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Space-Mapping-Based Modeling Utilizing Parameter Extraction
with Variable Weight Coefficients and a Data Base
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Abstract—A mnew space-mapping-based surrogate modeling
methodology is presented. We assume that certain fine model
data, the so-called base set, is available in the region of interest.
To evaluate the surrogate, we perform parameter extraction with
weighting coefficients dependent on the distance between the
point of interest and base points. This has advantages over
standard SM modeling: (1) it can handle any base set, (2) the
accuracy of the surrogate improves while the number of points in
the base set grows even if the flexibility of the SM surrogate
remains unchanged, (3) the model evaluation cost is roughly
independent of the size of the base set. Examples confirm
theoretical considerations and demonstrate robustness.

Index Terms—Computer-aided design (CAD), EM modeling,
space mapping, surrogate modeling.

1. INTRODUCTION

Full-wave EM simulations of microwave structures are
CPU intensive. Statistical analysis and yield optimization,
crucial for manufacturability-driven designs in a time-to-
market development environment, demand accurate and fast
models. The Space Mapping (SM) concept [1], [2] addresses
this issue.

SM assumes “fine” and “coarse” models. The “fine” model
may be a high fidelity CPU-intensive EM simulator,
undesirable for direct statistical analysis and design. The
“coarse” model can be a simplified representation such as an
equivalent circuit with empirical formulas. SM modeling [3]-
[5] exploits the speed of the coarse model and the accuracy of
the fine model to develop fast, accurate enhanced models
(surrogates) valid over a wide range of parameter values.

We present a new SM-based modeling methodology. The
proposed method aims at overcoming limitations of the
standard methodology which is based on setting up the
surrogate model using a small amount of fine-model data
(usually, 2n+1 points, where » is the number of design
variables) and performing extraction of model parameters
over the whole set of this data [6], [7]. This is a simple
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methodology and gives reasonable accuracy especially for
low-dimensional problems. In order to further improve the
modeling performance one needs to involve more fine model
information. Unfortunately, SM is not suitable to handle large
a amount of fine model data by itself, i.c., increasing the
number of base points does not help if the number of degrees
of freedom of the model remains unchanged. Possible
solutions are: (1) dividing the region of interest into smaller
subregions so that a separate SM-model is set up for each
subregion (problems: the number of regions grows
exponentially with the dimension of the design parameter
space; possible discontinuity at the border between the
regions); (2) increasing the number of degrees of freedom of
the SM model (problem: a large number of model parameters
to be extracted). Another approach, the one we exploit here, is
to evaluate SM surrogate models on-the-fly using parameter
extraction with coordinate-dependent weighting coefficients.

II. NEw SM MODELING METHODOLOGY

Let Ry:X;—>R" and R.:X.— R” denote the fine and
coarse model response vectors, where X,cR" and X.cR" are
design variable domains of the fine and coarse models,
respectively. For example, R{x) and R.(x) may represent the
magnitude of a transfer function at m chosen frequencies.

We denote by XpcX; the region of interest in which we
want enhanced matching between the surrogate and the fine
model. We assume that Xy is an n-dimensional interval in R”
with center at reference point x"=[xo; ... xo,] €R"™

X =[x"=0,x" +0] =[x, =3, %, +8]1x.. X[%,,~5,. %, +3,] (D
where &[0 ... 5n]T determines the size of Xr. We use
Xz(x".8) to denote the region of interest defined by x” and &,
Suppose we have the base set
X, ={x"x7,..,x"}c X, (x°,0), where N is the number of

base points, such that the fine model response is known at all
points X, j=12....N. We do not assume any particular
location of the base points.
We define a generic surrogate model R;: XpxM,.,,
XM M1 %M —> R™ a8
R (x,A.B,c,d)=A-R(B-x+c)+d 2
with matrices A=diag{a,....a,,}, BeM,., ceM,,, and
deM,,.q (M., denotes the set of £/ real matrices) found using
the parameter extraction (PE)
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Apart from model (2), (3), optional frequency scaling can
be implemented that works in such a way that the coarse
model is evaluated at a different frequency than the fine model
using the transformation: @ — f;+ fiw, where F=[f; fi]eR’ is
obtained together with matrices 4, B, ¢, and d using a
parameter extraction process similar to (3).

