to handle hun-
dreds of decision variables, on problems where par-
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allelism [37] alone would not be sufficient to solve
the problem. As with all direct search methods, we
expect to see the number of function values required
to solve an arbitrary n dimensional problem increase
much faster than n. Our goal is to find alternative
direct search methods that slow the growth.

5. Conclusions

Direct search methods are here to stay as a valu-
able subarea of optimization. They are interesting
theoretically, and they are indispensable in practice.
These special issues will document many of the ad-
vances that have been made in the area, but much
remains to be done.

We have sketched some useful properties and limi-
tations of MADS algorithms. A researcher willing to
build a strong theoretical background in nonsmooth
analysis and learn to work with users will find this
a satisfying and fruitful area in which to work. The
experience of helping a user formulate and solve a
problem thought to be intractable is the ultimate
validation for an applied mathematician. Come on
in, the water is fine.

A reader interested in obtaining software should
visit [1, 24, 27, 38, 40, 42].
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Using Problem Structure in
Derivative-Free Optimization
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1. Introduction

Derivative-free optimization is the branch of opti-
mization where the minimizer of functions of several
variables is sought without any use of the objective’s
derivatives. Although a number of problems may in-
volve constraints, we will focus in this paper on the
unconstrained case, i.e.,

min
x∈Rn

f(x), (1)

where f is an objective function which maps Rn into
R and is bounded below, and where we assume that
the gradient of f (and, a fortiori, its Hessian) cannot
be computed for any x.

The main motivation for studying algorithms for
solving this problem is the remarkably high demand
from practitioners for such tools. In most of the case
known to the author, the calculation of the objective
function value f(x) is typically very expensive, and
its derivatives are not available either because f(x)
results from some physical, chemical or econometri-
cal measure, or, more commonly, because it is the
result of a possibly very large computer simulation,
for which the source code is effectively unavailable.
The occurrence of problems of this nature appears to
be surprisingly frequent in the industrial world. For
instance, we have heard of cases where evaluating
f(x) requires the controlled growth of a particular
crop or the meeting of an adhoc committee. As can
be guessed from this last example, the value of f(x)
may in practice be contaminated by noise, but the
numerical techniques for handling this latter charac-
teristic are also outside the scope of our presentation.

Several classes of algorithms are known for
derivative-free optimization. A first class is that of
direct search techniques, which includes the well-
known and widely used simplex reflection algo-
rithm of [22] or its modern variants [11, 27], the
old Hookes and Jeeves method [20] or the paral-
lel direct search algorithm initiated by Dennis and
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Torczon [15, 29]. These methods are based on a
predefined geometric pattern or grid and use this
tool to decide where the objective function should
be evaluated. A recent and comprehensive sur-
vey of the development in this class is available
in [21] and the associated bibliography is accessi-
ble at http://www.cs.wm.edu/~va/research/wilbur.html.
See also the paper by Abramson, Audet and Dennis
in this issue. The main advantage of methods in this
class is that they do not require smoothness (or even
continuity) of the objective function.

A second algorithmic class of interest is that of in-
terpolation/approximation techniques pioneered by
Winfield [30, 31] and by Powell in a series of pa-
pers starting with [23, 24]. In these methods, a low-
order polynomial (linear or quadratic) model of the
objective function is constructed and subsequently
minimized, typically in a trust-region context (see
[6, Chapter 9]). Because they build smooth models,
they are appropriate when the objective function is
known to be smooth. A common feature of the al-
gorithms of this type is that they construct a basis
of the space of suitable polynomials and then derive
the model by building the particular linear combi-
nation of the basis polynomials that interpolate (or
sometimes approximate) known values of f(x). Pow-
ell favors a basis formed of Lagrange fundamental
polynomials, while Conn et al. [7, 8, 10] use New-
ton fundamental polynomials instead. Both choices
have their advantages and drawbacks, which we will
not discuss here. The polynomial space of interest is
typically defined as the span of a given set of mono-
mials: full quadratic polynomials in the two vari-
ables x1 and x2 are for instance those spanned by 1,
x1, x2, x1x2, x2

1 and x2
2.

While methods in these two classes have been
studied and applied in practice, their use has re-
mained essentially limited to problems involving
only a very moderate number of variables: the solu-
tion of problems in more than 20 variables is indeed
possible in both cases, but is typically very compu-
tationally intensive. In direct search techniques, this
cost is caused by the severe growth in the number
of grid or pattern points that are necessary to “fill”
R20 or spaces of even higher dimensions. A simi-
lar difficulty arises in interpolation methods, where
a total of (n + 1)(n + 2)/2 known function values
are necessary to define a full quadratic model, but

it is also compounded with the relatively high com-
plexity in linear algebra due to repetitive minimiza-
tion/maximization of such quadratic polynomials.
One may therefore wonder if there is any hope for the
derivative-free solution of problems in higher dimen-
sions. It is the purpose of this paper to indicate that
this hope may not be unfunded, at least for problems
that exhibits some structure. Section 2 discusses the
partially separable structure which will be central
here, while Sections 3 and 4 indicate how it can be
numerically exploited in direct search and interpo-
lation methods, respectively. We then consider the
special case of sparse problems in Section 5. Some
conclusions are finally presented in Section 6.

2. Problem structure

Large-scale optimization problems often involve dif-
ferent parts, or blocks. Each block typically has its
own (small) set of variables and other (small) sets of
variables that link the block with other blocks, re-
sulting, when all blocks are considered together, in a
potentially very large minimization problem. One
may think, for instance, of a collection of chemi-
cal reaction tanks, each with its temperature, pres-
sure or stirring controls, and with its input raw
material and output products. Other examples in-
clude discretized problems where a given node of
the discretization may involve more than a single
variable but is only connected to a few neighbor-
ing nodes, or PDE problems with domain decom-
position, or multiple-shooting techniques for trajec-
tory/orbit calculations, where each orbital arc only
depends on a few descriptive or control variables,
with the constraint that the different arcs connect
well via a (small) set of common variables. Exam-
ples of this type just abound, especially when the
size of the problem grows. It is interesting that their
structure can very often be captured by the notion of
partial separability, introduced by Andreas Griewank
and the author in [17, 19].

A function f : Rn → R is said to be partially
separable, if its value may be expressed, for every x,
as

f(x) =
q∑

i=1

fi(Uix), (2)

where each element function fi(x) is a function de-

http://www.cs.wm.edu/~va/research/wilbur.html
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pending on the internal variables Uix with Ui being
a ni × n matrix (ni � n). Very often, the matrix
Ui happens to be a row subset of the the identity
matrix, and the internal variables are then just a
(small) subset of the original problem variables.

Griewank and Toint show in [18] that every twice-
continuously differentiable function with a sparse
Hessian is partially separable, which gives a hint at
why such functions are so ubiquitous. It is remark-
able that, although this is only an existence result
and specifies a particular decomposition (2) only in-
directly, we are not aware of any practical problem
having a sparse Hessian and whose partially separa-
ble decomposition is not explicitly known.

