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Space-Mapping-Based Interpolation
for Engineering Optimization

Slawomir Koziel, Member, IEEE, John W. Bandler, Fellow, IEEE, and Kaj Madsen

Abstract—We consider a simple and efficient space mapping
(SM)-based interpolation scheme to work in conjunction with SM
optimization algorithms. The technique is useful if the fine model
(the one that is supposed to be optimized) is available only on a
structured grid. It allows us to estimate the response of the fine
model at off-grid points and, as a result, increases the effective
resolution of the design variable domain search and improves the
quality of the fine model solution found by the SM optimization
algorithm. The proposed method requires little computational
effort. In particular, no additional fine model evaluations are nec-
essary. Several examples that verify the accuracy and robustness
of our approach are provided.

Index Terms—Engineering optimization, microwave design, off-
grid interpolation, space mapping (SM), SM optimization.

I. INTRODUCTION

SPACE-MAPPING (SM) technology is a novel, although al-
ready recognized, engineering optimization paradigm, con-

sisting of a number of efficient optimization approaches [1]–[5].
The main idea behind SM is that the direct optimization of an
accurate but computationally expensive high fidelity or “fine”
model of interest is replaced by the iterative optimization and
updating of a so-called “coarse” model (less accurate but very
cheap to evaluate). Provided that the misalignment between the
fine and coarse models is not significant, SM-based algorithms
typically provide excellent results after only a few evaluations
of the fine model.

SM was originally applied to the optimization of microwave
devices [1], where fine models are often based on full-wave elec-
tromagnetic simulators, whereas coarse models are physically
based circuit models. In this case the fine model evaluation can
be time consuming, and saving each such evaluation counts. SM
techniques have already been applied to optimization and mod-
eling problems in a growing number of areas (see, e.g., [6]–[8]).
A review and exposition of advances in SM technology is found
in [5].
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Recent efforts have been focused on several areas:
1) development of new, more efficient optimization algo-

rithms that use different SM techniques such as implicit
space mapping [3], [9] and output space mapping [4];

2) development of new SM-based models [10], [11];
3) theoretical justification of space mapping and convergence

theory for SM optimization algorithms [12], neuro-SM
[13]–[17], and applications of SM (e.g., [18] and [19]).

In this paper, we present an SM-based interpolation technique
for engineering optimization. In some situations, it happens that
the model to be optimized is available on a finite grid only.
This is usually due to the simulation method used to evaluate
the model. For example, in the microwave area, electromag-
netic simulation may be performed by solving partial differen-
tial equations by means of the method of moments (as in Sonnet
em). Although, in theory, the grid can be made as fine as nec-
essary, in practice this is not feasible because using a finer grid
increases the computational cost of model evaluation as well
as memory consumption. Thus, to perform optimization of the
model while maintaining a reasonable grid size, we need in-
terpolation. Normally, interpolation is based on additional fine
model evaluations at different (neighboring) points. Space map-
ping offers a unique way of interpolating fine model responses
without any additional fine model evaluations. More specifi-
cally, we use the surrogate model (that is updated after any SM
iteration) to estimate the fine model response at off-grid points
that are close to the current iteration point. In particular, to find
the estimated fine model response at a given point, we take the
fine model response at the nearest on-grid point and add a cor-
rection term which is the difference between the current surro-
gate model response at the point of interest and the aforemen-
tioned on-grid point. We show that the proposed interpolation
method increases the resolution of the design variable domain
search and improves the quality of the fine model solution found
by SM optimization algorithms. On the other hand, it can be
used to speed up the optimization process because an SM algo-
rithm with our interpolation allows us to obtain the same reso-
lution and solution quality using a much coarser grid than the
SM algorithm without interpolation.

