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Abstract-We present an efficient method for the optimal
design of spiral inductors used in RF circuits. The optimization
process exploits the EM simulator Sonnet em and space mapping
(SM) technology. A straightforward geometric programming
formulation of the spiral inductor optimization is implemented in
the surrogate model optimization. An EM-validated optimal
spiral inductor design emerges in ten minutes.

Index Terms-CAD, geometric programming, inductors,
integrated circuit design, optimization methods, space mapping.

I. INTRODUCTION

As an important component in radio-frequency integrated
circuits (RF-ICs), such as Low Noise Amplifiers (LNA) and
Voltage Controlled Oscillators (VCO), the spiral inductor is
critical to the performance ofRF and analog systems.

Previous optimization methods for spiral inductors include
exhaustive enumeration, geometric programming (GP) [1]-
[2], sequential quadratic programming (SQP) [3] and Mesh-
Adaptive Direct Search (MADS) [4]. These methods are
usually based on circuit models. Although efficient, the results
depend on the quality of the circuit model they use. It is likely
that the design does not meet the specification or is
unsatisfactory when validated by electromagnetic (EM)
solvers. On the other hand, EM solvers, such as Sonnet em,
are accurate at the expense of time. Direct optimization based
on EM solvers is desirable but expensive.

Space mapping (SM) technology [5]-[6] incorporates the
computational efficiency of (cheap) circuit models and the
accuracy of (expensive) EM simulations. It performs
optimization on a cheap model (coarse model) and calibrates
it using EM simulator (fine model). A satisfactory design can
usually be obtained in a few EM simulations.
We apply implicit space mapping (ISM) [6] to spiral

inductor optimization. Our strategy is based on the geometric
programming formulation of spiral inductor optimization
proposed in [1] and [2]. By regarding several coefficients in
the circuit model as ISM parameters (preassigned parameters),
we (re)calibrate the circuit model with EM simulations during

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada under Grants OGP0007239, STGP269760 and
STGP269889, and by Bandler Corporation.
W. Yu is with the Simulation Optimization Systems Research Laboratory,

Department of Electrical and Computer Engineering, McMaster University,
Hamilton, ON, Canada L8S 4K1.

J.W. Bandler is with the Simulation Optimization Systems Research
Laboratory, Department of Electrical and Computer Engineering, McMaster
University, Hamilton, ON, Canada L8S 4K1 and also with Bandler
Corporation, P.O. Box 8083, Dundas, ON, Canada L9H 5E7.

the optimization process. Using this method, a satisfactory
EM-validated spiral inductor design emerges in ten minutes.
We also propose a simplified geometric programming

formulation based on [1] and [2]. Because space mapping is
used to calibrate the circuit model, this simplification does not
affect our result, but makes the problem easier to solve.

II. IMPLICIT SPACE MAPPING TECHNOLOGY

Space mapping technology assumes the availability of two
physically-based models: a coarse model (computationally
fast circuit-based model or low-fidelity EM simulation) and a
fine model (typically a cpu-intensive full-wave EM
simulation). As in [6], we define the fine model response at a
point xf in the design space by Rf (xf) The design
problem is to obtain

Xf = argmin U(Rf (Xf ))
XfeXf

(1)

where U is the objective function and Xf is the design
variable domain. We assume that it is expensive to solve (1)
by direct optimization if full-wave EM simulation is used.
We define the coarse-model based surrogate response at a

point xc by R,(xe,x,), where x. is a set of preassigned
parameters, for example, empirical model coefficients or the
dielectric constant of a substrate. ISM optimization involves
two principal iteration steps: ISM modeling through parameter
extraction and ISM prediction through surrogate optimization.
The aim of ISM modeling is to match the surrogate to the

fine model by adjusting selected preassigned parameters x .
The data used in this step comes from the fine model response
obtained in previous iterations. As in [6], we denote xc(i as
the surrogate optimal point at the jth iteration and xc as the
initial point (coarse model optimum). ISM modeling at the jth
iteration is to find

x(J) argmin eo el ... eji]
xp

(2)

where

eT = Rf (xc(i)) - Rc (X xp) (i -1) . (3)

After ISM modeling, we optimize the (re)calibrated coarse
model (surrogate model) in ISM prediction, i.e., we find

x = arg min U(R (xC, x(J)))
xcExc

(4)
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where Xc is the design variable domain of the surrogate
model.
By continuing ISM modeling and ISM prediction, we hope

to find a good fine model solution.

