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Abstract A simple, efficient optimization algorithm based on
space mapping (SM) is presented. It utilizes input SM to reduce
the misalignment between the coarse and fine models of the
optimized object over a region of interest, and output space
mapping (OSM) to ensure matching of response and first-order
derivatives between the mapped coarse model and the fine model
at the current iteration point. We also consider an enhanced
version in which the input SM coefficients are frequency
dependent. The performance of our new algorithms is
comparable with the recently published SMIS algorithm when
applied to a benchmark problem. In comparison with SMIS, the
models presented are simple and have a small number of
parameters that need to be extracted. The new algorithm is
applied to the optimization of a coupled-line band-pass filter.

Index Terms Computer-aided design (CAD), space mapping
(SM), optimization, design automation, engineering optimization.

I. INTRODUCTION

Space Mapping (SM) technology is now a recognized
engineering optimization paradigm, consisting of a number of
efficient optimization approaches [1-5]. Direct optimization of
an accurate but computationally expensive high fidelity or
"fine" model of interest is replaced by the iterative
optimization and updating of a so-called "coarse" model (less
accurate but cheap to evaluate). If the misalignment between
the fine and coarse models is not significant, SM-based
algorithms typically provide excellent results after only a few
evaluations of the fine model.
SM was originally applied to the optimization of microwave

devices [1], where fine models are often based on full-wave
electromagnetic (EM) simulators, whereas coarse models are
physically-based circuit models. In this case the fine model
evaluation can be time consuming. Saving each such
evaluation counts. A review and exposition of advances in SM
technology is contained in paper [5].
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Recent efforts focus on efficient optimization algorithms
that use different SM techniques such as implicit space
mapping (ISM) [3] and output space mapping (OSM) [4].
SMIS [6] utilizes surrogate models based on SM and OSM
and has proved successful for difficult optimization problems.
Its performance is obtained, however, at the expense of high
complexity of the underlying surrogate model.

This paper describes two simple algorithms that enjoy
comparable performance to SMIS. Both exploit surrogate
models based on the OSM concept that forces exact matching
of responses and Jacobians between surrogate and fine model.

II. SURROGATE OPTIMIZATION BASED ON SPACE MAPPING

The optimization problem can be stated as follows. Let
Rf: Xfo- Rm denote the response vector of the fine model of a
given object, where XcJR{. In the microwave area [1], [5],
components of Rf may be evaluations of the fine model (e.g.,
transfer function) at m different frequency points.
Our goal is to solve

Xf = arg min U(Rf (x)) (1)
where Uis a given objective function. We assume that solving
problem (1) by means of direct optimization is impractical.
Instead, we exploit inexpensive surrogates. We are interested
in a general optimization algorithm that generates a sequence
of points x(i)eXf, i=1,2,..., and a family of surrogate models
RXi)X(i) X Rm, i=O,1. so that

(2)
and ki+1) is constructed using suitable matching conditions
with the fine model at previous points x(k), k 1,..

Space mapping assumes an underlying coarse model that
describes the same object as the fine model; is less accurate
but, at the same time, much faster to evaluate than the fine
model. Let R,: X -* R] denote the response vectors of the
coarse model, where X1JR{. By xc we shall denote the
optimal solution of the coarse model, i.e.,

xC = argmixn U(R, (x)) (3)
xXE

In the SM framework, a family of surrogate models is
constructed from the coarse model in such a way that each
k,) is a suitable distortion of Rc, such that given matching
conditions are satisfied. In the next sections we introduce two
SM-based models that fit this scheme.
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III. A GSM FRAMEWORK

A. Proposed Framework
Our proposed generalized space mapping (GSM) framework

consists of the family of surrogate models RUi) defined as

Rsi) (x) = A(i) . R (B() . x+ c(i)) + d(i) + E(i) (x- x(i)) (4)
where

(A('), B(), c(i)) = arg min C(i) (A, B, c) (5)
(AB,c)

d(i) = Rf (x()) - A() . R (B() . x(i) + C()) (6)
E° = JRf (x(i)) A(i) JR (B(') . X(j) + C(B))B(') (7)

Matrices A()= diag{fa(),...,a(1)}, B(I)eM, and c(1)eMnx1
are obtained using parameter extraction applied to the
matching condition (i). Matrices d() E Mm 1 and L(i) E Mm n are
calculated using formulas (6) and (7) after having determined
A('), Be, c(). If derivative information is not available, matrix
L(i) can be estimated, for example, using the Broyden update.
The matching condition (i) determines the surrogate model

as much as formula (4) does. We can consider different
matching conditions that aim at aligning the fine and surrogate
model responses and/or their first-order derivatives. A general
form of the matching condition is
C(') (A, B, c) =0wko Rf (x(k)) - A. Rc (B. x(k) +c) 1l +

+k=0 vk || JRf (x ) A.JR (B. x(k) + c).BB(8
We assume that coefficients wk and vk are either 0 or 1
(although more general situations are conceivable). Setting
we-l, k=0,...i and Vk=0, k=0,...1-1, v1=1 means that the
surrogate tries to match the fine model response at all
previous points xk) (including current point) as well as
Jacobian at the current point Uacobian matching can only be
exploited if derivative information is available). We shall use
this condition in the subsequent numerical experiments
concerning model (4).