This paper is organized as follows. Section II briefly reviews
the formulation of the SM concept and typical optimization al-
gorithms. Section III introduces the proposed SM-based inter-
polation scheme. Section IV contains verification examples. In
Section V, we present a mathematical motivation of our inter-
polation scheme. Section VI demonstrates that our interpola-
tion scheme can be efficiently used to speed up the optimiza-
tion process. Section VII examines robustness. A discussion and
conclusions follow in Section VIII.
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II. BASICS OF SM OPTIMIZATION

Let us state the optimization problem as follows. Let
denote the response vector of a fine model of the

device of interest, where . Our goal is to solve the
problem

(1)

where is a given objective function. We assume
throughout the paper that is a closed subset of . We shall
denote by the set of all satisfying (1) and call it the
set of fine model minimizers.

We consider the fine model to be expensive to compute and
solving (1) by direct optimization to be impractical. Instead, we
use surrogate models, i.e., models that are not as accurate as the
fine model but are computationally cheap, and hence suitable
for iterative optimization. We consider a general optimization
algorithm that generates a sequence of points ,

, and a family of surrogate models ,
, so that

(2)

and is constructed using suitable matching conditions
with the fine model at (and, perhaps, some of the ,

). We assume here that for
. If the solution to (2) is non-unique we may impose

regularization. We may match responses, i.e.,

(3)

and/or match first-order derivatives

(4)

where and denote Jacobians of the surrogate and fine
models, respectively. More precisely, we aim to define models
so that conditions such as (3) and (4) are satisfied.

The family of surrogate models can be implemented
in various ways. SM assumes the existence of a so-called coarse
model that describes the same object as the fine model: less
accurate but much faster to evaluate. Let denote
the response vectors of the coarse model, where . By

, we denote the set of coarse model minimizers (i.e., the set
of optimal solutions of the coarse model)

(5)

In the SM framework, the family of surrogate models is con-
structed from the coarse model in such a way that each is
a suitable distortion of , such that given matching conditions
are satisfied. A variety of SM-based surrogate models have been
used and described in the literature [1]–[5]. In this paper, we uti-
lize a general SM surrogate model that incorporates both input

[2] and output [4] SM. At iteration , , the surrogate
model is defined as (at iteration 0, we have )

(6)
where

(7)

(8)

(9)

Matrices , and
are obtained using a process called parameter

extraction (PE), as defined in (7). Matrices and
are calculated using (8) and (9) after having de-

termined , , and . Matching measure determines
the surrogate model as much as (6) does. We can consider dif-
ferent matching measures that aim to match the fine and surro-
gate model responses and/or their first-order derivatives. A gen-
eral form of the matching measure is

(10)

We assume that coefficients and are either zero or
one (although more general situations are conceivable). Setting

, , and , ,
means that the surrogate tries to match the fine model response
at all previous points (including the current point) as well
as the Jacobian at the current point.

The general SM surrogate model can be specified by en-
abling/disabling particular components of the space mapping
as well as by choosing proper values of weight coefficients

and . Any of the model components , , , , and
can be enabled or disabled as shown in Table I. A number of
responses and Jacobians used in parameter extraction can be
determined as shown in Table II. We shall use the following
naming convention for the surrogate models: the presence of
any of the letters , , , , is equivalent to enabling of the
corresponding model component. The first (second) subscript
denotes number of responses (Jacobians) used in parameter
extraction (subscript “all” is allowed as shown in Table II). For
example, surrogate model corresponds to the model
that uses nontrivial components , , , and , tries to match
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TABLE I
NAMING CONVENTION OF THE SURROGATE MODELS USED IN THE SM

OPTIMIZATION ALGORITHM (SURROGATE MODEL)

TABLE II
NAMING CONVENTION OF THE SURROGATE MODELS USED IN THE SM

OPTIMIZATION ALGORITHM (PE)

fine model responses from all previous iterations, and uses no
Jacobian data in the parameter extraction process.

