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Abstract-For the first time, we apply space mapping to
antenna design. We exploit a coarse-mesh method-of-moments
(MoM) solver as the coarse model and align it with the fine-mesh
MoM solution through implicit space mapping and output space
mapping. A novel local meshing method avoids inconsistencies in
the coarse model. Our new user-friendly SMF system optimizes
the impedance of a patch antenna in four iterations. In a double
annular ring antenna the finite ground size effect for the MoM is
efficiently solved and the design specification is satisfied after
only three iterations.
Index Terms-Antenna design, CAD, EM optimization, method

of moments, surrogate modeling, space mapping.

I. INTRODUCTION

The method of moments (MoM) is one of the most
frequently used numerical techniques for analysis of planar
structures. An accurate MoM simulation is cpu intensive. This
cost may be prohibitive for complex design problems.
Alternatively, a typical coarse mesh MoM simulation is fast,
but poor in accuracy.
The space mapping (SM) technique takes advantage of the

efficiency of a coarse mesh MoM simulation and the accuracy
of the fine mesh simulation. SM aligns coarse models with
fine models [1]-[3]. Here, the fine model is the fine mesh
MoM solution. The coarse model is the coarse mesh solution.
For the first time, we apply the SM technique to antenna

design. Both fine and coarse models are defined within the
commercial EM solver FEKO, which is used primarily for
antenna design based on the MoM [4]. We propose a new
meshing method: the topology of the mesh is preserved
throughout the optimization which makes the coarse-model
response in the design parameter space smooth and consistent.

In the parameter extraction (PE) process, we implement
implicit SM (ISM) and output SM (OSM) sequentially [2],
[3]. In a preliminary PE, we roughly align the coarse model
with the fine model through ISM. Then OSM aims at locally
matching the surrogate with the fine model.
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Our new SMF system [5] implements our approach. SMF is
a GUI-oriented Matlab space-mapping nonlinear optimization
software package with sockets to popular EM simulators,
including FEKO, Sonnet em and Agilent ADS.
We consider a patch antenna and a double annular ring

antenna. In the first example, we optimize impedance at a
single frequency, and then discuss the coarseness in the coarse
model and its effect on the SM performance. In the second
example, we exploit the cpu-intensive surface equivalence
principle (SEP) as a fine model and the special Green's
function with a coarse mesh as a coarse model. The S-
parameter response is optimized in 3 iterations.

II. MESH CONVERGENCE AND MESHING METHOD

The mesh convergence needs to be checked to get an
accurate simulation result. This is done by refining the mesh
from one simulation to the next, and keeping all other
parameters the same. If the results are significantly different,
the surfaces are not adequately discretized and we need to
refine the mesh [6].

The coarse-mesh coarse model does not need to achieve
mesh convergence. Consequently, the variation of the mesh
number and topology due to the variation of geometrical
design parameters during optimization leads to inconsistent
results. To overcome this problem, we force the mesh number
and topology to remain unchanged during optimization. This
is done by local meshing in FEKO.

In the fine model, where mesh convergence is satisfied, we
use global meshing. We define the mesh density by the
number of meshes per wavelength.

III. SM-BASED SURROGATE MODELS

We are concerned with a class of optimization algorithms
that exploit surrogate models [7]. Let Rf: Xf - Rm denote
the response vector of the so-called fine model of a given
object, where Xf c Rn. Our goal is to solve

Xf = arg min U(Rf (xf ))
XfeXf

(1)

where U is a suitable objective function.
SM assumes the existence of a less accurate but much faster

coarse model. Let RC : X, xXXp - Rm denote the response
vectors of the coarse model, where XCCR' is the design
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variable domain (we assume here that XjzXf) andX is the
domain of auxiliary (preassigned) coarse model parameters.
Typical preassigned parameters xp are the dielectric constant
and the height of a dielectric layer. By x* we denote the
optimal solution of the coarse model, i.e.,

XC = arg min U(Rc(x,x()))
X(EXC

k1
P

(2)

where x(°) denotes the initial preassigned parameter values.
We consider the fine model to be expensive to compute and

solving (1) by direct optimization to be impractical. Instead,
we use surrogate models, i.e., models that are not as accurate
as the fine model but are computationally cheap, hence
suitable for iterative optimization. We consider an
optimization algorithm that generates a sequence of points
x7)e Xf, i=1,2,..., sothat

x( +l) = arg min U(R(') (x)). (3)

Here, R(') : Xc -> Rm is the surrogate model at iteration i,
which uses the coarse model and the fine model data.