Input space mapping determined by matrices B(i) and c(l) as
well as multiplication matrix A(l) can be considered as
preconditioning of the coarse model that reduces initial
misalignment between the coarse and fine models over a
neighborhood of the current point (x(1)). Term dl) ensures
perfect matching of responses at x(i), while term L() gives
perfect matching of first-order derivatives atx(').
Note that the flexibility of the surrogate model, i.e., the

number of model parameters, may affect the uniqueness of the
parameter extraction problem as well as the extrapolation
properties of the model. If the model is too flexible, it may
provide good matching at the points x(k) but provide poor
matching elsewhere, and, consequently, slow down (or even
prevent) convergence of the SM algorithm. The issue of
proper choice of flexibility of the surrogate model is an
important problem and needs to be carefully studied.
Note that the number of GSM model parameters is just

n(n+l)+m(n+2), and only n(n+l)+m parameters are extracted
(the rest are calculated). Moreover, the model ensures perfect
matching of the response and Jacobian at the current point x(i).

Having defined the family of surrogate models we can
define the optimization algorithm (which is, in fact, an
implementation of the generic surrogate model based
optimization algorithm (2)):
Step 1 Set x(°) =arg min U(R (x)); Set i ;

Step 2 Evaluate Rf (x(i)) and jRf(x(i))
Step 3 Obtain RU) using (4) - (8);
Step 4 Find x(i+1) =arg min U(R() (x));

Step 5 If termination condition go to 7;
Step 6 Set i:=i+1; go to 2;
Step 7 END

In numerical experiments we use a termination condition of
the form x(i+l) x() 1<8, where Sis a small constant.

B. Comparison with SMIS
Our GSM framework draws on the strengths of the recently

introduced SMIS algorithm (space mapping interpolating
surrogates) [6]. SMIS is, however, complex because it uses a
separate input mapping for each component of the response
vector. As a consequence, the mapped coarse model is only
defined on the discrete set of frequency points Wlcj,.r,n
instead of the whole frequency domain. This is not the case
for our GSM, which uses only one input mapping. Another
advantage of GSM is the number of model parameters to be
extracted, n(n+1)+m, compared with m.(n(n+1)+2 in SMIS,
where m is larger than n. A large number of parameters may
result in lack of uniqueness in the parameter extraction
process as well as poor extrapolation properties of the model
so that it cannot be effectively used in circuit modeling.

IV. THE FDGSM FRAMEWORK

Our GSM based surrogate model (4)-(8) is simple. But in
some cases the number of its parameters may not be sufficient
to ensure proper matching between the fine model and the
surrogate. This affects the convergence of the underlying
optimization algorithm. If necessary, the number of degrees
of freedom should be increased. One possibility is to use
frequency-dependent mappings.
FDGSM (Frequency-Dependent General Space Mapping) is

an extension of our framework in which the input space
mapping parameters (matrices B and c) are made
frequency-dependent. Let Rf: Xfxf2l- R and Rc: Xcxf2l- R
denote generic fine and coarse models, where &2 is the
frequency domain. Then, RAx)=(Rf l(x),...Rfm(X)), and
R(x) =(Rc.l(x),...Rc.m(X)), with Rf>(x) =R(x,w3),
Rcj(x)=Rj(x, =l),i .1.m. A formal definition of the model is

ksi) (x) = A() Rc (x, B(i), c(i)) + d(i) + E(i) (x- x(i)) (9)
where

Rc (x, 1(i) c(i)) = (Rc (B() (co1) x+ c() (w1), o1), ....

Rc (B(i) (m)j * X+ C(i) (0)m)J' 0)J))
(10)
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B(i) (co) = (i) + >() c((c) = c() + c() .c (11)
(A('), B(), c()) arg minc(m ) (A, B, c) (12)

(AB,c)

d(i) = Rf (x(i)) -A(i) .R (x(i), B(i) C(i)) (13)
E( JR (x _) (i)(X(j)) (14)

Matrices A() = diagfa(),..., a() , B(i)) E M , and

c(i), cl(i) E Mm,1 are obtained using parameter extraction applied
to the matching condition (i). Matrices di) eMm 1 and
L() .Mmn are calculated using formulas (13) and (14) after
having determined A(1), B(i), c(1). Matching condition c() takes
a similar form as in the previous case, namely,

C(') (A, B,c) =R(x() - A Rc(x(k), B, c) +kI=0w.11Rf(x ~~(15
= Vk JR (X())J (X(k)) )

In numerical experiments we assumed w*=1, k=O,...,i and
VA=0, k=O,...,i (matching of responses at all points x4k)). The
Jacobian JRU) (X(k)) is calculated as

VxRc(B(i) Xl.ik) +C(l)(q 1q).Xi q
J (x) A(1) r (16)

VxRc(Bt (Co X C (0m )B (0m

Note that the number of model parameters in FDGSM is
2n(n+1)+m(n+2), with 2n(n+1)+m parameters to be extracted.
As in GSM, the model ensures perfect matching of the
response and Jacobian at the current point xl9.
The optimization algorithm is the same as in Section III.