In order to improve the convergence of the optimization algo-
rithm we enhance it by an (optional) trust region (TR) method
[20] so that the original problem (2) is replaced by

(11)

where denotes the TR radius at iteration . We use the tradi-
tional updating rules for the TR radius since we found them to
be efficient in our experiments. Let and

denote the objective function value
for the fine model and the surrogate, respectively, at (it-
eration point ). The next point is found as a solution to
(11). Having , , , and , we can calculate the
so-called gain ratio

(12)

The TR radius for the next iteration is determined in
the following way:

(13)

In our experiments we use , ,
, and . Initial value of the TR radius is

typically equal to .

The SM optimization algorithm1 can be summarized as fol-
lows:

Step Set

Step Given and

obtain using (11)

Update according to (12) and (13)

Step If is accepted i.e.,

set

and determine the new surrogate model

as in (6)–(10)

Step If the termination condition is not satisfied

go to Step 1 else terminate the algorithm

(14)

III. SM-BASED INTERPOLATION

From now on, we shall deal with the situation when the fine
model can be evaluated on a discrete subset of only so that
in order to conduct optimization outside this subset, we need to
perform some kind of interpolation. In this section, we give the
details of a simple SM-based interpolation scheme suitable to
work with the optimization algorithms described in Section II.

Suppose that the fine model is only available on a subset
of its domain . We will assume for the rest of this paper

that is a uniform grid with step in direction (although
this assumption is not critical). Let (snapping
function) be defined in such a way that for any ,
is a point snapped to the nearest grid point (with respect to a
given norm), i.e.,

(15)

where relation is a lexicographic order with respect to vector
components. Note that for any .

We would like to estimate the value of at any point of
using available data (recall that we assumed that is only

available on ) and the current surrogate model
available during the optimization process. Let be the
sequence created during the SM-based optimization procedure.
We define an interpolated fine model response at point

as

(16)

1The termination condition we use in this paper is as follows. The optimiza-
tion algorithm is terminated if one of the conditions is satisfied:

(i) kxxx � xxx k � TolX and kRRR � RRR k � TolFun (conver-
gence of the algorithm; TolX and TolFun are user-specified tolerances);

(ii) i > MaxIter (user-specified maximum number of iterations);
(iii) the number of fine model evaluations exceeds a user-specified value;
(iv) � < 0:1 � TolX (the TR radius is smaller than 10% of the argument

tolerance).
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Note that is defined in such a way that
if , i.e., if is an on-grid

point. The motivation behind this kind of interpolation follows
from the fact that for each is defined using
some or all of the information concerning the fine model
gathered during the previous iterations. Thus, is the best
available source of information about in the neighborhood
of . Note that (16) is not a global interpolation method.
It is only local and tailored to work with SM optimization
algorithms.

In order to use interpolation scheme (16), we need to modify
the matching measure (10) in the following way:

(17)

where symbol denotes an approximation of the fine
(coarse) model Jacobian using finite differences with points
lying on the grid. Although such estimation may be poor,
especially for coarse grids, the use of Jacobian estimation in
parameter extraction (17) may be beneficial in many cases,
because the matching measure with and is, in a
way, equivalent to multipoint parameter extraction at points
corresponding to the finite difference scheme used for Jacobian
approximation. On the other hand, the term should not be
used because its accuracy is essential for algorithm perfor-
mance. For calculation of the matrix we use, instead of (8),
the new formula

(18)

One can also use an alternative matching measure based on
the interpolated fine model response

(19)

which uses an approximated fine model response at instead
of the fine model response at iteration points snapped to the
grid. Experiments indicate that this matching measure performs
almost as well as (17); however, we will not use it further in this
paper.

It should be emphasized that the proposed interpolation
scheme uses already available fine model data—no additional
fine model evaluations are necessary to perform this interpola-
tion. The method is simple and straightforward to implement.

