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Abstract—For the first time, full-wave optimization exploiting
adjoint Hessian matrices is applied to the design of microwave
filters and transitions. The first- and second-order sensitivities
of the scattering parameters are computed analytically using the
adjoint network method (ANM). The mode-matching-based ANM
is applied to the generalized scattering matrices of the different
filter/transition components. Analytical gradient and Hessian ma-
trices of differentiable objective functions are expressed in terms
of the first- and second-order response adjoint sensitivities. Opti-
mization techniques exploiting second-order information such as
the Levenberg–Marquardt method are applied using the adjoint
first- and second-order information. Significant acceleration is
achieved using these techniques over gradient-based optimiza-
tion techniques such as the Broyden–Fletcher–Goldfarb–Shanno
method. The adjoint-based sensitivities are also exploited in
efficient tolerance analysis of microwave filters.

Index Terms—Adjoint networks, computer-aided design (CAD),
mode-matching (MM) methods, optimization methods, sensitivity
analysis.

I. INTRODUCTION

THE DESIGN process of microwave filters or transitions in-
volves imposing design specifications on the scattering pa-

rameters in certain frequency bands. An optimization algorithm
is utilized to obtain a feasible optimal design. This algorithm
carries out a number of iterations starting from an initial de-
sign. The optimizer invokes the electromagnetic (EM) simulator
in each iteration to check the design feasibility and to obtain
derivative information necessary to generate the next design.
Derivative-based optimization algorithms can exploit first- or
second-order derivatives [1]. Algorithms exploiting first-order
derivatives when properly modified to exploit available second-
order derivative information are expected to deliver faster con-
vergence. Second-order derivatives, however, are expensive to
calculate using central difference (CD) approximations.

The adjoint network method (ANM) is an efficient technique
for sensitivity (derivative) estimation [2]–[8]. Using only the
original simulation, the first-order sensitivities of the network
functions with respect to (w.r.t.) all the design variables are ob-
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tained. These sensitivities give an indication of how critically
the designed circuit depends on the design parameters. They are
essential in optimization, yield analysis, and tolerance analysis.

Formulations of first- and second-order sensitivities w.r.t.
network parameters in terms of wave variables based on
the ANM were presented in [5]. Formulations of first- and
second-order sensitivities of voltage in terms of circuit param-
eters were presented in several papers, e.g., [6]–[9]. In [7],
third-order sensitivity of voltage in terms of circuit admittance
matrix was obtained. ANM-based full-wave optimization of mi-
crowave circuits exploiting admittance matrices was introduced
in [10]. The design of corrugated feed horn antennas using
ANM was discussed in [11]. In [10] and [11], gradient-based
optimization techniques were utilized and the derivatives of
individual network components were determined by numerical
differences.

In this paper, the ANM is applied to calculate first- and
second-order sensitivities of the scattering parameters obtained
with the full-wave mode-matching (MM) technique. Using
only the MM simulation of the original network, first- and
second-order sensitivities of the complex scattering parameters
and their magnitudes w.r.t. all designable parameters are ob-
tained. Closed-form formulation for the sensitivity analysis of
microwave filters and transitions is derived. The formulation
exploits generalized scattering matrices (GSMs) of individual
components obtained with the full-wave MM technique. GSMs
contain entries for both propagating and evanescent modes.
Including higher order modes improves the accuracy of both
the scattering parameters and their estimated sensitivities. The
ANM-based first- and second-order sensitivities are integrated
with the Levenberg–Marquardt (LM) optimization method.
This method is then exploited in the design of microwave
filters. Results show that convergence of the design process
using the ANM-based second-order information is significantly
faster than gradient-based algorithms such as the quasi-Newton
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.

We start by briefly reviewing the ANM-based approach for
estimating first-order sensitivities in Section II. In Section III,
it is shown how second-order derivatives are obtained using the
ANM. In Section IV, the ANM-based sensitivities are exploited
to estimate the first- and second-order sensitivities of differen-
tiable objective functions. The numerical results and discussions
are presented in Section V. Finally, conclusions are drawn in
Section VI.

II. ADJOINT FIRST-ORDER DERIVATIVES

The ANM enables efficient estimation of the sensitivities of
the scattering parameters w.r.t. the designable parameters. In

0018-9480/$20.00 © 2006 IEEE
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Fig. 1. Network representation of N two-port-components of a microwave
circuit.