Partially separable functions (and their extension
to group-partially separable ones) have been instru-
mental in the design of several numerical codes, in-
cluding the LANCELOT package [5]. We now intend
to show how they can be exploited in derivative-free
optimization.

3. Direct search for partially sep-
arable objective functions

For our description of the structure use in direct
search methods, we focus on the common case where
the matrices Ui are subsets of the identity, which
then implies that each element function fi only de-
pends on a small subset of the problem variables. As
in [28], we assume that each fi is available individ-
ually, along with a list of the problem variables on
which fi depends. Two problem variables are then
said to interact if at least one element fi depends
on both. Sets of non-interacting variables are useful
because the change in f from altering all variables
in the set is just the sum of the changes in f arising
from altering each variable in the set individually.

Exploiting partial separability is advantageous for
direct search methods in two separate ways. It can
both reduce the computational cost of each function
value sought, and also provide function values at re-
lated points as a by-product. For example, consider
a totally separable function

f(x) =
n∑

i=1

fi(xi)

where x = (x1, . . . , xn)T , and where the value of

each element fi is known at a point x. Assume, as
is typical in pattern search methods, that we wish
to explore f in the vicinity of x by calculating f
at each point of the form {x ± hei}n

i=1, where h is
a positive constant and ei is the ith column of the
identity matrix. Calculating f at each point requires
the evaluation of one fi, and so the total cost of the
2n function values at the points {x±hei}n

i=1 amounts
to two function evaluations of the complete function
f . However, any set of changes to f from steps of the
form ±hei are independent of one another provided
no two such steps alter the same variable. Hence as a
by-product we obtain the function values at all other
points of the form x + h

∑n
i=1 ηiei where each ηi is

either −1, 0, or 1. Thus we obtain f at 3n − 1 new
points for the total cost of two function evaluations.

When f is only partially separable, the gains are
not as dramatic as in the totally separable case, but
they still can be very substantial. For example, let
f be of the form

f(x) = f1(xn, x1, x2)+
n−1∑
i=2

fi(xi−1, xi, xi+1)+

fn(xn−1, xn, x1).

(3)

Then, given each fi(x), calculating f at {x±hei}n
i=1

costs the equivalent of six complete function evalu-
ations. When n is divisible by 3, an inductive argu-
ment shows that the number of other function values
obtained as by-products is 7(n/3) − 2n− 1.

A third example shows that the two advantages of
partial separability are distinct. Let f = f3(x1, x2)+
f2(x1, x3) + f1(x2, x3). Calculating f at all points
of the form x ± hei, i = 1, 2, 3, costs four function
evaluations, given that each fi(x), i = 1, . . . , 3 is
known in advance. No further function values are
generated as by-products.

We may now exploit these features in constructing
a pattern search method along the lines described in
[11], where minimization is conducted on a sequence
of successively finer nested grids (each grid is a sub-
set of its predecessor), aligned with the coordinate
directions. The mth grid G(m) is of the form

G(m) =

{
x(0) + 21−m

n∑
i=1

ηiei | ηi ∈ Z

}
,

where x(0) is the initial point and Z is the set of
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signed integers. Loosely speaking, each grid is ob-
tained by taking its predecessor and ‘filling in’ all
points half-way between each pair of existing grid
points.

For each grid, the algorithm generates a finite sub-
sequence of iterates on the grid, with monotonically
decreasing objective function values. This subse-
quence is terminated when no lower grid point can
be found around the current iterate (the final iter-
ate is then called a grid local minimizer) and the
algorithm then proceeds onto the next grid in the
sequence.

The key idea here is to exploit partial separability
in constructing the minimizing subsequences. This
is done as follows. Before the first iteration, the algo-
rithm starts by grouping the problem variables into
subsets indexed by V1, . . . , Vr such that all variables
whose index are Vp appear in exactly the same ele-
ment functions fi’s. This means that all these vari-
ables are equivalent in terms of which other vari-
ables they interact with. (In example (3), Vp = {p}
for p = 1, . . . , r = n.) Each Vp then determines a
subspace

Sp = span{ej}i∈Vp .

Thus, identifying these subspaces with their gener-
ating variables, we have that some Sp interact and
some (hopefully most) are non-interacting. (In ex-
ample (3) again, the only interactions are between
Sp−1, Sp and Sp+1 and between S1 and Sn.) We next
build a positive basis Bp for each Sp, that is a set
of vectors such that any v ∈ Sp can be written as a
positive linear combination of the vectors of Bp. For
Vp, this basis can be chosen, for instance, as

Bp = {ej}j∈Vp ∪ {−
∑
j∈Vp

ej},

in which case it is also minimal (see [12, 14] for fur-
ther developments on positive basis). Minimization
on a given grid G(m) is then achieved by repeating
the following steps.

1. For each p ∈ {1, . . . , r}, we first calculate the
objective function reduction

∆p = min
vj∈Bp

q∑
i=1

[
fi(x(k) + vj)− fi(x(k))

]
,

and denote by sp the argument of the minimum.
Because of our definition of the subspaces Sp,

only a small fraction of the elements fi(x(k)+vj)
must be computed for every vj .

2. We next choose the best objective function
reductions from a set of non-interacting sub-
spaces, i.e., we select an index set I ⊆ {1, . . . , r}
such that

∆I =
∑
p∈I

∆p

is minimal and the subspaces {Sp}p∈I are non-
interacting.

3. If ∆I < 0, we finally define

x(k+1) = x(k) +
∑
p∈I

sp,

(note that f(x(k+1)) = f(x(k))+∆I), and incre-
ment k.

This is repeated until a grid local minimum is lo-
cated (∆I ≥ 0). The procedure is then stopped if
the desired accuracy is reached, or, if this not the
case, the grid is refined and a new grid minimization
started.

Of course, this description of the algorithm re-
mains schematic, and we refer the interested reader
to [28] for further details and algorithmic variants.
In particular, this reference describes a technique for
computing the index sets V1, . . . , Vr from the par-
tially separable structure of the objective function.
We also note that it is not crucial to solve the com-
binatorial problem of Step 2 exactly: we may, for
instance, use a simple greedy algorithm to identify a
suitable index set I.

Does this work in practice? Table 1 shows the
performance in terms of complete function evalua-
tions of the method just described (under the head-
ing “PS”, for partial separability), compared to the
same algorithm without the exploitation of problems
structure (under the heading “no st.”). The compar-
ison is made on two well-known test problems from
the CUTEr test set [16].

The conclusion is very clear: using the partially
separable structure in direct search methods makes
their application to relatively large-scale problems
possible, while the unstructured approach rapidly
reaches its limits in size. It is also interesting to
note that the methodology adapts in an obvious way
if derivatives of some but not all element functions
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n LMINSURF BROYDN3D

PS no st. PS no st.

9 215 501 343 1241
16 483 3724 334 3605
25 484 10557 364 8087
36 890 19796 379 16503
49 1002 — 363 24531
64 1149 — 362 —
81 1413 — 389 —
100 1634 — 362 —
121 2045 — 362 —
144 2120 — 392 —
169 2689 — 361 —
196 3233 — 361 —
5625 79511 — 535 —

Table 1: Number of function evaluations required to
minimize the linear minimum surface (LMINSURF)
and Broyden tridiagonal (BROYDN3D) functions in
various dimensions (from [28]).

are available, or if one is ready, for some or all p,
to compute ∆p by minimizing in the complete sub-
space Sp instead of only considering the grid points
defined by the positive basis Bp.