The SM optimization algorithm that uses the interpolation
scheme introduced in this section is the same as (14) except
that we use to calculate in (12)
while using our interpolation scheme, matching measure (17)
instead of (10), and (18) instead of (8); also we use condition

as a convergence measure (instead

of ). Using the interpolated fine
model for calculating the gain ratio (12) as well as in the
termination condition are the factors that affect the operation of
the SM algorithm and allow us to obtain a better resolution and
accuracy of SM optimization.

For further use, we also define a function ,
an extension of ( restricted to ) onto such that

(20)

i.e., is the piece-wise constant extension of onto
(which is equivalent to the actual fine model used while per-
forming SM optimization without any interpolation scheme);
is the snapping function defined by (15).

IV. EXAMPLES

In this section, we describe results of numerical experiments
conducted to verify the interpolation scheme proposed in Sec-
tion III. We considered a couple of test problems, including syn-
thetic examples (i.e., problems for which the fine model is de-
fined on a continuous domain; however, we evaluate it only on a
given grid—this allows us to perform reliable verification of the
results) and real microwave problems in which the fine model
is evaluated using commercial simulators and it really is avail-
able on a finite grid only (in this case, our results are verified by
means of simulating the fine model with a very fine grid).

A. Two-Section Capacitively Loaded Impedance Transformer

As our first example, we used a two-section impedance
transformer [21]. The “coarse” and “fine” models for the
two-section impedance transformer are shown in Fig. 1. The
values of the fine model capacitances are pF.
The characteristic impedances are kept fixed at the optimal
values . The physical lengths

and of the two transmission lines are selected as
designable parameters. Twenty-one frequency points are sim-
ulated per sweep (uniformly distributed in the interval [0.5,
1.5] GHz). We consider the input reflection coefficient re-
sponse of both models which is a
function of the real frequency and the designable parameters

. Both fine and coarse models are implemented
in MATLAB. Design specifications are in
the whole frequency range.

Optimization of the model was performed using our SM op-
timization algorithm with the trust region method. We used the
surrogate model (see Section II for details). Design
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Fig. 1. (a) “Fine” and (b) “coarse” model, two-section capacitively loaded impedance transformer [21].

TABLE III
COMPARISON OF EXPERIMENTS ON THE TWO-SECTION

TRANSFORMER TEST PROBLEM

variables are normalized to the coarse model optimal solution,
i.e., the normalized starting point is .

In our experiments we used four different grids: 2, 5, 10, and
20 (i.e., we restrict evaluation of the fine model only to the points
corresponding to the grid of a given size). We performed opti-
mization of the two-section transformer using i) our interpola-
tion scheme (16) and ii) no interpolation so that the fine model
was evaluated at the nearest grid point regardless of the actual
value of the coordinates [i.e., (20) was used]. Table III shows
the details of our experiments, as well as the results, i.e., a com-
parison of the quality of solutions obtained with and without
interpolation for different grid sizes. Fig. 2 shows the results for
the grid size 20: the fine model response at the final iteration
(interpolated and accurate) for optimization without interpola-
tion [see Fig. 2(a)] and with the SM-based interpolation [see
Fig. 2(b)]. It follows from the results presented in Table III that
using our interpolation scheme gives satisfactory results even
for the largest grid (a grid of 20 is more than 20% of the design
parameter values at the final solution). The specification error
according to interpolated model is reliable and response accu-
racy is good.

B. Seven-Section Capacitively Loaded Impedance Transformer

Our second example is a seven-section capacitively loaded
impedance transformer [21]. The “coarse” and “fine” models
for the seven-section impedance transformer are shown in
Fig. 3. The load impedance is 100 and the line impedance
is 50 . The values of the fine model capacitances are

. The characteristic impedances are kept

Fig. 2. Optimization results for grid size 20 for optimization: (a) without inter-
polation and (b) with interpolation: response at the final iteration according to
the current model (points) and the exact response (i.e., obtained using the model
available on a continuous domain) at the final iteration (solid line).

fixed at the optimal values
. The physical lengths

, , of the seven transmission lines are selected as
designable parameters; 68 frequency points are simulated per
sweep (uniformly distributed in the interval [1.0, 7.7] GHz).