V. EXAMPLES

We apply the proposed GSM and FDGSM algorithms to the
seven-section capacitively-loaded impedance transformer [7].
Here u = max ISi 1 , (S 1,i is the input reflection coefficient at

frequency c1). We consider a "coarse" model as an ideal
seven-section transmission line (TL), whereas the "fine"
model is a capacitively-loaded TL with capacitors
C1...8=0.025pF. The models are shown in Fig. 1. Design
parameters are normalized lengths x= [L1 L2 L3 L4 L5 L6 L7] ,

with respect to the quarter-wave length Lq at the center
frequency 4.35 GHz. Design specifications are IS111<0.07 for
1GHz<co<7.7GHz with 68 points per frequency sweep (for
the sake of comparison, the number of frequency points has
been chosen to be the same as in the SMIS algorithm [6]).

7111113L2_161
1Gn 1C 11G. jjG, 1G4 11C 1G 1RL =100QU~~~~~~ 0

Zin > RL =100Q

Fig. 1. Seven-section capacitively-loaded impedance transformer: "fine"
model (upper graph) and "coarse" model (lower graph).

We solve the PE problem using the nonlinear least squares
Levenberg-Marquardt algorithm available in the Matlab
Optimization Toolbox [8].
The fine model response at the optimal coarse model

solution is shown in Fig. 2. Fig. 3 shows the difference at
iteration i between the fine model objective function U (l) and
the fine model objective function at the fine model minimax
solution U. The difference at iteration i between the fine
model design xli) and the fine model design at the fine model
minimax solution x is shown in Fig. 4.
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Fig. 2. Seven-section capacitively-loaded impedance transformer: optimal
coarse model response (dashed line), the optimal minimax fine model response
(solid line), and the fine model response at the initial solution, i.e., at the
optimal coarse model solution (circles).
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Fig. 3. The difference at iteration i between the fine model objective function
U l and the fine model objective function at the fine model minimax solution
Uf: GSM (x), FDGSM (D), and SMIS [9] (o).
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Fig. 4. The difference at iteration i between the fine model design xv and the
fine model design at the fine model minimax solution x: GSM (x), FDGSM
(G), and SMIS [9] (o).
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The results indicate that the performance of GSM is only
slightly worse than SMIS, whereas FDGSM performs
virtually as well as SMIS. It should be emphasized that the
number of model parameters for this benchmark problem is
much smaller for GSM (668 but only 124 to extract) and
FDGSM (724; 180 to be extracted) than for SMIS (3944;
3876 to be extracted).
The GSM framework was also applied to the optimization

of the coupled-line band-pass filter [9] shown in Fig. 5. The
design parameters are x%- [xx2 X3 x4]T. The fine model is
simulated in FEKO [10], the coarse model is the circuit model
implemented in Agilent ADS [11] (Fig. 6). The design
specifications are JS211 < -20dB for 6GHz < f< 7.2GHz,
JS211 > -3dB for 7.8GHz <f< 8.2GHz, and JS211 <-20dB
for 8.8GHz < f< 10GHz.
The initial design is coarse model optimal solution

X°()=[1.096 6.159 1.798 7.092]Tmm. The fine model response
at x°) as well as the response at the solution obtained using
GSM after 5 iterations (x5)= [0.108 6.455 0.724 7.291] Tmm)
are shown in Fig. 7. The response at x5) satisfies the design
specifications. In this case we constrained matrix A to be
diag{1,...,1} to simplify the algorithm. The Jacobian of the
fine/coarse model was estimated using finite differences. The
convergence graph is shown in Fig. 8.

VI. CONCLUSIONS

New and efficient optimization algorithms are presented
that use "traditional" input-space-mapping-based
preconditioning of the coarse model and output-space-
mapping external terms ensuring perfect matching of the
response and first-order derivative between the surrogate and
the fine model. We consider the basic model (GSM) and an
enhanced version (FDGSM) that demonstrates how the
number of degrees of freedom of the SM based models can be
increased in a consistent way using frequency-dependent
mappings. Performance of the algorithm is illustrated through
a seven-section capacitively-loaded impedance transformer
and a coupled-line band-pass filter.
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X. X2
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aX3 X4

1 .272mmr

1.272mm

Fig. 5. Geometry of the band-pass filter [9].
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Fig. 7. Initial (dashed line) and optimized (solid line) 5S211 versus frequency for
the band-pass filter.
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Fig. 8. Convergence properties of the GSM algorithm for the band-pass filter.
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Fig. 6. Coarse model of band-pass filter (ADS).
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