4. Interpolation methods for par-
tially separable problems

We now turn to interpolation techniques and focus
on trust-region methods. At each iteration of this
type of methods, (typically quadratic) model of the
objective function is constructed, which interpolates
a set of known functions values. In other words, one
builds the quadratic m(k) such that

m(k)(y) = f(y) for all y ∈ Y (k),

where Y (k) is the interpolation set at iteration k,
a set of points at which values of the objective are
known. As indicated above, the number of points in
Y (k) must be equal to (n+1)(n+2)/2 for estimating
a fully quadratic m(k). This model is then minimized
within the trust-region, and the resulting trial step
accepted or rejected, depending on whether or not
the achieved decrease in f sufficiently matches the
predicted decrease in the model. The size of the
trust-region is then reduced if the match is poor,
or possibly enlarged if it is satisfactory. This broad
algorithmic outline of course hides a number of prac-

tical issues that are critical to good numerical per-
formance. The most important is that the geometry
of the sets Y (k) (i.e., the repartition the interpola-
tion points y in Rn) must satisfy a condition called
poisedness. If we consider a two-dimensional prob-
lem, for instance, it is rather intuitive that the points
in Y (k) should not all lie on a straight line. This
poisedness condition can be formalized and tested
[8, 9, 26] in various ways, but the key observation is
that the same set of points cannot be used for ever
as the algorithm proceeds, or even only modified to
include the objective values at the new iterates. Fig-
ure 1 illustrates the potentially disastrous effect on
the model of a bad geometry (bottom), compared to
a situation at a previous iteration where the geome-
try is adequately poised (top).

As a consequence, it is necessary to improve the
geometry of Y (k) at some iterations, typically by
computing the objective function’s value at new
points chosen to ensure sufficient poisedness.

How can we adapt this technique if we now as-
sume that we know a partially separable decomposi-
tion (2) of the objective? (We no longer assume that
the matrices Ui are row subsets of the identity.) The
answer, which is fully developed in [4], is based on a
fairly obvious observation: instead of building m(k),
a model of f in the neighborhood of an iterate x(k),
we may now build a collection of models {m(k)

i }q
i=1,

where each m
(k)
i now models fi in the same neigh-

borhood. Estimating a structured quadratic model
of the form

m(k)(x(k) + s) =
q∑

i=1

m
(k)
i (x(k) + s)

then requires at most (nmax + 1)(nmax + 2)/2 com-
plete function evaluations, where we have defined
nmax = maxi=1,...,q ni. Since nmax � n, this is typi-
cally order(s) of magnitude less that what is required
for estimating an unstructured model. Moreover,
nmax is often independent of n.

However, we now have to manage q interpolation
sets Y

(k)
i (i = 1, . . . , q) over the iterations, instead of

a single one. We then have to consider two possible
cases: either it is possible for the user to evaluate
a single element function fi(x) independently of the
others (as we have assumed above), or the objective
function must always be evaluated as a whole (i.e.,
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Figure 1: How the evolution of the interpolation set
can lead to a bad model when its geometry deteri-
orates (the interpolation points are materialized by
vertical bars from the surface to the plane, the model
is quadratic and shown inside the trust-region)

only the collection of values {fi(x)}q
i=1 can be com-

puted for a given x). In the second case, a straight-
forward implementation of the algorithm could be
very expensive in terms of function evaluations if
one blindly applies a geometry improvement proce-
dure to each Y

(k)
i . Indeed, computing a vector that

improves the geometry of the i-th interpolation set
yields a vector having only ni “useful” components,
and it is not clear which values should be assigned
to the remaining n−ni components. The strategy in
this case is to group the necessary individual func-
tion evaluations by applying the CPR procedure of
Curtis, Powell and Reid [13] for estimating sparse

Jacobian matrices to the n × q occurrence matrix
of variables xj into elements fi. (Other techniques
involving graph coloring in the spirit of [1] are also
possible). This typically results is substantial sav-
ings in terms of function evaluations.

As in the previous section, we do not elaborate
more on the algorithmic details and variants (and
refer to [4] for this), but rather illustrate the po-
tential benefits of the approach on a few examples.
These benefits are already visible for medium-size
problems, as is shown in Table 2 where the unstruc-
tured algorithm (UDFO) is compared with its ver-
sion using partially separable structure (PSDFO) on
two CUTEr problems. The “I” version of PSDFO
refers to the case where each element function fi is
accessible, and the “G” version to the case where the
complete collection of {fi(x)}q

i=1 must be evaluated
together for every x.

Problem n UDFO PSDFO(I) PSDFO(G)

ARWHEAD 10 311 30 54
15 790 30 56
20 1268 35 161
25 1478 37 198

BDQRTIC 10 519 348 358
15 1014 345 382
20 1610 509 596
25 2615 360 542

Table 2: Comparison of the number of function eval-
uations required by DFO solvers for solving medium-
size instances of problems ARWHEAD and BDQR-
TIC (from [4]).

Again, the use of the partially separable struc-
ture brings clear benefits, and these are also more
pronounced when the values of the elements can be
computed individually (case “I”). Table 3 indicates
that these benefits extend to higher dimensions, as
expected.

5. Interpolation methods for
sparse problems

We conclude our overview of the use of structure in
derivative-free optimization by examining interpola-
tion methods in the less favorable case where struc-
ture is present but access to the individual values
of the element functions fi(x) impossible. This may
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n GENHUMPS BROYDN3D

PSDFO(I) PSDFO(G) PSDFO(I) PSDFO(G)

10 114 168 53 70
20 200 345 56 84
50 202 357 68 114
100 249 433 153 342
200 253 436 123 278

Table 3: The number of function evaluations re-
quired by PSDFO for solving problems GENHUMPS
and BROYDN3D in various dimensions (from [4]).

happen, for instance, when the objective function
value results from a complicated simulation involv-
ing a discretized partial differential equation (such as
a complicated fluid calculation). In such cases, we
often know that a partially separable decomposition
of the form (2) exists (resulting, in our example, from
the discretization topology), but we are only given
the final value of f(x), without its decomposition in
its element function values (note the difference with
the “G” case in the previous section). This implies
that we typically know that the Hessian of f , H(x),
is sparse for every x, and know its structure. Can
we exploit this (more limited) information?

As above, the idea is to construct a quadratic
model m(k) that reflects the problem structure as
much as possible: we thus need to construct a model
whose Hessian has the same sparsity structure as
that of the objective function. Interestingly, as noted
in [2, 3], this is remarkably easy. Indeed, a given
sparsity pattern is equivalent to a selection of a sub-
set of the monomials generating the quadratic poly-
nomials: if the (i, j)-th entry of H(x) (and thus the
(j, i)-th one) is known to be zero for all values of x,
this simply indicates that f can be modelled by a re-
stricted quadratic polynomial that does not involve
the monomial xixj . Thus the models m(k) may now
be viewed as a linear combination of 1+n+nH mono-
mials, where nH is the number of nonzeros in the
lower triangular part of H(x). This last number is of-
ten a small multiple of n, in which case the size of the
interpolation set Y (k) is linear rather than quadratic
in n. The cost of evaluating a sparse quadratic model
is thus also very attractive, although typically larger
than that of a partially separable model (often in-
dependent of n, as we have noted in the previous
section).