Both fine and coarse models are implemented in MATLAB.
We consider the input reflection coefficient response

of both models which is a func-
tion of the real frequency and the designable parameters

. Design specifications are
in the whole frequency range.

Optimization of the model was performed using our SM op-
timization algorithm with the trust region method. We used the
surrogate model (see Section II for details). Design
variables are normalized to the coarse model optimal solution,
i.e., the normalized starting point is .
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Fig. 3. Seven-section capacitively loaded impedance transformer. (a) “Fine” model. (b) “Coarse” model [21].

TABLE IV
COMPARISON OF EXPERIMENTS ON THE SEVEN-SECTION

TRANSFORMER TEST PROBLEM

In our experiments we used four different grids: 0.02, 0.05,
0.10, and 0.20. We performed optimization of the seven-section
transformer using i) an interpolation scheme (16) and ii) no in-
terpolation, so that the fine model was evaluated at the nearest
grid point regardless of the actual value of the coordinates [i.e.,
(20) was used]. Table IV shows the details of our experiments as
well as the results, i.e., a comparison of the quality of solutions
obtained with and without interpolation for different grid sizes.
Fig. 4 shows the results for grid size 0.2: the fine model response
at the final iteration (interpolated and accurate) for optimization
without interpolation [see Fig. 4(a)] and with the SM-based in-
terpolation [see Fig. 4(b)].

It follows from the results presented in Table IV that using
our interpolation scheme gives satisfactory results even for rel-
atively coarse grids (a grid of 0.10 is more than 10% of the de-
sign parameter values at the final solution). The specification
error according to the interpolated model is reliable and the re-
sponse accuracy is good. Even for a grid of 0.20, the response
accuracy is acceptable.

C. Three-Section Microstrip Transformer

Our third test problem is the three-section microstrip
impedance transformer shown in Fig. 5 [22]. The coarse

Fig. 4. Optimization results for grid size 0.2 for optimization: (a) without inter-
polation and (b) with interpolation: response at the final iteration according to
the current model (points) and the exact response (i.e., obtained using the model
available on a continuous domain) at the final iteration (solid line).

model is shown in Fig. 6. Well-known empirical formulas
are used to express electrical parameters in terms of physical
dimensions. The design specifications are for

GHz GHz. The designable parameters are the
width and physical length of each microstrip line. Here, the
reflection coefficient is used to match the two model
responses. The fine model is a Sonnet em [23] model. The
designable parameters for the fine model are the widths and
physical lengths of the three microstrip lines. The thickness of
the dielectric substrate is 0.635 mm (25 mil) and its relative per-
mittivity is 9.7. The effect of nonideal dielectric is considered
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Fig. 5. Three-section 3:1 microstrip impedance transformer: structure and di-
mensions [22].

Fig. 6. Three-section 3:1 microstrip impedance transformer: coarse model
[22].

by setting the loss tangent to 0.002. We use 11 frequency points
in the sweep. The coarse model is implemented in MATLAB.

Optimization of the model was performed using an our SM
optimization algorithm with a trust region method. We used the
surrogate model (see Section II). The starting point is

(coarse model optimal solution).
In our experiments we used three different grids: grid 1—a

horizontal grid of 1 mm, a vertical grid of 0.1 mm; grid 2—a
horizontal grid of 4 mm, a vertical grid of 0.2 mm; and grid
3—a horizontal grid of 10 mm, a vertical grid of 0.25 mm. We
performed optimization of the three-section transformer using:
1) our interpolation scheme (16) and 2) no interpolation, so that
the fine model was evaluated at the nearest grid point regardless
of the actual value of the coordinates [i.e., (20) was used].

Since this is a real (not synthetic) example, the accuracy of
the results was verified by simulating the results using a fine
grid with the following parameters: a horizontal grid of 0.2 mm
and a vertical grid of 0.01 mm. Simulation results obtained using
this grid were treated as exact (accurate) responses of the fine
model.