[5], [12], and [13], it was shown how to get the first-order sen-
sitivity (derivative) of the scattering parameters. In [14], the
first-order sensitivity of ridge waveguide scattering parameters
w.r.t. the relative dielectric constant was formulated and ap-
plied. Here, the ANM is briefly reviewed.

Consider the network representation of a microwave circuit
shown in Fig. 1. It is composed of a cascade of two-port
components and independent generators at the input and output.
The first-order derivative of the incident wave vector, w.r.t. a
design parameter , is [12]

(1)

where is the incident wave vector. The connection scattering
matrix is given by

(2)

where is the connection matrix describing the network
topology and is the block diagonal system scattering
matrix. Its submatrices along the diagonal are the GSMs of the
various components of the network.

The sensitivity of the ingoing wave variable at the th port
of the network is computed by multiplying the left-hand side of
(1) by a row vector [12]

(3)

to obtain

(4)

where

(5)

is the adjoint system and is the adjoint incident wave vector.

III. ADJOINT SECOND-ORDER DERIVATIVES

Taking the derivative of (1) w.r.t. another design parameter
, the second-order derivative of the incident wave vector is ob-

tained as follows:

(6)

Using the relationship [13]

(7)

and with simple manipulations, (6) becomes

(8)

Similar to (4), the second-order derivative of the ingoing wave
variable at the th port of the network is

(9)

Equation (9) is reformulated using (1) and (5) as

(10)

The scattering parameter is given by

(11)

In (11), is the ingoing wave variable at the th port with a
matched load terminating the th port of the network. The con-
dition is imposed by the matched generator with
connected to port (see Fig. 1). The adjoint network is excited
at port by a matched generator with impressed wave
[12]. Thus,

(12)

The derivatives of the system scattering matrix w.r.t. design
parameters and/or are obtained analytically. For example,
consider one of its blocks to be the GSM of a transmission line
of length with modes in each port

(13)

where , and is a diagonal matrix
given by

...
...

...
...

(14)

and is the propagation constant of the th
mode in each port. Here, it is assumed that all the connected
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ports have the same number of modes. The first-order derivative
of the GSMs w.r.t. the length is given by

(15)

where

...
...

...
(16)

The second-order derivative of the GSM w.r.t. the length
is given by

(17)

IV. OPTIMIZATION

As described in Sections II and III, the ANM is used to
obtain the first- and second-order derivatives of the scattering
parameters. The Jacobian and Hessian matrices of differentiable
objective functions are expressed in terms of these derivatives.
Here, how the analytical Hessian matrices are obtained and im-
plemented in optimization is presented. The error function to be
minimized is defined as a weighted norm of the difference
between the actual and desired response of the circuit (sum
of squares of nonlinear functions [16]–[18]). The following
objective function was successfully used in filter optimization
[19]–[21]:

(18)

where is the th frequency point in the passband and
is the th frequency point in the stopband. and are
the number of frequency points in the passband and stopband,
respectively. and are the residual vectors corresponding
to and , respectively. They are expressed as

(19)

Here, and . The elements of the
vectors and are given by

cond 1

otherwise
(20)

cond 2

otherwise
(21)

where is the passband weighting factor and is the stop-
band weighting factor. is the absolute value of the desired
return loss in the passband. is the absolute value of the
desired attenuation in the stopband. The switching conditions
in (20) and (21) are

cond 1

cond 2

The error function is minimized subject to simple lower
and upper bounds on the design variables

subject to (22)

This error function has the gradient

(23)

and the Hessian matrix

(24)

where is the Jacobian of defined by

(25)

The expressions of the gradient in (23) and the Hessian in (24)
require the first- and second-order derivatives of the magnitude
of the scattering parameters. The first-order derivative of the
magnitude, w.r.t. a variable , is given as [13]

(26)
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Fig. 2. Top view of the five-pole ridge waveguide filter and its initial frequency
response. MM response compared to HFSS [25] response. Waveguide cross sec-
tion: 0.24 in�0.071 in, ridge width w = 0:08 in, ridge gap= 0:0138 in; " =

5:9; L to L dimensions are as indicated in Table II.