By imposing constraints on the parameter extraction
procedure, we can generate different models with different
flexibility and number of degrees of freedom. Here, however,
we use the full model as above.

Note that the weighting coefficients in (3) are functions of
x. In practice we use v=0 for £/=1.2,....N. Coefficients w;, arc
calculated according to

exp[ X2
C.27 =12

Zexp[ ||xC }iz” J

where x is the evaluation point, A=A(S,N) is a characteristic
distance depending on the size of the region of interest and
the number of base points
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If the base points are uniformly distributed in Xz, A=A(S.N)
is just an average distance between neighbouring points.
Constant C>0 determines how fast the weighting coefficients
decrease with increase of base-point distance from x. We use
(=1, a value found to give good performance.

In a practical implementation, especially if the dimension of
the design variable space is larger, it is desirable to limit the
number of base points included in the parameter extraction to
make PE reasonably fast. We use a threshold for coefficients
wy, so that the coefficients are set to zero if their value is below
this threshold (we use a relative threshold, i.e., a fraction of
Whne—=max{wy : k&=1,2,... N}, in our experiments we use
0.01wyay). In this way, we make evaluation of the matching
condition function cheaper. On the other hand, using smaller
values of C allows us to reduce the number of base points
because a smaller value of C causes faster decrease of the
coefficients w; while moving away from x so that only a few
of them are above the aforementioned threshold. We also use
hard limits for the number of points in parameter extraction.
We use both minimum and maximum values: a maximum
limit to reduce evaluation cost, a minimum limit to assure that
the number of points is enough to maintain accuracy.

The standard SM modeling technique [6] can be obtained
from (2)-4) by choosing a  standard (iec.,
star-distribution-like) X and letting C — o in (4).

It is intuitively obvious that modeling accuracy depends on
characteristic distance A, in particular, that accuracy improves
with decreasing A.

III. EXAMPLES

We consider a capacitively-loaded 10:1 impedance
transformer. The “coarse” model and the “fine” model are an
ideal two-section transmission line (TL) and a capacitively-
loaded TL with capacitors C;=C,=C3=10pF as shown in Fig.
1. The characteristic impedances are kept fixed at the optimal
values Z; =4.4721Q and Z, = 2.2361Q2. The electrical lengths
L, and L, at 1GHz are chosen as design parameters. The
frequency range is 0.5GHz < @ < 1.5GHz with a step of
0.05GHz. The reference point is x*=[74.25" 79.24'1". We
consider the region of interest defined by 10% deviation from
x". The fine and coarse models are implemented in Matlab.
We consider the input reflection coefficient as model
response.

«—L—«L—» «—L—reL—»

% % %Cl %R 00 A %RL 100

(@ ®)
Fig.1. Fine (a) and coarse (b) model, two-section capacitively-loaded
impedance transformer

We performed a number of experiments for this example
using both the standard surrogate model and the new model
(2), (3). Accuracy of the standard model was compared with
accuracy of the new model for different base sets. Table I
shows details of the base sets used in the experiments.
Accuracy was tested using 30 test points randomly distributed
in the region of interest. The error measure used was the /,
norm of the difference between the fine model response and
the corresponding surrogate model response.

TABLE 1
BASE SETDATA FOR TWO-SECTION TRANSFORMER EXAMPLE

Base set Description Number of points A
X Uniform mesh + x° 5 6.86
Xp Uniform mesh 9 512
Xps Uniform mesh 25 3.07
Xgy Uniform mesh 100 1.53

Table II shows numerical results (error statistics) for the
standard model and the new surrogate with all the base sets
considered. Figs. 2-4 show error plots (modulus of the
difference between the fine model and the corresponding
surrogate model response versus frequency) for the standard
model and the new model with base sets Xp; and Xz,
respectively. All the experiments were performed using
constant C equal to 1.0 (cf. (4)). Fig. 4 shows dependence of
average modeling error on the characteristic distance 4. The
results show that the new surrogate model performs as
expected. Modeling accuracy improves while characteristic
distance of the basc set gets smaller. Note that the new
surrogate model performs similarly as the standard model for
base sets of the same cardinality as the star distribution-based
set. The standard model is clearly outperformed by the new
model if the base set is increased.
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TABLE II
MODELING RESULTS FOR FOR TWO-SECTION TRANSFORMER
EXAMPLE. VERIFICATION FOR 30 RANDOM TEST POINTS

Model Baseset  Average  Maximum Standard
Error Error Deviation
Standard star dist. 0.0389 0.0676 0.0152
New Xp 0.0384 0.0663 0.0153
New Apo 0.0218 0.0717 0.0142
New Aps 0.0073 0.0156 0.0038
New Xpy 0.0027 0.0046 0.0013
E
2
E
:

Frequency [GHz]
Fig.2. Error plots for the standard surrogate model for the two-section
impedance transformer (30 test points).