Table V shows the details of our experiments, as well as the
results, i.e., a comparison of the quality of solutions obtained
with and without interpolation for different grid sizes. Fig. 7
shows the results for grid size 10/0.25: the fine model response
at the final iteration (interpolated and accurate) for optimization
without interpolation [see Fig. 7(a)] and with the SM-based in-
terpolation [see Fig. 7(b)].

It is seen from the results in Table V that our interpolation
scheme gives satisfactory results for all grids. Specification error
according to the interpolated model is reliable and the response
accuracy is good.

D. Six-Section -Plane Waveguide Filter

Our last test problem is the six-section -plane waveguide
filter shown in Fig. 8 [24]. We use a waveguide of width 1.372
in (34.85 mm). The six waveguide sections are separated by
seven -plane septa, which have a finite thickness of 0.0245 in
(0.6223 mm). Design parameters are the section lengths , ,
and and the septa widths , , , and . We use 51
points from GHz GHz in the frequency sweep.
The design specifications are for GHz

TABLE V
COMPARISON OF EXPERIMENTS ON THE THREE-SECTION

TRANSFORMER TEST PROBLEM

Fig. 7. Optimization results for grid size 10/0.25 for optimization: (a) without
interpolation and (b) with interpolation: response at the final iteration according
to the current model (points) and the exact response (i.e., obtained using the
model available on a very fine grid) at the final iteration (solid line).

GHz, for GHz GHz, and
for GHz GHz.

The fine model is simulated using MEFiSTo [25] in a
two-dimensional mode. The MATLAB coarse model (Fig. 9)
has lumped inductances and dispersive transmission line sec-
tions. We simplify formulas due to Marcuvitz for the inductive
susceptances corresponding to the -plane septa.
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Fig. 8. Six-sectionH-plane waveguide filter: the three-dimensional view [24].

Fig. 9. Six-section H-plane waveguide filter: the equivalent empirical circuit
model [24].

Optimization of the model was performed using
our SM optimization algorithm with a trust region
method. We used the surrogate model
(see Section II for details). The starting point is

mm
(coarse model optimal solution).

In our experiments we used four different grids: 0.5, 1.0, 2.0,
and 4.0 [mm]. We performed optimization of the six-section

-plane waveguide filter using i) our interpolation scheme (16)
and ii) no interpolation so that the fine model was evaluated
at the nearest grid point regardless of the actual value of the
coordinates [i.e., (20) was used]. Accuracy of the results was
verified by the MEFiSTo simulator with its rubber-cell feature,
which allows evaluation of the model at any point: on-grid or
off-grid.

Table VI shows the details of our experiments, as well as the
results, i.e., a comparison of the quality of the solutions obtained
with and without interpolation for different grid sizes. Fig. 10
shows the results for grid size 4: the fine model response at
the final iteration (interpolated and accurate) for optimization
without interpolation [see Fig. 10(a)] and with the SM-based
interpolation [see Fig. 10(b)].

It is seen from the results that our interpolation scheme
gives satisfactory results for all grids. The specification error
according to our interpolated model is reliable. Accuracy of the
response is not very good, which is mainly because of the very
steep response of the filter at the edge of the stopband.

V. MATHEMATICAL MOTIVATION OF THE

SM INTERPOLATION SCHEME

The results of Section IV can be accounted for using the
simple error estimation shown below. As before, let

TABLE VI
COMPARISON OF EXPERIMENTS ON THE H-PLANE

WAVEGUIDE FILTER TEST PROBLEM

Fig. 10. Optimization results for grid size 4 for optimization: (a) without inter-
polation and (b) with interpolation: response at the final iteration according to
the current model (points) and the exact response (i.e., obtained using the model
available on a continuous domain) at the final iteration (solid line).

denote the piece-wise constant extension of onto
defined by (20) and be the interpolated fine model defined
by (16). Let be a surrogate model of
defined in the neighborhood of (i.e., is on grid) and
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Fig. 11. l error between the fine model RRR and models ~RRR (points) and �RRR

(crosses) versus the distance from the reference point for the seven-section trans-
former.