TABLE I
OPTIMIZATION GOALS

TABLE II
DIMENSIONS OF xxx (IN INCHES) BEFORE AND AFTER OPTIMIZATION

L = L ;L = L ;L = L ;L = L ;L = L

Taking the derivative of (26) w.r.t. and after simple algebraic
manipulations, the second-order derivative of the magnitude is
given as (details of the derivation are shown in the Appendix)

(27)

The first-order derivatives that form the Jacobian matrix are
computed using (26). The Jacobian matrix is used to calculate
the error function gradient in (23). A distinctive feature of the
least squares formulation is that by knowing the Jacobian, the
first part of the Hessian is computed for free.

Many optimization techniques such as Gauss–Newton,
Newton–Raphson, quasi-Newton, gradient methods, and LM
method can be applied to solve the minimization problem in

Fig. 3. Real part of the dominant mode scattering parameters second-
order derivatives w.r.t. L of the five-pole filter with center frequency
f = 7:66 GHz, obtained using the ANM and finite CDs. (Color version
available online at: http://ieeexplore.ieee.org.)

Fig. 4. Real part of the dominant mode scattering parameters second-order
derivatives w.r.t. L and L of the five-pole filter with center frequency f =

7:66 GHz, obtained using the ANM and finite CDs. (Color version available
online at: http://ieeexplore.ieee.org.)

(22). In these techniques, the methods of LM and quasi-Newton
prove to be the best ones in most cases in terms of convergence
properties. The BFGS method, regarded as the most efficient
algorithm among various quasi-Newton methods, is more
often adopted to solve unconstrained optimization problems. It
presents good performance and does not require the Hessian
matrix. However, the line search in the BFGS when applied to
complex systems may be time consuming.

Two optimization procedures are compared to each other
to show the advantage of having analytical Hessian matrices.
These optimization procedures are briefly described below.

A. BFGS

BFGS is a quasi-Newton method used to solve nonlinear
problems with simple bounds. It is based on the gradient
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Fig. 5. Real part of the dominant mode scattering parameters second-order
derivatives w.r.t. L and L of the five-pole filter with center frequency f =

7:66 GHz, obtained using the ANM and finite CDs. (Color version available
online at: http://ieeexplore.ieee.org.)

Fig. 6. Real part of the dominant mode scattering parameters second-
order derivatives w.r.t. L of the five-pole filter with center frequency
f = 7:66GHz, obtained using the ANM and finite CDs. (Color version
available online at: http://ieeexplore.ieee.org.)

projection method and uses the BFGS update formula to ap-
proximate the Hessian matrix of the objective function. The
BFGS formula is given as [16]

(28)

where is the current optimization step and
. More details about the algorithm can

be found in [22] and [23].

B. LM Method

In this method, the user provides an initial approximation of
the vector of design parameters to the solution of the
problem. Usually, the initial solution is obtained from synthesis.
The algorithm then determines a correction to that pro-

Fig. 7. Real part of the dominant mode scattering parameters second-
order derivatives w.r.t. L of the five-pole filter with center frequency
f = 7:66GHz, obtained using the ANM and finite CDs. (Color version
available online at: http://ieeexplore.ieee.org.)

Fig. 8. Imaginary part of the dominant mode scattering parameters second-
order derivatives w.r.t. L of the five-pole filter with center frequency f =

7:66 GHz, obtained using the ANM and finite CDs. (Color version available
online at: http://ieeexplore.ieee.org.)

duces a sufficient decrease in the residuals of at the new point
. It then sets and begins a new iteration

with replacing . A sufficient decrease in the residuals
implies that . The correction depends
upon a damping parameter, the residual and its Jacobian at .
The optimization step is defined as [1]

(29)

where is a diagonal matrix of damping parameters. During
iterations, the value of is controlled by the gain ratio

(30)
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Fig. 9. Imaginary part of the dominant mode scattering parameters second-
order derivatives w.r.t. L and L of the five-pole filter with center frequency
f = 7:66 GHz, obtained using the ANM and finite CDs. (Color version avail-
able online at: http://ieeexplore.ieee.org.)

Fig. 10. Imaginary part of the dominant mode scattering parameters second-
order derivatives w.r.t. L and L of the five-pole filter with center frequency
f = 7:66GHz, obtained using the ANM and finite CDs. (Color version avail-
able online at: http://ieeexplore.ieee.org.)

as follows:

(31)

and

(32)

Although the value of is controlled by the gain ratio, its initial
value can be critical in determining the number of iterations and
the optimization time.