Error modulus

Frequency [GHz]
Fig.3. Error plots for the new surrogate model with base set Xp; for the
two-section impedance transformer (30 test points).
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Fig.4. Error plots for the new surrogate model with base set Xp for the
two-section impedance transformer (30 test points).

We consider the microstrip right-angle bend of Fig.6(a).
Design parameters are width /¥, substrate height /7 and
dielectric constant g, The region of interest is 20mil < JJ/ <
30mil, 8mil < A < 16mil and 8 < ¢,< 10. The frequency range

is 1 GHz to 31 GHz. The reference point is x"=12512 97, the
region size & = [5 4 1]°. The fine model is analyzed by
Sonnet’s ern™ using 1mil x 1mil mesh size. The coarse model
is shown in Fig. 6(b). Equivalent circuit parameters are
calculated from Kirschning, Jansen and Koster [8].
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Fig.5. Average modeling error versus characteristic distance A for the two-
section impedance transformer. Data for the new surrogate model with base
sets Xp1-Xps. Verification for 30 test points.

@ ®
Fig.6. The microstrip right-angle bend: the fine model (a) and the coarse
model (b).

We compared the accuracy of the standard model and the
new model for different base sets. Table III shows details of
the base sets used in the experiments. Accuracy was tested
using 30 random points; the /> norm of the difference between
the fine model response and the corresponding surrogate
model response was used as an error measure.

Table IV shows numerical results (error statistics) for the
standard model and the new surrogate with all the base sets
considered. Figs. 7-9 show error plots (modulus of difference
between the fine model and the corresponding surrogate
model response versus frequency) for the standard model and
the new model with base sets Xp; and Xp4, respectively. All
the experiments were performed using constant C equal to 1.0
(cf. (4)). Fig. 10 shows dependence of average modeling error
on the characteristic distance A.

Similarly as in the previous example, the new model allows
us to significantly improve modeling accuracy (with respect to
the standard model) by using a larger number of base points.

TABLE III
BASE SET DATA FOR MICROSTRIP BEND EXAMPLE

Base set Description Number of points A
Xp Uniform mesh + x° 9 3.52
Xg Uniform mesh 27 2.44
Xps Uniform mesh 64 1.83
Xgy Uniform mesh 125 1.47
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Fig.7. Error plots for the standard surrogate model for the microstrip right-
angle bend (30 test points).
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Fig.8. Error plots for the new surrogate model with base set Xz for the

microstrip right-angle bend (30 test points).
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Fig.9. Error plots for the new surrogate model with base set Xp for the
microstrip right-angle bend (30 test points).
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Fig.10. Average modeling error versus characteristic distance A for the
microstrip right-angle bend. Data for the new surrogate model with base sets
Xp1-X3p4. Verification for 30 test points.

TABLE IV
MODELING RESULTS FOR FOR MICROSTRIP BEND EXAMPLE.
VERIFICATION FOR 30 RANDOM TEST POINTS

Model Baseset  Average  Maximum Standard
Error Error Deviation
Standard star dist. 0.0331 0.0825 0.0213
New X 0.0361 0.0826 0.0161
New Ap» 0.0206 0.0473 0.0115
New Xps 0.0093 0.0279 0.0065
New Xz 0.0049 0.0122 0.0029

IV. CONCLUSIONS

A new SM-based modeling methodology is presented. It
utilizes parameter extraction with variable weight coefficients.
This concept allows the base points that are closer to the
model evaluation point to have a bigger impact on the
surrogate response. As a result, the new methodology can
efficiently handle any base set and has the property of
increasing modeling accuracy when the number of base points
increases. Examples show robustness of the proposed method.
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