These observations have been exploited in [2, 3],
but also in [26] where Powell describes his successful
UOBSQA code. The efficiency of this technique is
attested by the results of Table 4, where the number
of objective evaluations required for convergence is
reported for UDFO (as in Table 2) and UOBSQA.

Problem Dimension UDFO UOBSQA UOBDQA

ARWHEAD n = 10 311 118 105
n = 15 790 170 164
n = 20 1268 225 260
n = 25 1478 296 277

BDQRTIC n = 10 519 350 288
n = 15 1014 594 385
n = 20 1610 855 534
n = 25 2615 1016 705

Table 4: Comparison of the number of function eval-
uations required by UDFO, UOBSQA and UOB-
DQA solvers for medium-size instances of problems
ARWHEAD and BDQRTIC (from [4]).

Finally, one may argue that there is in fact no
need that the sparsity structure of the model’s Hes-
sian really reflects that of H(x). It is indeed possible
to simply impose an a priori sparsity structure in or-
der to reduce the size of the interpolation set, even
if no sparsity information is available for H(x). This
idea was suggested in [2] and implemented, in its ex-
treme form where the model’s Hessian is assumed to
be diagonal, in the UOBDQA code by Powell [25].
The excellent results obtained with this technique
are also apparent in Table 4, even if one might guess
that it will be mostly effective on problems whose
Hessian is diagonally dominant. Potential extensions
of this idea include the exploration of techniques (in-
spired for instance from automatic learning) which
adaptively taylor the imposed sparsity pattern to the
effective behaviour of the objective function.

6. Conclusions and perspectives

Given the discussion above, one may clearly conclude
that yes, the derivative-free optimization algorithms
can exploit problem structure to (sometimes dramat-
ically) improve their efficiency. Moreover, the argu-
ments presented also indicate that a richer structural
information typically results in more substantial effi-
ciency gains when using interpolation methods: the
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number of objective function evaluations necessary
to estimate a quadratic model indeed ranges from
quadratic in n (no structure) via linear in n (when
exploiting sparsity) to independent of n (when using
partially separability).

It is clear that the development of structure-aware
derivative-free optimization methods and packages
is only starting, and much remains to be done. We
think, in particular, of extensions of the ideas dis-
cussed here to the constrained case, and their ap-
plications to neighboring research areas, such as do-
main decomposition (an ongoing project explores the
use of partial separability in this context) and oth-
ers. Developments in these directions combine both
the more abstract aspects of algorithm design and
theory with the very practical nature of a subject in
high industrial demand. There is no doubt that they
therefore constitute valuable research challenges.
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cobian matrices and graph coloring problems, SIAM
J. Numer. Anal., 20 (1983), pp. 187–209.

[2] B. Colson and Ph. L. Toint, Exploiting band structure in
unconstrained optimization without derivatives, Op-
tim. Eng., 2 (2001), pp. 349–412.

[3] B. Colson and Ph. L. Toint, A derivative-free algo-
rithm for sparse unconstrained optimization prob-
lems, in Trends in Industrial and Applied Mathemat-
ics, A. H. Siddiqi and M. Kočvara, editors, Kluwer
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1. Introduction

Engineers have used optimization techniques for de-
vice and system modeling and design for decades [1].
Traditional techniques [2, 3] utilize simulations of
appropriate models of the devices and any available
derivatives to force relevant system responses to sat-
isfy specifications subject to design constraints. The
higher the fidelity (accuracy) of the models the more
expensive we expect the application of traditional
optimization to be. For complex problems this cost
may be prohibitive.

Methodologies based on exploitation of iteratively
refined surrogates of accurate or high-fidelity mod-
els address this issue. Through the construction of a
suitably accurate physics-based surrogate model one
can represent the objective function over a region of
the design space. Then, instead of optimizing the
high-fidelity model, one can optimize the surrogate
which is further locally refined as increasingly accu-
rate model data becomes available. Space mapping
[4, 5, 6] is an example of this methodology. Such
methods are called surrogate-based methods as op-
posed to the direct methods mentioned in the first
paragraph.

There is a rich literature concerning surrogate-
based optimization. Alexandrov et al. [7, 8, 9] de-

1This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada under Grants
OGP0007239 and STGP269760, and by Bandler Corporation.
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scribe the so-called approximation and model man-
agement optimization technique. This assumes that
the surrogate model satisfies so-called zero- and first-
order consistency conditions with the high-fidelity
model in question. Surrogate models based on
second-order corrections are described in [10]. Den-
nis et al. [11, 12, 13] and Serafini [14] present a sur-
rogate management framework and applications for
engineering design. Surrogate optimization based on
surface response approximation and kriging are dis-
cussed in [15, 16, 17]. Ong et al. [18] present evo-
lutionary optimization via surrogate modeling. A
survey and recommendations for the use of statisti-
cal approximation techniques in engineering design
are given in [19]. Several review papers are available,
including [20, 21, 22] and the recent paper [23].

We would like to emphasize that a characteris-
tic feature that differentiates space mapping from
several other surrogate-based optimization meth-
ods is that in our vision of space mapping, the
surrogate model is constructed using an available,
low-fidelity (and physically meaningful) model of
the object response (the model being a function of
the design variables), rather than pure interpola-
tion/approximation. This is in keeping with the en-
gineering tradition of developing for design purposes
meaningful (not necessarily complex, often very sim-
ple) models of components of the physical world.
Indeed, highly complex engineering component and
system designs have been built before high-fidelity
validations were computationally feasible.

In space mapping (SM), the objective function to
be optimized is constructed from the responses of
a so-called “fine model.” By responses, we mean a
vector of function values that represents the model’s
behavior for a given set of design parameter val-
ues, and from which any required constraint and
objective function values are directly obtained. In
the SM technology, conceived by Bandler in 1993,
it is also assumed that there is an alternative set
of functions available, not as accurate as those pro-
vided by the fine model but much faster to evaluate.
These functions are derived from a so-called “coarse
model.” When the coarse model incorporates the
same physics as the fine model, it is expected to
yield its accuracy over a wide region of the parame-
ter space. For example, in the radio-frequency (RF)
and microwave area of electrical engineering, full-

wave electromagnetic (EM) simulators can serve as
fine models. Another example of a fine model is a
physical experiment. Low-fidelity EM simulations or
empirical electrical equivalent-circuit models could
serve as coarse models. There is a vast library of
such models in electrical engineering. Without such
a library, the elements of which are continually be-
ing augmented and refined, electrical power systems,
telecommunications circuits and systems, and com-
puters would be literally unimaginable.

