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A Space-Mapping Framework for Engineering
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Slawomir Koziel, Member, IEEE, John W. Bandler, Fellow, IEEE, and Kaj Madsen

Abstract—This paper presents a comprehensive approach to en-
gineering design optimization exploiting space mapping (SM). The
algorithms employ input SM and a new generalization of implicit
SM to minimize the misalignment between the coarse and fine
models of the optimized object over a region of interest. Output
SM ensures the matching of responses and first-order derivatives
between the mapped coarse model and the fine model at the
current iteration point in the optimization process. We provide
theoretical results that show the importance of the explicit use of
sensitivity information to the convergence properties of our family
of algorithms. Our algorithm is demonstrated on the optimization
of a microstrip bandpass filter, a bandpass filter with double-cou-
pled resonators, and a seven-section impedance transformer.
We describe the novel user-oriented software package SMF that
implements the new family of SM optimization algorithms.

Index Terms—Computer-aided design (CAD), design automa-
tion, engineering optimization, optimization, space mapping (SM).

I. INTRODUCTION

SPACE-MAPPING (SM) technology is a recognized engi-
neering optimization paradigm consisting of a number of ef-

ficient optimization approaches [1]–[5]. The iterative optimiza-
tion and updating of a so-called “coarse” or surrogate model
(cheap to evaluate) replaces the direct optimization of an accu-
rate, but computationally expensive high fidelity or “fine” model
of interest. If the misalignment between the fine and coarse
models is not significant, SM-based optimization algorithms
typically provide excellent results after only a few evaluations
of the fine model.

In the microwave arena [1], fine (validation) models are
often based on time-consuming full-wave electromagnetic
(EM) solvers, while coarse models may be physically based
equivalent-circuit models. The advantages of SM techniques
have been widely demonstrated in a growing number of en-
gineering disciplines (see, e.g., [6]–[8]). Bandler et al. [5]
recently reviewed these advances.
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Recent efforts have focused on efficient optimization algo-
rithms involving implicit space mapping (ISM) [3], [9] and
output space mapping (OSM) [4]. Space mapping interpolating
surrogates (SMISs) [10] utilize surrogate models based on SM
and OSM and has proven successful for difficult optimization
problems. Its performance is obtained, however, at the expense
of high complexity of the underlying surrogate model. Simpler,
yet powerful algorithms, namely, generalized space mapping
(GSM) and its frequency-dependent version frequency-de-
pendent generalized space mapping (FDGSM) are presented
in [11].

Recent relevant work covers other important aspects of SM
such as the development of new SM-based models [12], [13], the
theoretical justification of SM, and a convergence theory for SM
optimization algorithms [14], as well as neuro-SM [15]–[19],
and microwave applications of SM (e.g., [20] and [21]).

This paper describes a family of algorithms that exploit
surrogate models based on the OSM concept that forces exact
matching of responses and Jacobians between the surrogate and
fine model. We present theoretical results that show the influence
of Jacobian matching on the convergence of the optimization
algorithm. We introduce design-variable-dependent ISM to in-
crease the flexibility of the surrogate model in a consistent way.
Finally, we describe the SMF system, a novel prototype user-
oriented software package that implements our SM optimization
algorithms.1 Our system is supposed to make SM accessible to
engineers inexperienced in SM. It provides sockets to popular
simulators (e.g., Sonnet’s em, Agilent’s ADS, and FEKO)
that allow automatic fine/coarse model data acquisition and,
consequently, fully automatic SM optimization.

II. SM-BASED SURROGATE OPTIMIZATION

The optimization problem can be stated as follows. Let
, denote the response vector of the fine

model of a given object. In the microwave area, components
of may be the model evaluations (e.g., scattering parameter

) at different frequency points. Our goal is to solve

(1)

where is a given objective function. We assume that the fine
model is computationally expensive and solving (1) by means
of direct optimization is impractical. Instead, we exploit inex-
pensive surrogates, i.e., models that are not as accurate as the
fine model, but are computationally cheap, which allows us to
use them in the optimization process. We consider an optimiza-
tion algorithm that generates a sequence of points ,
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, and a family of surrogate models
, so that

(2)

and is constructed using suitable matching conditions
with the fine model at previous points , .

