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Abstract A comparison is made between three minimization techniques, the
highly-regarded Fletcher-Powell method, the new Fletcher method and the new
Jacobson-Oksman method by obtaining second-order models for a seventh-order
system so that the step-response of the model approximates that of the
system in the least-squares sense.

INTRODUCTION

A number of different methods have been proposed recently [1-5] for
determining low-order models for high-order complex systems, in order to
simplify the preliminary design and optimization of such systems. With the
exception of the methods of Anderson [2] and Sinha and Pille [5], however,
all of them approximate the response of the system in a qualitative manner
in addition to requiring that the exact transfer function or vector
differential equation for the high-order system must be specified in order
that the reduced model may be obtained. In practice, this is seldom
possible, and one has often to identify the system. Thus, a more realistic
approach to the derivation of the simplified model should be based on using
directly the measured input-output data for the system. Furthermore, it
may be desirable to obtain an optimum model of a given order minimizing a
specified criterion of error between the resnonse of the model and that of
the nign-order system to a given input function, usually 4 uuii step. OSowe
suitable criteria for obtaining such a model are the minimization of (i) the
sum of the squares of the error between sampled values of the two responses
[2,5], (ii) the sum of the absolute values of the sampled errors, (iii) the
sum of the pth power of the sampled errors, (iv) the maximum value of the
errors between the responses, and (v) the maximum value of the perpendicular
distance between the responses [6].

In a recent paper [7], Sinha and Bereznai have used the pattern search
method of Hooke and Jeeves [8] for the determination of optimum low-order
models using various criteria, and have calculated a number of such models
for a given seventh-order system.

Due to the poor convergence properties of the pattern search algorithm,
it was decided to investigate the application of efficient gradient methods
to this problem. As well as the highly-regarded Fletcher-Powell method (91,
two new gradient methods, one by Fletcher [10] and the other by Jacobson
and Oksman [11] are available. This paper, therefore, attempts a
comparative study of these three gradient methods by using each of them to
obtain optimum second-order models, based on the least~squares criterion,
for the same seventh-order system that was approximated by Sinha and
Bereznai [7]. -

This work was supported by grants A7239 and A3374 from the National
Research Council of Canada.
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The statement of the problem will be followed by a brief review of the
two new gradient methods. The results of computation and a critical
comparison between the three methods will then be presented.

It may be added that as far as the authors are aware, this is the
first comparative study of these three gradient methods.

STATEMENT OF THE PROBLEM

Given the following transfer function of a seventh-order system, ‘
representing the control-system of the pitch rate of a supersonic transport
aircraft [12]

G(s) =

375000 (s+0.08333) (1)

s/+83.64504400757470 3425 4+85370 35 42814271524 331087554 281250

determine the transfer function, H(s), of a second-order model such that the
response of the model to a unit step approximates that of the system in the
least-squares sense. In other words, if g1(t) is the response of G(s) to a
unit step and hj(t) is the response of the model H(s) to a unit step then
the parameters of the model must be selected such that the objective
function

3 = o[gl(t) - n ()% (2)

is minimized.

As it is desired to solve the problem using a digital computer, the
objective function (2) can be conveniently replaced by the following
discrete version

N
2
J, = kZl[gl(k'r) = by (kT)] (3)

where N is sufficiently large to include the portion of response which
should be approximated, and T a suitable sampling interval. As the system
takes a considerable time to reach the steady-state value, and since it is
more desirable to emphasize the initial portion of the transient response,
it was decided to select the parameters of the second-order model so that
its steady-state response was constrained to be equal to the steady-state
response of the system. The application of this constraint made it possible
to reduce the value of N without increasing the error for large values of t.

The resulting second-order models were of two types, those with a
finite zero, and those without a finite zero. These may be written,
respectively, as

an
H,(s) = —- (4)

+
s +als a0

bls+EaO

s +als+ao

and

H,(s) = (5)

where E is the steady-state response of the system to a unit step input.
The model represented by equation (4) has two variable parameters, while
that represented by equation (5) has three variable parameters.
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THE NEW FLETCHER METHOD

To give a basic description of the new Fletcher method it is necessary
to briefly review the Fletcher-Powell method first. Suppose that it I3
desired to minimize a function F(*) of an n-dimensional vector %> given Sy

T ,
% =[x Xpg o o o x ] (6}
where the superscript T stands for transpose.
Let (§) be the gradient of F(x) with respect to ¥ and let G deucte

the corresponding Hessian matrix. The inverse Hessian g—l will be
approximated by the matrix H. Define

=5 7
as the increment in Xs which is the correction made on the parameter vector
% in order to decrease F(3).