It was demonstrated in [4, 5], how SM can intelli-
gently link coarse and fine models of different com-
plexities in order to create a surrogate model that
is almost as cheap to evaluate as the coarse model
and (locally) almost as accurate as the fine model.
In some engineering cases, the “coarse” model that
is selected can even exhibit ideal or idealized behav-
ior. The SM approach, either upfront or on the fly,
updates the surrogate to better approximate the cor-
responding fine model in a region of interest.

In the first-proposed or original algorithm of
Bandler et al. [4] the so-called coarse model is viewed
as an idealization of the engineering device under
consideration. As a result its optimal response is
taken as the target response, i.e., the desired value
of the objective function. The mapping between the
parameter spaces of the coarse and fine models is
called the space mapping. It maps available data
points in the two spaces (i.e., fine and coarse model
domains) which provide similar responses. It is eval-
uated in a process called parameter extraction (PE).
In [4] surrogates are built based on linear approxima-
tions of the space mapping. Hence, in each iteration,
the surrogate is a linearly mapped coarse model. The
next iteration point is found as an optimal solution
of the current surrogate.

A number of space mapping algorithms have been
developed during last ten years, including aggressive
space mapping (ASM) [5], trust-region ASM [24],
implicit SM [25, 26], and output SM [27, 28, 29]. A
review and exposition of advances in SM technology
is contained in paper [6]. As we show in this paper,
all of the existing space mapping approaches can be
viewed as particular cases of one, generic formulation
of space mapping.

Bandler et al. [6] offers a mathematical motiva-
tion, places SM into the context of classical opti-
mization based on local Taylor approximations and
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provides an extensive review of successful applica-
tions in many branches of engineering.

SM technology is recognized as a contribution to
engineering design [30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40], especially in the microwave and RF arena.
Snel (Philips, The Netherlands) used SM for new
library models of RF components [32]. Hong and
Lancaster [30] describe the aggressive SM algorithm
as an elegant approach to microstrip filter design.
Bakr et al. [33] employ artificial neural networks
and Bandler et al. [34] study SM-based model en-
hancement. Ismail et al. [31] (Com Dev, Canada)
use SM for the large-scale design of microwave fil-
ters and multiplexers for satellite communications.
Pedersen et al. [35] utilize an output SM-based sur-
rogate for modeling the thermo active components
in new buildings. Ros et al. [36] use aggressive SM
to design inductively coupled rectangular waveguide
filters. Rautio [37] uses implicit SM for design of
thick, tightly coupled conductors. He validates his
model with a spiral inductor on silicon. Encica et al.
[38] utilize SM to solve a shape optimization problem
using Ansoft Maxwell2D. In automobile crashwor-
thiness finite element simulations, each evaluation
is expensive. Redhe and Nilsson [40] report that
SM reduces the total computing time to optimize
a vehicle’s structure up to 50% compared with tra-
ditional optimization. SM has been applied to the
complete finite element model of the new Saab 9-3
Sport Sedan. Intrusion into the passenger compart-
ment area after the impact was reduced by 32% with
no reduction in other crashworthiness responses.

Mathematicians are addressing mathematical in-
terpretations of the formulation and convergence is-
sues of SM algorithms [41, 42, 43, 44], although to
date, convergence studies concerning SM consider
only hybrid algorithms. In these papers, the authors
utilized the general methodology of trust regions,
made possible by their formulation of the response
vector as a convex combination of the mapped coarse
model and fine model response vectors. However, the
convergence theories heavily rely on the combination
with a classical Taylor-based method as a safeguard
in the iteration. Therefore, classical principles of
convergence proof are feasible. Unfortunately, it is
not possible to prove convergence of “genuine” or
pure SM algorithms in this way or explain their ob-
served successful practical behavior because we don’t

necessarily have local model interpolation at the cur-
rent iterate. Furthermore, tentative iterates may be
accepted regardless of the improvement of the objec-
tive function (the fine model).

The development of the convergence theory for
genuine SM algorithms is currently work in progress.
In general, the conditions under which we can guar-
antee convergence of this class of algorithms concern
SM and the engineering optimization problem itself
(i.e., the accuracy of the coarse model as an approx-
imation to the fine model). It follows that conver-
gence depends on the quality of the match between
the coarse and fine models. The convergence rate is
also subject to the same consideration.

2. Optimization Using Surrogate
Models

Let us state an engineering design problem as fol-
lows. Let Rf : Xf → Rm denote the response vec-
tor of a fine model of the engineering device, where
Xf ⊆ Rn. The vector Rf expresses the performance
of the device, typically in terms of a measured out-
put signal. In other words, we refer to “response” as
a vector of function values associated with a given
device. Our goal is to solve the problem

x∗f = arg min
x∈Xf

U(Rf (x)) (1)

where U : Rm → R is a given objective function.
Note that the mathematical community typically
refers to U ◦Rf as the objective function. We shall
denote by X∗

f the set of solutions to (1) and call it
the set of fine model minimizers.

We consider the fine model to be expensive to com-
pute and solving (1) by direct optimization to be
impractical. Instead, we use surrogate models, i.e.,
models that are not as accurate as the fine model but
are computationally cheap, hence suitable for itera-
tive optimization. We consider a general optimiza-
tion algorithm that generates a sequence of points
x(i) ∈ Xf , i = 1, 2, . . . , and a family of surrogate
models R

(i)
s : X

(i)
s → Rm, i = 0, 1, . . . , so that

x(i+1) = arg min
x∈Xf∩X

(i)
s

U(R(i)
s (x)) (2)

and R
(i+1)
s is constructed using suitable matching

conditions with the fine model at x(i+1) (and, per-
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haps, some of the x(k), k = 1,. . . , i). If the solution
to (2) is non-unique we may impose regularization.
We may match responses, i.e.,

R(i)
s (x(i)) = Rf (x(i)) (3)

and/or match first-order derivatives

J
R

(i)
s

(x(i)) = JRf
(x(i)) (4)

where J
R

(i)
s

and JRf
denote Jacobians of the sur-

rogate and fine models, respectively. More precisely,
we try to define models so that conditions such as
(3) and (4) are satisfied.

3. SM-Based Surrogate Models

The family of surrogate models {R(i)
s } can be imple-

mented in various ways. SM assumes the existence
of a so-called coarse model that describes the same
object as the fine model: less accurate but much
faster to evaluate. It takes advantage of this fact
by shifting the optimization burden into the coarse
model.

Let Rc : Xc → Rm denote the response vectors of
the coarse model, where Xc ⊆ Rn. By x∗c we denote
the optimal solution of the coarse model, i.e.,

x∗c = arg min
x∈Xc

U(Rc(x)). (5)

We denote by X∗
c the set of all x ∈ Xc satisfying (5)

and call it the set of coarse model minimizers. In
the SM framework, the family of surrogate models
is constructed from the coarse model in such a way
that each R

(i)
s is a suitable distortion of Rc, such

that given matching conditions are satisfied. In what
follows, we discuss surrogate models that follow from
original space mapping, input space mapping, out-
put space mapping (OSM) and implicit space map-
ping (ISM).