(i.e., the set of all points in that are closer to than to any
other grid point). Using the mean value theorem, we obtain the
following estimates:

(21)

where

(22)

and

(23)

where

(24)

It follows from (21)–(24) that the interpolation error grows
linearly with distance from for both and . However,
constant is in practice much smaller than because
is defined in such a way that it aims at reducing misalignment
between and the coarse model in the neighborhood of .

As an example, consider the seven-section transformer.
Fig. 11 shows the average error between the fine model
and models (points) and (crosses) versus the distance
from the reference point (here ). The sur-
rogate was set up using 15 points located in a star distribution
with step 0.05. The average was taken over 500 random points
(separate statistics for each distance). It follows that, in this
case, interpolation using the surrogate model reduces the error
by a factor of ten. A similar experiment was carried out for the
two-section transformer. In this case, interpolation using the
surrogate model reduces the matching error by a factor of six.

The other aspect of SM interpolation is that it makes the opti-
mization algorithm more stable. Without interpolation, the opti-
mized function is piece-wise constant and thus highly discontin-
uous at boundary points between different subdomains . In-
terpolation helps reduce these discontinuities. Fig. 12(a) shows

Fig. 12. Two-section transformer fine model response at 1 GHz (normalized
grid size ten): (a) without interpolation and (b) with SM-based interpolation.

the uninterpolated fine model response of the two-section trans-
former for frequency 1 GHz with a grid equal to ten (in both di-
rections). Fig. 12(b) shows the corresponding response for the
model with interpolation. As a consequence, interpolation im-
proves the convergence properties an SM algorithm. We omit
the details.

VI. USING SM INTERPOLATION TO SPEED UP THE

OPTIMIZATION PROCESS

So far, we have shown that space-mapping-based interpola-
tion allows us to perform optimization of models available on
a given grid as if they are available on a continuous domain. In
this section, we show that SM-based interpolation can be used to
speed up the optimization process. The key features of the pro-
posed interpolation scheme that allow this speedup are: no addi-
tional fine model evaluations required to perform interpolation
and good reliability even for relatively coarse grids. Because of
these features, instead of performing optimization using a fine
grid (adjusted according to the required resolution), one can use
SM-based interpolation and a much coarser grid to get a solu-
tion of similar resolution and quality in a shorter time.

For demonstration purposes, we use one of the examples de-
scribed in Section IV: the three-section impedance transformer.
In Experiment 1, we performed optimization using a horizontal
grid of 1 mm and a vertical grid of 0.1 mm without interpolation
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TABLE VII
COMPARISON OF EXPERIMENTS ON THE THREE-SECTION

TRANSFORMER TEST PROBLEM

assuming that this grid gives a satisfactory resolution. In Ex-
periment 2, the three-section transformer was optimized using
a horizontal grid of 4 mm and a vertical grid of 0.2 mm (with
SM-based interpolation); in Experiment 3 we used a horizontal
grid of 10 mm and a vertical grid of 0.25 mm (also with inter-
polation). The accuracy of the results was verified by evaluating
the fine model with a very fine grid (horizontal of 0.2 mm and
vertical of 0.01 mm).

It follows from the results in Table VII that using interpolation
indeed allows us to obtain significant reduction of optimization
time. Moreover, the quality of the solution obtained with coarser
grids and interpolation is better both with respect to the specifi-
cation error and response accuracy.