In this work, we use a surrogate model based on implicit
SM [2] and output SM [3]. The surrogate model at iteration i
is defined as

R(i) (x) = RC (x, xpi)) +AR('). (4)

where

xp 0) = arg min Rf (x))- RC(xI),x) (5)

and

AR(i) = Rf (x(i))-R(x(i),x)). (6)

Both implicit and output SM aim at reducing the
misalignment between the fine model and the current
surrogate, however ISM exploits the physics-based similarity
of the models, while the OSM ensures perfect local alignment
between the models at the current iteration point. As follows
from equations (4)-(6), we implement ISM and OSM
sequentially. This is illustrated in Fig. 1.
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surrogate
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parameters

Fig. 1. Demonstration of our approach to implicit and output SM.

We implement the SMF system [5] as follows.

Step 1 Choose a proper coarse-mesh coarse model as well as
preassigned parameters. Set i = 0.

Step 2 Solve (2) to find the surrogate optimal solution
x* and let Xf0) = x*.

Step 3 Evaluate the fine model to find R1 (xf)).
Step 4 Update the surrogate model R(') according to (4)-(6).
Step 5 Solve (3) and obtain xf+).f
Step 6 If the termination condition is satisfied (convergence

achieved or the design specification satisfied), stop;
otherwise, set i = +1± and go to Step 3.

IV. EXAMPLES

A. Patch Antenna
This patch antenna is printed on a substrate with relative

dielectric constant -r = 2.32 and height h = 1.59 mm. The
design parameters are the patch length and width, i.e.,
xf = [L W]T . The objective is to obtain 50 Q input
impedance at 2 GHz. The objective function is lZin -501.

In the fine model, the global mesh density is 30 meshes per
wavelength. In the coarse model, the mesh number and
topology are fixed through local meshing. We choose three
mesh edges along L and seven along W. See Fig. 2. Our
selected preassigned SM parameter is x = r . In the PE, we
match the complex SI, instead of the input impedance.
The initial design point is the coarse model optimal solution
(°)=[47.1285 100.470]mm. The SMF system requires 5

iterations (6 fine model simulations). Fig. 3 shows the
reduction of the objective function versus the number of the
iterations. The final design is x; = (4) = [46.7294 99.6875]
mm. Table I shows the optimization results for the design
parameters, the objective function value, the preassigned
parameter and the output SM parameter at each iteration.
Computation time is 341 seconds, compared with 2816
seconds for direct fine model optimization.
Table II discusses the effect on the SM performance of the

coarseness of the coarse model for the patch antenna. The
algorithm does not converge for 24 meshes. With increase of
the number of meshes, the function evaluation time increases
while SM iterations decrease. We have the best SM
performance in terms of total time cost for 100 meshes, which
requires only 341 seconds.

L

(a) (b)
Fig. 2. Demonstration of coarse model and fine model. (a) Coarse
model with three mesh edges along L and seven mesh edges along
W. (b) Fine model with global mesh density of 30 meshes per
wavelength.
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Fig. 3. Objective function value versus iteration number in the
microstrip patch antenna example.

TABLE I
OPTIMIZATION RESULTS FOR THE PATCH ANTENNA EXAMPLE

Iteration Xf (mm) Er AR |Zin -50

F47.12850 100.470 2.3200 0.0000 27.941

F46.777431008 .411 L99.6922 1 2.3621 0.0082 0.0461i 2.5616

F46.726812 99.6960 2.3589 0.0145 + 0.0056i 0.35956

46.72941
3 99.6883 2.3590 0.0118+0.0054i 2.4437x10-2

F46.72941
4 99.6875 2.3589 0.0115+0.0059i 1.1234x10 2

TABLE II
THE EFFECT OF LOCAL MESHING ON SM PERFORMANCE

FOR THE PATCH ANTENNA
Local meshing in the coarse model SM performance

Mesh number along Total mesh Function Iteration Total time
evaluation IeainTtltm

L w number time (s) number (s)
2 5 24 0.109 Not convergent
3 7 48 0.219 6 364
5 9 100 0.438 4 341
9 20 400 4.063 4 1604
1 1 22 528 8.375 3 2695

Global meshing in the fine model Direct optimization
Mesh density=30 1032* 33.313* 0 2816

* The number of meshes and function evaluation time in the fine
model is measured at the starting point [L W] = [55 85] mm

B. Double Annular Ring Antenna
We consider the stacked probe-fed printed annular ring

antenna of [8] which is shown in Fig. 4. The antenna is
printed on a PCB with I = 2.2, d1 = 6.096mm for the lower
substrate and 8r2 = 1.07, d2 = 8.0mm for the upper substrate.
The dielectric loss tangent is 0.001 for both layers.