3.1 The Original SM-Based Surrogate
Model

The original SM assumes the existence of a map-
ping P : Xf → Xc such that Rc(P (xf )) ≈ Rf (xf )
(proximity of Rc and Rf is measured using a suit-
able metric) on Xf or at least on some subset of Xf

which is of our interest. For any given xf ∈ Xf ,
P (xf ) is defined using parameter extraction

P (xf ) = arg min
x∈Xc

‖Rc(x)−Rf (xf )‖ . (6)

This is illustrated in Figure 3.1.

Figure 3.1 Space mapping P .

In practical implementation, one may need to use
regularization in order to assure existence of the
space mapping P (i.e., existence and uniqueness of
solution to (6) for any xf ). This issue will not be
dealt with in the present paper.

The surrogate model R
(i)
s is defined as

R(i)
s (x) = Rc(P (x(i)) + B(i) · (x− x(i))) (7)

for i = 0, 1, . . . , where P is defined by (6) and B(i)

is an approximation of JP (x(i)), the Jacobian of P
at x(i), obtained using, e.g., the Broyden formula.

In a practical implementation, e.g., [5], instead of
using directly the generic algorithm (2), the next
iteration point x(i+1) is obtained as a solution to the
equation

P (x(i)) + B(i)(x(i)) · (x(i+1) − x(i)) = x̄∗c (8)

where x̄∗c is an element of X∗
c fixed for later ref-

erence (this formulation allows us to overcome the
problem of non-uniqueness of the solution to opti-
mization problem (5)).

3.2 The Input SM-Based Surrogate
Model

The input SM aims at reducing misalignment be-
tween the fine and coarse models using an affine vari-
able transformation established based on the avail-
able fine model data. The surrogate model R

(i)
s is
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defined as

R(i)
s (x) = Rc(B(i) · x + c(i)) (9)

(B(i), c(i)) = arg min
(B, c)

ε(i)(B, c) (10)

where matrices B(i) ∈ Rn×n and c(i) ∈ R are ob-
tained using parameter extraction applied to the
matching condition ε(i). Matching condition ε(i) de-
termines the surrogate model as much as formula (9)
does. We can consider different matching conditions
that aim to match the fine and surrogate model re-
sponses and/or their first-order derivatives. A gene-
ral form of the matching condition is

ε(i)(B, c) =
i∑

k=0

wk‖Rf (x(k))−Rc(B · x(k) + c)‖

+
i∑

k=0

vk‖JRf
(x(k))− JRc(B · x(k) + c) ·B‖.

(11)

We assume that coefficients wk and vk are either 0 or
1 (although more general situations are conceivable
in practice). Setting wk = 1, k = 0, . . . , i and vk =
0, k = 0, . . . , i − 1, vi = 1 means that the surrogate
tries to match the fine model response at all previous
points x(k) (including the current point) as well as
the Jacobian at the current point.

3.3 The Output SM-Based Surrogate
Model

The output space mapping (OSM) aims at reducing
misalignment between the coarse and fine models by
adding a difference (residual) between those two to
Rc. We define the function ∆R : Xf ∩Xc → Rm as

∆R(x) = Rf (x)−Rc(x). (12)

We construct surrogates that use (local) models of
∆R, denoted as ∆Rm. A generic surrogate model
defined by OSM is

R(i)
s (x) = Rc(x) + ∆Rm(x,x(i)). (13)

We consider the zero-order model ∆Rm(x,x(i)) =
∆R(x(i)) which leads to the surrogate

R(i)
s (x) = Rc(x) + ∆R(x(i)). (14)

The second model is a first-order approximation
of ∆R of the form ∆Rm(x,x(i)) = ∆R(x(i)) +
J∆R(x(i)) · (x− x(i)), where J∆R(x(i)) denotes the
Jacobian of ∆R at x(i). This leads to the surrogate

R(i)
s (x) = Rc(x)+∆R(x(i))+J∆R(x(i)) · (x−x(i)).

(15)
Instead of the exact Jacobian (usually unavailable)
we can use its approximation produced by the Broy-
den update.

3.4 The Implicit SM-Based Surrogate
Model

Implicit space mapping (ISM) makes use of addi-
tional parameters available in the coarse model, i.e.,
we have Rc : Xc × Xp → Rm where Xp ⊆ Rq is
the domain of such preassigned parameters. Preas-
signed (non-optimized) parameters abound in engi-
neering design. Their successful exploitation as sur-
rogate modeling parameters depends on much the
same engineering expertise required in designating
the optimization variables themselves.

An ISM optimization algorithm aims at predis-
tortion of the coarse model by adjustment of certain
preassigned parameters xp so that, at the current
point x(i), the fine and coarse model response vec-
tors are aligned. The predistorted model becomes
a surrogate which, in turn, is optimized in order to
obtain the next point x(i+1). Thus, the surrogate
model defined by ISM is

R(i)
s (x) = Rc(x,x(i)

p ) (16)

where x
(i)
p is determined by solving a PE problem of

the form

x(i)
p = arg min

x∈Xp

‖Rf (x(i))−Rc(x(i),x)‖. (17)

3.5 SM Surrogate Models Based on Com-
bined Concepts

It is possible and utilized in practice to combine the
concepts discussed so far. For example, one can de-
fine the ith surrogate R

(i)
s using input, output and

implicit SM as follows

R(i)
s (x) = Rc(B(i)·x+c(i),x(i)

p )+d(i)+E(i)·(x−x(i))
(18)
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where matrices B(i) and c(i) as well as preassigned
parameter values x

(i)
p are determined using parame-

ter extraction (see (10), (11) and (17), respectively),
while d(i) = Rf (x(i)) − Rc(B(i) · x(i) + c(i),x

(i)
p ),

E(i) = JRf
(x(i))− JRc(B

(i) · x(i) + c(i),x
(i)
p ) ·B(i).

Combining different kinds of space mapping allows
us to improve the flexibility of the surrogate model.
On the other hand, the proper choice of the SM used
to construct the surrogate, as well as the amount
of fine model data used in this process, is usually
problem dependent and knowledge of the problem
and engineering experience are key factors to making
this choice successful.

4. Conclusions

We have reviewed the space mapping approach to
engineering surrogate modeling and design optimiza-
tion. As with other surrogate methodologies, the
aim is to avoid expensive direct optimization of high-
fidelity models. In space mapping, we represent the
objective function and constraint functions over a
region of the design space through the construction
of a suitably accurate physics-based surrogate. In-
stead of optimizing the high-fidelity model, we opti-
mize the surrogate, which can further be refined as
increasingly accurate model data becomes available.
The notion of parameter extraction is important to
space mapping. Here, high-fidelity data is exploited
to validate the design and to improve the local align-
ment between the surrogate and the high-fidelity
model. Using a low-fidelity and physically mean-
ingful model to construct a surrogate is what differ-
entiates space mapping from many other surrogate-
based optimization methods. We have reviewed the
original formulation as well as the so-called input,
output and implicit formulations. Space mapping
allows an engineer to exploit his/her detailed knowl-
edge of the engineering design problem.

