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Abstract

Some computational experience relevant to computer-aided design using the ideas of

least pth anproximation with extremely large values of p is reported.

Values of p

up to 1,000,000,000,000 have been successfully employed in conjunction with
efficient gradient minimization algorithms such as the Fletcher-Powell method and

the recent method due to Fletcher.

1. INTRODUCTION
This naper describes seme comnutational exnerience
of the computer-aided design of actual circuits
and systems using the ideas of least nth approxi-
mation with extremely large values of p. The
obvious reason why large values of p are desirable
is that the corresponding ontimal approximations
tend to become minimax (or Chebyshev) approxima-
tions. Thus, least pth approximation using the
Fletcher-Powell method[1] and a new method due to
Fletcher[2] and the values of p up to 1,000,000,
000,000 have been tried on a number of test
examples.
2. THE METHOD"
We restrict ourselves here to a discussion of
rather conventional discrete least pth approxi-
mation problems. Consider the minimization of
1
U@ = (I ley( ™7 >0 for 1epee ¢}
ier
where ej(¢), in general, represents a weighted
error or deviation between a complex specified
function (desired resnonse) and a complex approxi-
mating function (actual responsc) at some sample
point i of a finite set I, and $ represents the
k variable parameters, i.e.,

$ 806, o, 8,17 (2)

Assuming that the e;(4) for iel are continuous with
continuous derivatives,
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and * denotes the complex conjugate.

In an effort to alleviate the ill-conditioning
resulting from the evaluation of [ei($)|p for very
large values of p, we let

M() é‘rlnzeulc le, ()| (5)

and rewrite (1) and (3), respectively, in the form
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noting that M($)>0 and, again, that U($)>0 and
1<p<m_

3. EXAMPLES

Space does not permit a full discussion of all the
examples attempted, so we will briefly consider
test pfoblems for which the minimax solutions are
known [3-6],

Consider the design of 102 to 19 transmission-line
transformers for a relative bandwidth of 100%. Let
ej in (6) be pj, the reflection coefficient,
sampled uniformly at 11 points on the relative
frequency interval [0.5, 1.5] GHz for 2-section
designs and at {0.5, 0.6, 0.7, 0.77, 0.9, 1.0, 1.1,
1.23, 1.3, 1.4, 1.5} GHz for 3-section designs.



Avpropriate gradient vectors with respect to
length and characteristic imnedance of trans-
mission lines are calculated by the adjoint net-
work method[7].

The progress of the two algorithms used on a CDC
6400 computer from indicated starting points is
summarized in Tables 1 and 2 and Figures 1 to S.
For convenience we show results for different
values of n where p=10". The figures are plots of
M of (5) against N, the number of function
evaluations at the beginning of an iteration.
function evaluation includes the evaluation of
appropriate gradients.

One

4. CONCLUSIONS

\

Our experience to-date indicates that, by and
large, the smaller the value of p, the faster
will M(¢) be minimized, always assuming that the
value of p is sufficientlv large so that a
specified M can be attained. No attempts at
modifying the minimization methods to improve
convergence for extremely large values of p nor
a detailed study of other possible effccts of
nunerical ill-conditioning have so far been
carried out. But, if the success we have had
using our present approach together with efficient
gradient methods are widely repeatable, then far-
reaching consequences are foreseen not only in
nonlinear annroximation. but in the closely
Toloeod fiold of nonlincar programming .
Applications in the important area of filter
design which can be readily carried out using
least pth objectives[9 , are also envisaged.
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TABLE 1
OPTIMIZATION OF A 2-SECTION 10:1 QUARTER-WAVE
TRANSFOPMER OVER 100 PERCENT BANDWIDTH WITH
VARIABLE CHARACTERISTIC IMPEDANCES Z] AND Z2

Fig. Starting Number of Function
Point where Evaluitions'N*
Z1 22 p=10n Fletcher [2] PFletcher—
owell [1]
2 22 31
3 28 49
1 1.0 3.0 6 33 56
9 33 56
12 33 56
2 30 26
3 58 50
2 1.0 6.0 6 + 133
9 + 172
12 i 198
- 3 15 23
3 t 41
3 3.5 6.0 6 44 101
9 102 118
12 102 118
2 14 16
3 19 56
4 3.5 3.0 5 21 75
9 21 85
12 21 310
*The number N listed arc those required to bring
M within 0.01 porcent of the known contimum value,

namely, U.,42857.

tMissing entries are due to paramecters becoming
negative - constraints were not imposed during
ortimization,

TABLE 2
OPTIMIZATION OF A 3-SECTION 10:1 TRANSFORMER
OVER 100 PERCENT BANDWIDTH WITH VARIABLE LENGTHS
AND CHARACTERISTIC IMPEDANCES
Starting Point: Zj=1.5, 22=3.0, I13=6.0, El/fq=0.8
23/£q=l.2, £3/£q=0.8, where {q is the quarter-
wavelength at center frequency.

Number of Function Evaluations N to

n reach the value of M shown in brackets;
where the optimum value of M is 0.19729
p=10" Fletcher [2] Fletcher-Powell [1]

3 B77 B§  (0.19734) JIB B2 (0.10734)

4 g6 (0.19730) 378 (0.19729)

6 418 (0.19729) 702 (0.19740)

9 ©34 637 (0.19730) 661 (0.19740)

12 §6R634  (0.19736) 645 (0.19851)
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