III. SPIRAL INDUCTOR OPTIMIZATION USING GEOMETRIC
PROGRAMMING

As pointed out in Section II, ISM prediction involves the
optimization of the circuit model. To do this, we propose a
simplified geometric programming formulation of the problem
based on [1] and [2].

Fig. 1 shows the layout of a square spiral inductor. The
design parameters are number of turns n, the width of metal
trace w, the turn spacing s, the outer diameter dout and the
average diameter davg = 0.5(dout+ din,). Only four of these
five design parameters are independent, but in the GP
formulation of spiral inductor optimization, all five parameters
are used. We intend to achieve the highest quality factor Q
and a certain inductance at the target frequency.

CoxT

Rsi. Csi

(a)

2 1 2

Ls PS Ls Rs
Cox

,Rsi C Rp f ( p 1 Rp X (:P

(b)

Fig. 2. Circuit models of the spiral inductor [1]: (a) zT model, (b)
simplified model.

The quality factor Q can be written as [1]

IWLSQ =0L
Rs

RC2
RV (I1- stot -0)2L Co )

Ls (6)
Rp + ( .5 )2 + I Rs

where

Ctot Cp +Cs (7)

Unfortunately, the expression for Q shown in (6) is not GP
compatible. In [1], this problem is solved by introducing a
new variable and turning (6) into a posynomial inequality
constraint. In [2], a different approach is used. By noticing
that [(cLs Rs )2 + I]R is much smaller than Rp, the quality
factor is approximated by

Q = ' - cRCtRC - LsC t
Rs Rs

Fig. 1. Square spiral inductor layout and geometry.

Fig. 2 shows models of the spiral inductor. Following
all circuit elements could be written as posynomials (sum,
monomials) of design variables and factors ki dependent
technology and frequency. In particular, the expression
inductance is the monomial function [1]

Ls= gdas IWaL 2 daLs3 aLs 4 SaLs 5ut avg

with inductance in nH and dimensions in pm. The coeffici(
,8 = 1.66.103 ,aLs, =-1.33, atLs2 =-0.125, YLs3 =2-.
aLs4 = 1.83 and aLs5 = -0.022 are extracted from a la
family of inductors.

We notice that (8) is still not compatible with standard GP,
because the objective function is not a posynomial function.
Although it can be solved using the algorithm mentioned in
[2], it cannot be solved by commercial optimization software
such as MOSEK [8].
We further develop the approach in [2]. We notice that

maximizing Q is equivalent to minimizing 1/Q and the
second and the third term in (8) is much smaller than the first
term. Thus 1/Q can be approximated as a posynomial
function of the design parameters

1

Q
(1+RRs *CtOt* Rs +i L *Ctot Rs

. Rs ctt +Ls Rs t. Ls
for - k1 do a,Ql wcaQ2 1daQ3+1n-aQ4+1S-Q5

wjjou avg

(5) + k1k7dkf-2aQw -2aQ2 -2-2aQ3+4n 2aQ4+4 2aQ5

ents3
e50Ots +flk3 d-2aQlw-2aQ2 -d-2aQ3+3n-2aQ4+4 2aQ550 ~~~~ dout~~~avg
irge o

+ k1 k7n2 d2 + o)kl k3 n2da wavg 13 av

2

., w S

n

< d >~~~

(8)

* (9)



1087

In (9), k1 k3 and k- are technology-dependent
coefficients [1]. A new set of coefficients, aQi (1=1, 2,*, 5),
is used. In the coarse model, they are the same as
aL,i (i = 1, 2, -., 5). But in the surrogate model, they will be
treated as different preassigned parameters and extracted
separately to calibrate Q and L, respectively, as discussed in
the next section.
The final GP formulation is shown in (10). The second

constraint is the relaxation of the equality constraint on davg
[1]. The third constraint ensures that the inductor layout
physically exists.

minlIQ
.<#aLlI aLs2 aL 3 aLs4 aLs5s..1smin .,dtj da<n s .Lmax

davg + ns+nw.<dout

(2n+l1)(s+w) . dout. (10)
doutmin <.dout .doutmax
Wmn - W < max

S <S<Smin -- max

nmin - n <max

Step 6 Go to Step 2.
We solve (10) with the MOSEK optimization toolbox [8].