Matlab engines to implement the current state of
the art (several dozen space mapping algorithms and
models) to exploit full-wave electromagnetic simula-
tors and fast, empirical, coarse or surrogate device
models are under development. This endeavor is de-
signed to make our technology universally available.
The reader interested in this software should contact
the first author.
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Bulletin

1. Event Announcements

HPOPT 2006 — 9th International
Workshop on High Performance

Optimization Techniques
In honour of Kees Roos’ 65th birthday

June 15–16, 2006
Delft University of Technology, The Netherlands
http://stuwww.uvt.nl/~edeklerk/hpopt2006

This is the 9th in a series of workshops on “high
performance optimization techniques” that started
in 1996 in Delft. It is also a special year for the or-
ganizers, as we celebrate the 65th birthday of Kees
Roos as well as his career achievements. The work-
shop will consist of invited presentations by leading
international experts in optimization, as well as a
special session to celebrate Kees’ birthday and ca-
reer.

Confirmed invited speakers:

• Erling Andersen, Mosek

• Yanqin Bai, Shanghai Univ.

• Aharon Ben-Tal, Technion – Israel Inst. Tech-
nology

• Robert Freund, MIT

• Franois Glineur, Catholic Univ. Louvain

• Florian Jarre, Dusseldorf Univ.

• Monique Laurent, CWI, Amsterdam

• Yurii Nesterov, Catholic Univ. Louvain

• Franz Rendl, Univ. Klagenfurt

• Tams Terlaky, McMaster Univ.

• Takashi Tsuchiya, Inst. Statistical Mathemat-
ics, Tokyo

• Lieven Vandenberghe, UCLA

• Jean-Philippe Vial, Univ. Geneva

http://stuwww.uvt.nl/~edeklerk/hpopt2006
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• Yinyu Ye, Stanford Univ.

• Akiko Yoshise, Univ. Tsukuba

19th International Symposium on
Mathematical Programming

July 30 – August 4, 2006
Federal University of Rio de Janeiro, Brazil

http://www.ismp2006.org

The symposium will take place at the Federal Uni-
versity of Rio de Janeiro campus at Praia Vermelha,
a charming district area conveniently located just a
five-minute drive from some of the city’s most fa-
mous attractions, such as the Sugar Loaf and Co-
pacabana Beach. Shopping and restaurant facilities
are also available within walking distance.

Founded in 1920, the Federal University of Rio de
Janeiro – UFRJ is considered the oldest and largest
federal university in the country as well as a model
for the creation of several other public institutions of
higher education. UFRJ has earned a solid interna-
tional reputation as a center of excellence in teaching
and research, with strategic importance to the de-
velopment of the country. A highly qualified faculty,
technical and administrative staff, modern labs, spe-
cialized libraries, undergraduate and graduate pro-
grams, numerous teaching, research and extension
units, all have combined to build such reputation.

A particularly outstanding unit on Praia Vermelha
campus is the University Palace, a beautiful nine-
teenth century neoclassical building. A former hos-
pital for mentally ill people under Emperor D. Pedro
II, the palace was only converted into the University
President’s Office in 1949. Following the transfer of
the President’s Office to Ilha do Fundo in the 60’s,
the University Palace was turned into a center for
high level academic debate and artistic manifesta-
tion, a forum for science and culture.

The symposium will have five plenary sessions:

• Dantzig Memorial Session

• Gerard Cornuéjols, Carnegie Mellon Univ.

• Clovis Gonzaga, Federal Univ. Santa Catarina

• Arkadi Nemirovski, Technion – Israel Inst.
Technology

• Alexander Shapiro, Georgia Inst. Technology

The list of semi-plenary speakers is the following:

• Daniel Bienstock, Columbia Univ.

• Maria Chudnovsky, Princeton Univ.

• Josef Hofbauer, Univ. College London

• Karl Kunisch, Univ. Graz

• Jean Lasserre, Laboratoire d’Analyse et
d’Architecture des Systemes

• Jose Mario Martinez, State Univ. Campinas

• Yurii Nesterov, Catholic Univ. Louvain

• Satoru Iwata, Univ. Tokyo

• R. Ravi, Carnegie Mellon Univ.

• Toh Kim Chuan, National Univ. Singapore

• Robert Vanderbei, Princeton Univ.

• Vijay Vazirani, Georgia Inst. Technology

Papers on all theoretical, computational and prac-
tical aspects of mathematical programming are wel-
come. The presentation of very recent results is en-
couraged. The number of presentations is limited to
one per speaker. However, no limit is imposed on
the number of contributed/submitted abstracts per
author, provided co-authors are the speakers. Only
the speaker may submit an abstract. The deadline
for abstract submission is June 10, 2006. More in-
formation is available at the web site. The e-mail
contact is ismp2006@cos.ufrj.br.

2. Other Announcements

Applications of Algebraic Geometry at IMA

The Institute for Mathematics and its Applica-
tions (IMA) at the University of Minnesota an-
nounces membership opportunities in connection
with its 2006-2007 thematic program on Applica-
tions of Algebraic Geometry.

Individuals may apply for four classes of member-
ship at the IMA in connection with the 2006-2007
thematic program:

http://www.ismp2006.org
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• IMA Postdoctoral Memberships

• IMA Industrial Postdoctoral Memberships

• IMA General Memberships

• IMA New Directions Visiting Professorships

IMA POSTDOCTORAL FELLOWSHIPS pro-
vide an excellent opportunity for mathematical sci-
entists near the beginning of their career who have a
background in and/or an interest in learning about
applied and computational aspects of algebraic ge-
ometry. IMA postdoctoral fellowships run one to two
years, at the option of the holder, starting Septem-
ber 5, 2006. In the second year of the appointment
there are a variety of options to enhance career de-
velopment, including participation in the 2007-2008
academic year program on Mathematics of Molecu-
lar and Cellular Biology, teaching, and working on
an industrial project. Postdoctoral fellows receive a
salary of $50,000 annually, and a travel allowance.
Documentation of completion of all requirements for
a doctoral degree in mathematics or a related area is
required by the start of the appointment and within
the last three years. (Deadline January 5, 2006.)

IMA INDUSTRIAL POSTDOCTORAL FEL-
LOWSHIPS are designed to prepare mathematicians
for research careers in industry or involving indus-
trial interaction. IMA industrial postdoctoral fel-
lowships run two years starting September 5, 2006.
They are funded jointly by the IMA and an indus-
trial sponsor, and holders devote 50own research and
the IMA program and 50% effort working with in-
dustrial scientists. Industrial postdoctoral fellows
receive a salary of $50,000 annually, and a travel
allowance. Documentation of completion of all re-
quirements for a doctoral degree in mathematics or
a related area is required by the start of the appoint-
ment and within the last three years. (Deadline Jan-
uary 5, 2006.)

IMA GENERAL MEMBERSHIPS provide an op-
portunity for mathematicians and scientists em-
ployed elsewhere to spend a period of one month to
one year in residence at the IMA, and to participate
in the 2006-2007 thematic program. The residency
should fall in the period September 2006 through
June 2007 (in special cases extending into the sum-
mer months). Logistic support such as office space,
computer facilities, and secretarial support will be

provided, and local expenses may be provided. Pref-
erence will be given to supplementary support for
persons with sabbatical leaves, fellowships, or other
stipends. The research interests of General Members
must relate to the thematic program and a doctoral
degree is normally expected. Applications may be
submitted at any time until the end of the thematic
program, and will be considered as long as funds
remain available. (Applications considered immedi-
ately and until funds are exhausted.)