It should be pointed out that the proposed interpolation
scheme can be used to speed up the optimization process
even if the fine model is available on a continuous domain. In
particular, the user can introduce a so-called simulation grid,
i.e., to limit the algorithm to evaluate the fine model only on
this grid. This concept has already been used in commercial
software, e.g., Empipe [26]. When the model is available only
on a grid, we can use a coarser grid as a simulation grid. After
some initial iterations, as the algorithm is about to converge,
most of the subsequent iteration points will be snapped to the
same grid point while evaluating the fine model. Provided that
the fine model data is stored in the database, subsequent fine
model evaluations cost virtually nothing (regardless of how
many iterations are necessary to complete the optimization).

VII. ROBUSTNESS OF THE INTERPOLATION SCHEME

It isnatural toexpect that thequalityof theinterpolationscheme
(16) proposed in this paper depends on the quality of the coarse
model used in the space mapping optimization procedure. This
is because we expect that accuracy of the surrogate model is a
function of the accuracy of the coarse model itself. However, our
interpolation scheme is tightly connected with the space mapping
algorithm so that the question “How robust is the interpolation?”
is in fact “How robust is the space mapping algorithm itself?”

In order to get insight into this issue, we consider again the
two-section impedance transformer example and examine the
quality of the interpolation versus the quality of the coarse
model. Let denote the original coarse model of the two-sec-

Fig. 13. Fine model response (solid line) and coarse model responsesRRR (o),
RRR (�),RRR (�),RRR (+),RRR ( ), andRRR (���) atxxx = [90 90] .

tion transformer used in Section IV. We shall consider the
family of coarse models defined as follows:

(25)

where is a constant vector. In other
words, is a convex combination of the original coarse model
and a constant vector. We also consider another coarse model

, which is the same as the original coarse model except
that its characteristic impedances are the same and equal to the
average of their optimal values, i.e., .
Fig. 13 shows the fine model response and coarse model re-
sponses for models , , and at

. It is seen that the coarse model becomes worse
and worse with increasing . The model is the worst of
all the models considered here. Note also that even the original
coarse model is far from good.

Now, for each of these coarse models, we perform optimiza-
tion using the surrogate model (the same as in Sec-
tion IV), imposing the grid of size 10 and using interpolation
scheme (16). For comparison, we also perform SM optimiza-
tion without a grid (so that we can see how the regular SM algo-
rithm performs with increasingly bad coarse models). Table VIII
shows the results, including specification errors and response
accuracy.

The results in Table VIII indicate that our interpolation scheme
provides good results for values of up to 0.4. For larger values
of , response accuracy is no longer satisfactory. Thus, the inter-
polation is robust enough to work properly even with bad models,
although it eventually fails when the coarse model is really bad.
It follows from the last column of Table VIII, which provides the
optimization results without using any grid (i.e., regular SM opti-
mization with the fine model available on a continuous domain),
that regular SM optimization begins to fail for about the same
value of (larger than 0.4).

Thisconfirmswhatwesaidat thebeginning of this section.Our
interpolation scheme is tightly connected to the SM optimization
algorithm, and if the coarse model becomes too bad for the SM
optimization, it also becomes bad for SM interpolation. This is
further confirmed by the results concerning the model: in this
case both regular SM optimization (no grid, no interpolation) and
SM optimization with grid and interpolation fail.
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TABLE VIII
RESULTS FOR THE TWO-SECTION TRANSFORMER TEST PROBLEM

(TESTING ROBUSTNESS OF INTERPOLATION)

VIII. CONCLUSION

A novel space-mapping-based interpolation scheme has been
presented. It is designed to work in conjunction with SM opti-
mization algorithms. The method is useful if the fine model (the
one that is supposed to be optimized) is available only on a finite
grid. It allows us to estimate the response of the fine model at
off-grid points and, as a result, increases the resolution of the de-
sign variable domain search and improves the quality of the fine
model solution found by the optimization algorithm. Moreover,
it can be used to speed up the entire optimization process by
relaxing the grid requirements. The proposed method requires
little computational effort; in particular, no additional fine model
evaluations are necessary. Several examples presented in this
paper verify the accuracy and robustness of our approach.
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