6-

d2 r2:

a2 al

Fig. 4. Geometry of a stacked probe-fed printed double annular
ring antenna example.

Fig. 5. Demonstration of local meshing of the annular ring in the
coarse-mesh coarse model for a stacked probe-fed printed double
ring antenna example.

The finite ground size is 100 xlI 00 mm. The radius of the feed
pin is ro = 0.325 mm. Design variables are the outer and inner
radius of each ring and the feed position, namely,
[a, a2 b1 52 'p~]T The design specification is

IS11 .-1OdB for1.75GHz.w.2.15GHz.

In an MoM solver like FEKO, special Green's functions are
usually implemented to model multi-layer substrates, where
the ground and the substrate are assumed infinite in extent. It
is computer-resource efficient, since only the finite metallic
surfaces are discretized. However, in many microwave and
RF applications, the infinite ground plane assumption is not
acceptable for accurate simulations. The ground size has a
strong effect on the performance of microstrip antennas.
The surface equivalence principle (SEP) addresses this

problem. The surface of a dielectric is discretized for the
electric and magnetic currents on the surface. All sides of a
dielectric have to be meshed, making a closed solid. In this
approach, the memory requirement is four times what it would
be if the same structure was metallic [9].
We choose the SEP model as the fine model and the special

Green's function, which does not consider the finite ground
size effect, as the coarse model. To further reduce the
simulation time in the coarse model, we apply a coarser mesh
by local meshing. As shown in Fig. 5, the number of mesh
edges along the three loops (thick lines) is topologically fixed
at 5, 10 and 15, respectively, regardless of the variation in the
design parameter values. The detailed fine and coarse models
are shown in Table III.
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TABLE III
FINE MODEL AND COARSE MODEL IN DOUBLE ANNULAR

RING ANTENNA
Model ..MeshTechnique Meshing methodtype number

0.35r

Frequency
sweep time

Coarse Special Green's
model function + Local meshing 83 8.721 seconds

coarse mesh
Fine SEP Global meshing 2661* 1 hour and 18
model density =20 minutes

* Number of meshes and time cost in fine the model are measured
at the initial point

0.05 e final fine response - i

X---- final surrogate response

1.75 1.85 1.95 2.05 2.15
Frequency [GHz]

0
1.75 1.8 1.85 1.9 1.95 2

Frequency [GHz]
2.05 2.1 2.15

Fig. 7. Final fine and surrogate responses for the double annular
ring antenna example.

TABLE IV
INITIAL AND FINAL DESIGN OF THE DOUBLE ANNULAR RING ANTENNA

Design Initial design Final design
parameters (mm) (mm)

a1 9.2277 10.6735

a2 8.7224 7.8088

b, 30.7230 28.4621
b2 34.1266 32.5043
pp 18.2107 19.6817

Fig. 6. Initial fine and surrogate responses corresponding to the
coarse model optimal solution for the double annular ring antenna.

The SMF system needs 3 iterations (4 fine simulations) to
satisfy the specifications, although the coarse model initially
exhibits a poor response [see Fig. 6]. The total time taken is 5
hours 58 minutes (a single fine model simulation requires 1
hour 18 minutes). Fig. 7 depicts the fine and surrogate model
responses at the final design. Good alignment is achieved with
three PEs. Table IV shows the initial and final design.

IV. CONCLUSIONS

We have presented an effective space-mapping technique
for antenna optimization based on a coarse model which
exploits a coarse non-convergent mesh of fixed topology.
Both coarse and fine models are implemented by one MoM
solver. A separate coarse model is not required. We apply our
novel SMF system to patch antenna optimization. In the
double annular ring example, our SM technique provides an
efficient way to address the finite ground size problem.
Although we demonstrate our approach through antenna
design, it is also applicable to other planar structures.
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