The main feature of the Fletcher-Fowell method is that the increment

g = o§ (8)
is taken along the direction

8= 'ﬂé (9)

where a in (&) is that value of \ which minimizes F(x + Ag) along the
direction of $. In practice, o is determined by a linear search. The
matrix [ is updated at each iteration using the formula

.T T
i i1 i
@1 1 88w m
L (10)
1" 4 i 4
where é X X LR
3(,1 - J%1+1 _ %1 (11)

and the superscript i denotes the vzlue «t the ith iteration.

The updating formula (10) has the property that if Ei is positive
definite then ii*l must alse be positive definite. Since H is initially
the unit matrix, ﬁl is positive definite for all i.

The method has the property of quadratic convergence, that is, for a
quadratic function the minimum can be located in at most n iterations.
However, it depends on eccurate location of the minimum along each directios
of search. This is done by cubic interpolation which, although it is the
most efficient method of search, requires several function and gradient
evaluations.

The new Fletcher method dispenses with the linear search. The property
of quadratic convergence, which depends oa linear search, is replaced by a
property which requires, for quadratic functions, that the eigenvalues of {
tend monotonically to those of gwl. The decrease in F must be sufficiently
large to guarantee ultimate conveigence. This is taken care of by the
"following test. The change, AF in F on an iteration would be expected hy
Taylor's series expansion to be approximately gl§ for a small Q, but much
less than gI6 in absolute value when the positloﬁ of the minimum along a
line is overestimated. The change in F relative to %Tg cannot become
arbitrarily small if
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—E-— > u | ' (12)

0
o

where O<u<<l, a preassigned small quantity set at 0.0001. If corrections
are determined by

then trying values of A=l,w,w2,w3,... for w=0.1 will eventually produce a

g that satisfies equation (12).

Although the conditions imposed so far are simple, failure can occur
because H, updated using formula (10), can become singular. To overcome
this problem the following updating formula is derived

T T T T
Siyi Hi Hiyidi Ti Hiyi 6151
i+1 i AN A A A Ay A A A n oA
i 1+ ) (14)
T T T T
Gi éi Yi Gi Yi 61 Yi
~ A oA oA NooA

Denote KT in (14) as gl and ! in (10) as 1L, The formula in

(14) has the property that the eigenvalues of i tend monotonically to those
of G-1. Note, however, that Ei+l does not necessarily replace }*1, as cne
of the two is chosen for updating on the basis of the following test. If

T T
1" 1 i1 14 : .
Xy by (15)

4"
then 1+1 is used; otherwise 1+l is used.
1 2

The algorithm is terminated when iigii < €, a tolerance lsvel, vhich
was set at 1.0 x 1079,

THE JACOBSON-OKSMAN METHOD

This method is based on hcomogencous rather than quadratic functions.
A consequence of this is that convergence is obtained in n+2 steps for a
homogeneous function of the form

F(x) = 2(x-9) Tg(x) + F() | (16)
X g \X~X) B\ X

where x is an n-dimensional parameter vector as before, g(x) is the gradient
of ¥(x) as defined previously, 0 is the degree of homogene?ty and ¥ is the
location of the minimum of F(E)‘ On the other hand, a quadratic objective
function may be expressed as

FG) = 5G9 QG5 + F(P an

where Q is a constant positive definite matrix. Thus we see that equation
(17) is a special case of the homogeneous equation (16) with 8 = 2,

The basis of the method will now be discussed. Equation (16) may be
rearranged as

vT T

X8R+ 6 F(x) -w=x" g(x) (18)
where v

w=0F( . (19)
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Let T
A
vErEW

T

xé [,%T(g\c') F(x) -1] (20)

g8 o wlT

For some point Xi+1> where in the interest of clafity, subscripts now denote
iteration numbers, equation (18) becomes

T T
Vitl T & Va4l T Yi+1 & (21)

where g and are (n+2)-vectors. The vector contains the unknowns X% and
w and must be determined. If we evaluate v and at n+2 distinct points,
Xl> X25 +++ » Xn+2s 8O that the resultant yi are linearly independent,
we have

[T ] o ]
{1 1
T v
LI P (22)
® '\l ®
.T e
n+2 | “n+2
or, in matrix form
=y (23)
Since the Xi are linearly independent, the matrix Y is non-singular,
giving -1
g = X " x (24)

To avoid matrix inversion, a recursive formula is used as new xi and
v4 are evaluated. This is done as follows:

Let gal =1 an (n+2)x(n+2) identity matrix
and
No = % ° where 2 is given.