However, in a practical design the number of turns n should
be discrete. We address this problem by first considering n as
continuous and solving (10) to get the optimal W. Then we
round n* to the two nearest discrete values n* and n*. Fixing

nto n* and n*, we perform another two optimizations.
Finally, we choose the better result of these two optimizations
as the result of step 4.

V. EXAMPLE

We apply ISM to optimizing the spiral inductor in the
following sample CMOS process shown in Fig. 3. The
conductivity of the Si substrate is 5 5 m. Two metal layers of
1 [tm thickness, MI and M2, are used for the spiral inductor
and the underpass. The conductivity of the metal layers are
3x 107 S/M. We intend to achieve the highest Q and 4 nH
inductance at 3 GHz. The tolerance for the inductance is 500,
which means that the L, should range from 3.8 nH to 4.2 nH.
The constraints on the design parameters are listed in Table I.
The number of turns n is restricted to discrete values as
k + 0.5 , where k is a positive integer.

IV. SPIRAL INDUCTOR OPTIMIZATIoN By SPACE MAPPING

We use the circuit model discussed in Section III as the
coarse model and Sonnet em as the fine model. We define

RC= [1 Q L, ]T as the response of the coarse model, where
1 Qc and Lc are given in (9) and (5). We
define Rf = [1 Qf Lf ]T as the response of the fine model,
where [7]

_f Im(Y11)
=Re(Y 1) (1

2T Im )2 (12)

Y11 andyY2 are Y parameters of the spiral inductor obtained
from EM simulation and f is frequency.
We define ,6 aLs51(i=12, *-,5Y,k1. k3 k7., and

aQi (i = 1, 2, ..,5) as preassigned parameters

xp -[/. aLsl ... aLs5 k1 k3 k7 aQ1 . aQ5]T (13)

The ISM algorithm can be summarized as follows.
Step 1 Set]=0 and pick an initial design parameter x*O
Step 2 Simulate the fine model at x*(~anicrm t]
Step 3 Extract the preassigned parameters x4}) by solving

(2) (ISM modeling).
Step 4 Optimize the (re)calibrated coarse model (surrogate

model) to obtain x*(') by solving (10).
Step 5 Terminate if a stopping criterion (e.g., convergence) is

satisfied.

PM

300 pm

Air
Metal Ml
r>Kw K777.

Fig. 3. Sectional view of the spiral inductor.

In Table we compare the results obtained by our ISM

algorithm, circuit-model-based geometric programming [1]

and enumeration of the fine model. In enumeration, the

sampling steps in the design region are 5 [tm for d0,,, [tm
for w , one turn for n and 2 [tm for s The Q and Ls shown

in the table are all obtained from EM simulations. With the

ISM algorithm, a satisfactory design emerges in ten EM

simulations. In comparison, the result given by the circuit-

model based GP [1] does not meet the specification when

validated by the EM simulator. Enumeration of the fine model

gives a result very close to that of the ISM algorithm, but

takes much longer time (several days).

In Fig. 4 we compare the inductance Ls of the coarse model

and the surrogate model in the last iteration with the fine

model over the design region (n is fixed to 4.5 and s is fixed

to 2 rtm). It can be seen that the surrogate model is

3
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successfully calibrated. A similar result is obtained for the
quality factor Q.

20 - Original
Coarse
Model

15

TABLE II
COMPARISON OF DIFFERENT OPTIMIZATION METHODS

Optimal Design
Method ([do0t w n S]T in Q (nH) simulations

Mm)

ISM [203 10 4.5 2]' 4.9 3.8 10

Circuit
Model GPIs~ 10-_-_

1--0
5 --

Fine Model

[252 15 3.5 2]T

Enumeration [205 10 4.5 2]T

5.2 3.1 0*

4.9 3.9 13950

150

200

250
dout (gLm)

(b)

Fig. 4. Ls over the design region (n = 4.5, s = 2 ptm): (a) the
original coarse and fine models, (b) the calibrated surrogate model in
the last iteration and the fine model.

TABLE I
CONSTRAINTS ON DESIGN PARAMETERS

Parameter Minimum Value Maximum Value
300 ptm
15 ptm
7.5

10 ptm

* One EM simulation is taken to validate the design. It shows that the
specification is not met.

VI. CONCLUSIONS

We present a new spiral inductor optimization method
based on space mapping technology. We show that the new
method can provide an EM-validated optimal design in very
few full-wave EM simulations.
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