V. NUMERICAL RESULTS AND DISCUSSION

A five-pole ridge waveguide filter (see Fig. 2) is first de-
signed, using full-wave modeling, to have a center frequency

GHz and a bandwidth GHz. The filter has

Fig. 11. Imaginary part of the dominant mode scattering parameters second-
order derivatives w.r.t. L of the five-pole filter with center frequency f =

7:66 GHz, obtained using the ANM and finite CDs. (Color version available
online at: http://ieeexplore.ieee.org.)

Fig. 12. Imaginary part of the dominant mode scattering parameters second-
order derivatives w.r.t. L of the five-pole filter with center frequency f =

7:66 GHz, obtained using the ANM and finite CDs. (Color version available
online at: http://ieeexplore.ieee.org.)

the initial response shown in Fig. 2. The passband return loss
(12.6 dB), the center frequency (7.8425 GHz), and the band-
width (0.863 GHz) do not satisfy the specifications as required
in Table I. The filter response is obtained using the rigorous MM
technique. The number of modes used to characterize each ridge
to rectangular waveguide discontinuity is 12 (eight TE modes
and four TM modes). This number of modes satisfies conver-
gence, as indicated in [24]. Results obtained from Ansoft’s High
Frequency Structure Simulator (HFSS) [25] are compared to
those computed using the MM technique. Both results are in
very good agreement, which validates the accuracy of the devel-
oped in-house MM simulator. The vector of designable parame-
ters is . The initial value of is
indicated in Table II. Figs. 3–7 and Figs. 8–12 show the real and
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Fig. 13. Real part of the dominant mode scattering parameters first- and
second-order derivatives w.r.t. L of the five-pole filter with center frequency
f = 7:66 GHz, obtained using the ANM. The displayed values of the real
part of the second-order derivatives of S and S were divided by 75 and 20,
respectively, for better display of the curves. (Color version available online at:
http://ieeexplore.ieee.org.)

Fig. 14. Imaginary part of the dominant mode scattering parameters first- and
second-order derivatives w.r.t. L of the five-pole filter with center frequency
f = 7:66GHz, obtained using the ANM. The displayed values of the real part
of the second-order derivatives of S and S were divided by 20 for better
display of the curves. (Color version available online at: http://ieeexplore.ieee.
org.)

imaginary parts, respectively, of the second-order derivatives of
the dominant mode scattering parameters w.r.t. the design pa-
rameters. It should be noted that in Figs. 7 and 12,

(33)

Figs. 13 and 14 show the real and imaginary parts, respectively,
of the dominant mode scattering parameters first- and second-
order derivatives w.r.t. . These figures show the following.

and at the passband edges
so the minimum of (in absolute value) occurs at the edges
of the passband. The first order derivative has no other zeros.

Fig. 15. Optimized responses of the five-pole filter with center frequency f =

7:66GHz obtained using BFGS and LM methods compared to HFSS (using the
LM dimensions). The optimized dimensions using BFGS and LM are shown in
Table II. (Color version available online at: http://ieeexplore.ieee.org.)

Thus, has no other peak within the passband and it remains
below the specified return loss in the entire passband. Similarly,
the minimum of (in absolute value) occurs at the edges of
the passband and then alternates between maximum and min-
imum due to ripples in the transmission within the passband.
The results in Figs. 13 and 14 are typical for a good designed
filter where the main objective is to minimize and to max-
imize in the passband. In Figs. 3–14, the utilized values
of the design parameters are those obtained from the LM opti-
mization, as indicated in Table II. All results obtained using the
ANM are compared to those obtained from CDs, and they are
in excellent agreement. The formulas used for CDs are based on
function calls only and are given by [15]

(34)

and

(35)

where , subscripts
is the vector of design parameters, and

. The optimization goals for
the implemented optimization routines (BFGS and LM) are as
shown in Table I. The BFGS method gives the following results:

of iterations

of function evaluations

of segments explored during Cauchy searching

Optimization time s

(36)
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Fig. 16. Tolerance analysis assuming�1-mil statistical variation of the dimen-
sions L to L of the five-pole filter with center frequency f = 7:66 GHz.
(a) Responses are obtained using first- and second-order derivatives. (b) Re-
sponses are obtained from direct MM simulation.