At each iteration we successively replace corresponding rows and
elements of Eal and Yo with calculated values of Yi and vy, respectively,
using

-1 -1 T T -1
£1+1 =kt %j (Xi+l - Ej Ri ) . (25)
T
Vee1 = X3 ¥ 83 OVag1 ~ 85 ¥ (26)

where %j is a unit vector having unity as the jth element and zeros else-
where, “with j = i+1.

Using Householder's formula

T T
Ri &5 Qa1 By - &5
Riv1 = Ry - % : (27)
Li+1 R4 £5

Successive estimates of the vector g are given by
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T
- s Ri %j(vi+1 " Yiep &4
Ri+1 = %4 T 5 .
{i+1 Al ~j
Given the linear independence of ¥i it can be shown that for a homogeneous
function

..1 '
Rav2 = % (29)

Rnt2 = 8 | (30)

Thus, the algorithm finds the minimum, the degree of homogeneity and
the value of the minimum after n+2 iteratioms.

(28)

and

APPLICATION TO THE PROBLEM OF OPTIMUM APPROXIMATION

The gradient methods discussed in the previous two sections depend
considerably upon the availability of the first partial derivatives of the
objective function with respect to the parameters of the model. Fortunately,
it is fairly easy to derive analytical expressions for the gradient for a
second-order model. Hence, the methods could be applied directly.

Since the efficiency of an optimization method is the speed with which
the algorithm proceeds to the optimum, a fair indication of performance is
the number of times the function and its gradient have to be evaluated.
This is a valid assumption for the problem under consideration since the
time taken for one evaluation of the function and its gradient is much more
than the "housekeeping'~logic and other simple operations in the algorithm.
Moreover, in the following discussion, a function evaluation will imply
the complete evaluation of the function and its gradient, since only
gradient methods are being considered.

RESULTS

First the two-parameter problem resulting from equation.(4) was tried.
The computer used was a CDC 6400 and typical C.P. times for the two-
parameter problem were about 4 seconds. Three different starting points
were considered for each of the three methods and in every case the
algorithms ultimately converged to the same optimum parameters ap=3.195912,
a3=2.281056, with the optimum value of the objective function 7.50758 x 10-%
and the components of the gradient less than 1.0 x 10-9. Figure 1 shows the
corresponding response.* Table 1 compares the number of function evaluations
required for each method for the objective function to reach the value
7.50759 x 10=4. This value is 1.0 x 10-9 higher than the optimum ultimately
obtained. From Table 1 it can be seen that both the new Fletcher method and
the Jacobson-Oksman method show an improvement over the Fletcher-Powell
method with the Jacobson-Oksman method being slightly better than the new
Fletcher method.

For the three-parameter problem represented by equation (5) typical
computer C.P. times were about 6 seconds. Again three different starting
points were tried with each method and in each case the algorithms converged
to the optimum ap=1.997397, a3=1.660663, b1=4.370715 x 10~2 with the optimum
value of the objective function 1.582215 x 10-4 and the gradient components
less than 1.0 x 10-9. Figure 2 shows the corresponding response.* Table 2
*Figures do not show corresponding responses, but responses of models with

steady state values equal to the system response at sec.
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compares the number of function evaluations required to reach the objective
function value 1.582225 x 10™%4 which is 1.0 x 10-9 higher than the optimum.

Starting points ao=3.0, al=2.0 ao=0.5, al=0.5 ao=l.0, a1=1.0
Jacobson-Oksman 21 19 14
New Fletcher 21 22 . 19
Fletcher-Powell 29 49 32

Table 1: Number of function evaluations required to reach
the objective function value 7.50759 x 10~% for
the 2-parameter problem.

Here again it is seen that the Jacobson-Oksman and the new Fletcher
methods are superior to the Fletcher-Powell method and of the two methods
the Jacobson-Oksman is slightly better. However, there was one case, not
shown, when the Jacobson-Oksman method failed. This was due to a
very large step that made the objective function too large for the computer
to handle with single precision. In situations like this one is tempted to
limit the step size, however it was decided not to interfere with the
algorithm in any way, as this might slow down the method at the beginning.

Starting points ao=1.0,al=l.0, ao-O.S, a1=2.0, ao=1.0, al=0.5,
bl=1.0 b1=4.0 b1=0.1

Jacobson-Cksman 39 39 25

New Fletcher 27 76 35

Fletcher-Powell 60 274 58

Table 2: Number of function evaluations required to reach
the objective function value 1.582225 x 10~% for
the 3-parameter problem.

CONCLUSIONS

From the example considered, it may be concluded that all the three
gradient methods can be successfully used for the determination of optimum
low-order models for a high-order system. However, the two new methods are
much superior to the older but highly~regarded Fletcher-Powell method.
Between the two new methods, there is not much to choose, although the
Jacobson-Oksman method was slightly faster for most of the cases considered.
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