IMA NEW DIRECTIONS VISITING PROFES-
SORSHIPS provide an extraordinary opportunity
for established mathematicians (typically mid-career
faculty at US universities) to branch into new direc-
tions and increase the impact of their research by
spending the 2006-2007 academic year immersed in
the thematic program at the IMA. Visiting Profes-
sors will enjoy an excellent research environment and
stimulating scientific program connecting algebraic
geometry and related areas of mathematics with a
broad range of fields of application. New Direc-
tions Visiting Professors are expected to be resident
and active participants in the program but are not
assigned formal duties. The New Directions pro-
gram will supply 50% of academic year salary up to
$50,000 maximum. Applications must include a let-
ter from the applicant’s department chair indicating
that the home institution will provide a minimum of
50% of academic year salary and all health and other
relevant fringe benefits. (Deadline March 1, 2005.)

All IMA members are provided with an excellent
and extremely stimulating research environment and
connection with a large community of first class re-
searchers. The IMA is a national institute whose
mission is to increase the impact of mathematics by
fostering research of a truly interdisciplinary nature,
linking mathematics of the highest caliber and im-
portant scientific and technological problems from
other disciplines and industry. Allied with this mis-
sion, the IMA also aims to expand and strengthen
the talent base engaged in mathematical research ap-
plied to or relevant to such problems. It was founded
in 1982 and receives its primary funding from the
National Science Foundation.

Application forms and instructions are available at
http://www.ima.umn.edu/docs/membership.html.
More information on the IMA is available
at http://www.ima.umn.edu, and informa-

http://www.ima.umn.edu/docs/membership.html
http://www.ima.umn.edu
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tion on the 2005-2006 thematic program is at
http://www.ima.umn.edu/imaging. Questions
may be directed to applications@ima.umn.edu for
postdoctoral fellowships and general membership
applications or to ndprof@ima.umn.edu for New
Directions professorships.

The University of Minnesota is an equal opportu-
nity educator and employer.

Arnd Scheel, Deputy Director, IMA

Chairman’s Column

In this issue’s column I would like to take a
few moments to describe some administrative mat-
ters that concern SIAG/OPT and its members.
The first is the upcoming renewal of the interest
group’s charter. All SIAM interest groups have
a charter that is renewed every three years, and
SIAG/OPT will apply to have its charter renewed
by the SIAM Board at the SIAM National Meet-
ing in July, 2006. SIAM is in the process of im-
plementing “uniform rules of procedure” for its var-
ious interest groups, and as part of this effort the
charter for SIAG/OPT has been revised to bring
it into line with the uniform format. The revised
charter is available on SIAM’s web pages at the
URL http://www.siam.org/activity/optimization/

procedure.php. There is one substantive change as-
sociated with this renewal. In addition to instituting
the uniform rules of procedure, SIAM is making an
effort to coordinate the terms of interest group offi-
cers with meetings that are sponsored by the inter-
est groups, such as the triennial SIAM Optimization
Conference sponsored by SIAG/OPT. In the case of
SIAG/OPT, our meeting is currently “out of synch”
with the terms of the officers. For example the cur-
rent officers were elected to serve terms from 2004-
2006, but the next Optimization Conference is in
May, 2008. This is problematic since several offi-
cers have a role in the Optimization Conference; the
SIAG Chair and Program Director are co-chairs for
the conference, and the SIAG Vice-Chair is the chair
of the committee that awards the SIAG/OPT Prize.

This issue was discussed at the SIAG/OPT business
meeting held during the Optimization Conference in
Stockholm last year. At the business meeting a pro-
posal was made to extend the terms of the current
officers by one year to better coordinate the officers’
terms with the triennial Optimization Conference.
This proposal had broad support at the business
meeting, was subsequently approved by SIAM, and
is incorporated in the revised SIAG/OPT charter via
the statement in Article IV that “The SIAG shall
hold an election to fill those offices every 3 years,
beginning in 2007”.

The second issue I would like to mention is the lo-
cation of the next Optimization Conference. As dis-
cussed at the business meeting in Stockholm, given
the locations of the last two Optimization Confer-
ences (Toronto and Stockholm) as well as the loca-
tions of the 2003 and 2006 Mathematical Program-
ming Symposia (Copenhagen and Rio de Janeiro),
SIAM had a preference for the 2008 Optimization
Conference to be held at a site in the United States.
I am pleased to announce that the 2008 SIAM Op-
timization Conference will be held from May 10-13
at the Park Plaza Hotel in Boston, Massachusetts.
This location offers easy flight connections and excel-
lent conference facilities. The hotel is attractively lo-
cated near the Boston Common, and SIAM was able
to negotiate an extremely reasonable hotel rate ($149
plus tax) for conference participants. The Boston
Park Plaza is also the site for the 2006 SIAM An-
nual Meeting, but given the 2-year interval between
the meetings, as well as the modest overlap in atten-
dance, the conference organizers found the features
of this site compelling. More details regarding the
2008 Optimization Conference will be forthcoming
as the date of the meeting draws nearer.

Kurt M. Anstreicher, SIAG/OPT Chair
Department of Management Sciences
University of Iowa
S210 PBB Iowa City, IA 52242,
USA
kurt-anstreicher@uiowa.edu
http://www.biz.uiowa.edu/faculty/anstreicher

http://www.ima.umn.edu/imaging
http://www.siam.org/activity/optimization/procedure.php
http://www.siam.org/activity/optimization/procedure.php
http://www.biz.uiowa.edu/faculty/anstreicher

	Table of Contents
	Introduction by the Editor
	Nonlinear Programming by Mesh Adaptive Direct Searches
	1. Introduction -- the problem and its properties
	2. What are mesh adaptive direct search (MADS) methods?
	2.1 Some search strategies
	2.2 The poll step

	3. Why study these methods
	3.1 Importance in practice
	3.2 Theoretical support
	4. What is still needed
	4.1 Categorical variables
	4.2 Multiple objectives
	4.3 Ability to handle more decision variables

	5. Conclusions
	Using Problem Structure in Derivative-Free Optimization
	1. Introduction
	2. Problem structure
	3. Direct search for partially separable objective functions
	4. Interpolation methods for partially separable problems
	5. Interpolation methods for sparse problems
	6. Conclusions and perspectives
	Space Mapping for Engineering Optimization
	1. Introduction
	2. Optimization Using Surrogate Models
	3. SM-Based Surrogate Models
	3.1 The Original SM-Based Surrogate Model
	3.2 The Input SM-Based Surrogate Model
	3.3 The Output SM-Based Surrogate Model
	3.4 The Implicit SM-Based Surrogate Model
	3.5 SM Surrogate Models Based on Combined Concepts
	4. Conclusions
	Bulletin
	1. Event Announcements
	2. Other Announcements
	Chairman's Column