The LM method (initial value of each element of is the norm
of the corresponding column of the initial Hessian matrix) gives
the following results:

of iterations

of function evaluations

of gradient evaluations

of Hessian evaluations

Optimization time s (37)

The optimized vector of design parameters has the dimen-
sions shown in Table II. The filter is symmetric around . The
computation time for the BFGS method is approximately 5
that of the LM method. The simulations, obtained from a devel-
oped FORTRAN code, were run on a dual 750-MHz UltraSPARC
III processors with 1 GB of memory and running SunOS 5.8
(i.e., Solaris 8). The savings in time using the LM method is

Fig. 17. Tolerance analysis assuming�2-mil statistical variation of the dimen-
sions L to L of the five-pole filter with center frequency f = 7:66 GHz.
(a) Responses are obtained using first- and second-order derivatives. (b) Re-
sponses are obtained from direct MM simulation.

due to the sparsity of the matrices in (10). This makes the com-
putation of the Hessian matrix in (24) very fast.

Comparison between the responses obtained from both
methods and HFSS using the LM optimized lengths is shown in
Fig. 15. The results are similar, which shows the advantage of
the LM method over the BFGS method regarding computation
time. The return loss obtained from the BFGS optimization is
better than the one obtained from the LM routine. However, the
selectivity obtained from the LM is better than the one obtained
from the BFGS algorithm and the bandwidth obtained from the
LM fits exactly the specifications.

Tolerance analysis for 1 mil (25.4 m), 2 mil (50.8 m),
and 5 mil (127 m) statistical variation of the dimensions
to are shown in Figs. 16–18, respectively. Figs. 16(a), 17(a),
and 18(a) show the tolerance analysis obtained using the first-
and second-order derivative information

(38)
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Fig. 18. Tolerance analysis assuming�5-mil statistical variation of the dimen-
sions L to L of the five-pole filter with center frequency f = 7:66 GHz.
(a) Responses are obtained using first- and second-order derivatives. (b) Re-
sponses are obtained from direct MM simulation.

TABLE III
DIMENSIONS OF xxx (IN INCHES) BEFORE AND AFTER OPTIMIZATION FOR THE

RIDGE WAVEGUIDE FILTER WITH CENTER FREQUENCY f = 9:89 GHZ

L = L ;L = L ;L = L ;L = L ;L = L

where is the perturbation of from its nominal value.
Figs. 16(b), 17(b), and 18(b) show the tolerance analysis ob-
tained using direct MM simulation. These figures show that up
to a manufacturing tolerance of 2 mil, the responses are good.
The responses obtained from the Taylor expansion (38) also
agree very well with the responses obtained from direct MM
simulations. For a maximum tolerance varying from 1 to 5 mil,
the corresponding maximum relative perturbation percentage

Fig. 19. Optimized responses obtained using BFGS and LM methods com-
pared to the nonoptimized response for the five-pole filter with center frequency
f = 9:89 GHz. Waveguide cross section: 0.18 in � 0.071 in, ridge width
w = 0:08 in, ridge gap = 0:0138 in, " = 5:9; L to L initial and op-
timized using BFGS and LM are shown in Table III. (Color version available
online at: http://ieeexplore.ieee.org.)

Fig. 20. Top view of the transition from the input ridge waveguide to
a 50-
 stripline. The inset shows the cross section of the stripline.
a = 0:24 in; b = 0:071 in; g = 0:0138 in; w = 0:08 in; w =

0:04 in; w = 0:082 in; w = 0:0135 in. (Color version available online at:
http://ieeexplore.ieee.org.)

% varies from 0.26% to 1.32%. The maximum relative
perturbation is defined as

(39)

where it is assumed that the design variables are all perturbed
by the maximum manufacturing tolerance . Actually,
this tolerance variation corresponds from 2.8% to 14% of the
middle resonator length , while it represents from 0.41%
to 2% of the middle evanescent sections length . In
Figs. 16–18, and 20 perturbed responses are run for each man-
ufacturing tolerance. Each response has 100 frequency points.
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Fig. 21. Real part of the dominant mode scattering parameters sensitivity w.r.t.
L of the transition, obtained using the ANM and finite CDs. (Color version
available online at: http://ieeexplore.ieee.org.)

Fig. 22. Imaginary part of the dominant mode scattering parameters sensitivity
w.r.t. L of the transition, obtained using the ANM and finite CDs. (Color ver-
sion available online at: http://ieeexplore.ieee.org.)

The time required by direct MM simulation is 286 s. The Taylor
approximation, on the other hand, required only 103 s.

A second optimization example for a five-pole ridge wave-
guide filter with a center frequency GHz, pass-
band ripple 0.01 dB, and equiripple bandwidth from 9.23 to
10.63 GHz is carried out. The BFGS method gives the following
results:

of iterations

Optimization time s (40)

The LM method gives the following results:

of iterations

of gradient evaluations

of Hessian evaluations

Optimization time s (41)

Fig. 23. Real part of the dominant mode scattering parameters second-order
derivatives w.r.t. L of the transition, obtained using the ANM and finite CDs.
(Color version available online at: http://ieeexplore.ieee.org.)

Fig. 24. Real part of the dominant mode scattering parameters second-order
derivatives w.r.t.L andL of the transition, obtained using the ANM and finite
CDs. (Color version available online at: http://ieeexplore.ieee.org.)

The optimized vector of design parameters has the dimen-
sions shown in Table III. The computation time for the BFGS
method is more than 4 that of the LM method. The optimized
responses compared to the nonoptimized response are shown in
Fig. 19.

The developed optimization technique is also applied to a
third example. The transition from the input/output ridge wave-
guide to a 50- stripline, shown in Fig. 20, is optimized w.r.t.
the lengths and . The number of modes used to char-
acterize each stripline to stripline discontinuity is 15 (ten TE
modes and five TM modes). The real and imaginary parts of
the first- and second-order derivatives are shown in Figs. 21–26.
Using the obtained first- and second-order derivatives, the tran-
sition is optimized over the frequency range of 7–10 GHz to
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Fig. 25. Imaginary part of the dominant mode scattering parameters second-
order derivatives w.r.t. L of the transition, obtained using the ANM and finite
CDs. (Color version available online at: http://ieeexplore.ieee.org.)

Fig. 26. Imaginary part of the dominant mode scattering parameters second-
order derivatives w.r.t. L and L of the transition, obtained using the ANM
and finite CDs. (Color version available online at: http://ieeexplore.ieee.org.)

satisfy a return loss of 0.01. The BFGS method gives the fol-
lowing results:

of function evaluations

of segments explored during Cauchy searching

Optimization time s

(42)

The LM method gives the following results:

of function evaluations

of gradient evaluations

of Hessian evaluations

Optimization time s (43)

TABLE IV
DIMENSIONS OF xxx (IN INCHES) BEFORE AND AFTER OPTIMIZATION

FOR THE RIDGE WAVEGUIDE TO 50-
 STRIPLINE TRANSITION

Fig. 27. Optimized responses of the transition obtained using BFGS and LM
methods compared to the nonoptimized. The optimized dimensions using BFGS
and LM are shown in Table IV. (Color version available online at: http://ieeex-
plore.ieee.org.)

The optimized vector of design parameters for the transition
has the dimensions shown in Table IV. The computation time for
the BFGS method is more than 3 that of the LM method. Com-
parison between the initial response and those obtained from
both methods is shown in Fig. 27. The results are similar, which
again shows the advantage of the LM method over the BFGS
method regarding computation time.

VI. CONCLUSION

The ANM has been applied to estimate the sensitivities of
scattering parameters of microwave filters and transitions, ob-
tained with the full-wave MM technique. Using only the MM
simulation of the original network, the first- and second-order
sensitivities of the scattering parameters w.r.t. all the designable
parameters have been obtained. The higher order modes (prop-
agating and evanescent) characterizing the discontinuities have
been considered for better accuracy. The obtained sensitivities
(first- and second-order derivatives) have been used to compute
the gradient and the Hessian matrices of differentiable objec-
tive functions. The formulation has been applied to the sensi-
tivity analysis of ridge waveguide filters and transitions from
ridge waveguides to 50- striplines. Our optimization routine
utilizing analytical Hessian matrices is faster than the BFGS
routine using only the analytical gradient. Statistical analysis
obtained using an adjoint-based approximate model is accurate
and much faster than direct MM simulation.
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APPENDIX

DERIVATION OF (27)

Let the magnitude of the complex scattering parameter be
represented as

(A-1)

where and are the real and imaginary parts of the complex
scattering parameter, respectively. Taking the derivatives of both
sides of (A-1), the derivative of the magnitude is given as

(A-2)

Taking the derivative of (A-2) w.r.t. ,

(A-3)

The following relations can also be easily proven:

(A-4)

where denotes the conjugate. Substituting from (A-4) into
(A-3) and doing simple manipulations, (27) is obtained.
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