SM assumes the existence of a coarse model ,
that describes the same object as the fine model.

is less accurate, but much faster to evaluate than . In the con-
text of SM, a family of surrogate models is constructed from the
coarse model in such a way that each is a suitable distor-
tion of such that given matching conditions are satisfied. In
Section III, we describe a family of SM-based models that fit
this scheme.

III. GENERALIZED IMPLICIT SPACE-MAPPING

(GISM) FRAMEWORK

Our proposed GISM framework is a generalization of the
GSM concept introduced in [11]. It is enhanced by design-vari-
able-dependent ISM.

Let us recall that ISM [3] assumes that the coarse model
depends on additional (preassigned) parameters, i.e., we have

, where is the domain of such
preassigned parameters.

An ISM optimization algorithm aims at predistortion of the
coarse model by adjustment of its preassigned parameters so
that, at the current point , the fine and coarse model response
vectors coincide. The predistorted model becomes a surrogate,
which, in turn, is optimized in order to obtain the next point

. Thus, the surrogate model defined by ISM is

(3)

where is determined by solving a parameter-extraction
problem of the form

(4)

One of the ways of increasing the number of degrees of freedom
of the surrogate model (3) is to make preassigned parameters
dependent on the design variables. In particular, we can define

(5)

where and are determined by solving the
parameter-extraction problem

(6)
Now, we can integrate the above concept into GSM [11] and

define the GISM framework as the family of surrogate models
defined as

(7)

where

(8)

(9)

(10)

Matrices , ,
, and and vector are obtained using pa-

rameter extraction applied to the matching condition . Ma-
trices and are calculated using (9)
and (10) after having determined , , , , and .

and denote the Jacobian of the coarse model with
respect to and , respectively. If derivative information is not
available, matrix can be estimated, for example, using the
Broyden update.

A general form of the matching condition is

(11)

We assume that the coefficients and are either 0 or 1 (al-
though more general situations are conceivable). For example,
setting , and , means
that the surrogate tries to match the fine model response at all
previous points (including the current point), but Jacobian
matching is not exploited. We will use this setting in our numer-
ical experiments of Section V.

Input SM determined by matrices and , the multi-
plication matrix , as well as ISM parameters and ,
can be considered as preconditioning of the coarse model that
reduces the initial misalignment between the coarse and fine
models over a neighborhood of the current point . Term
ensures perfect matching of responses at , while term
gives perfect matching of first-order derivatives at .
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Apart from model (7)–(11), there is an optional frequency
scaling that works in such a way that the coarse model is evalu-
ated at a different frequency than the fine model using the trans-
formation , where is
obtained together with other parameters using a parameter-ex-
traction process similar to (11).

Note that the flexibility of the surrogate model, i.e., the
number of model parameters, may affect the uniqueness of
the parameter-extraction problem, as well as the extrapolation
properties of the model. If the model is too flexible, it may
provide good matching at the points , but provide poor
matching elsewhere and, consequently, slow down (or even
prevent) convergence of the SM algorithm. The issue of proper
choice of flexibility of the surrogate model is an important
problem and needs to be carefully studied.

Flexibility of the model can be adjusted by constraining some
of the SM parameters to their initial values (identity for and

, zero for , , , and for , or initial values of the
preassigned parameters for ).

In general, a suitable choice of SM requires both knowledge of
the problem and engineering experience. In practice, a proper SM
combination can be chosen by performing parameter extraction
at a small number of test points (preferably at least two points,
but it is possible to get some information using even one point,
namely, the starting point, at which one needs to evaluate the fine
model anyway) for different combinations of SM. We recom-
mend using the simplest combination (i.e., the one containing the
least number of parameters) for which it is possible to achieve
a reasonably good match between the fine model and the SM
surrogate. If one can get a good match for single-point parameter
extraction at different points using a simple mapping such as or

, but the matching deteriorates while extracting parameters for
several points at the same time (multipoint parameter extraction),
SM should be enhanced by or , respectively. In general, ISM
is preferred over input SM whenever the user is able to wisely
choose preassigned parameters. Frequency mapping ( term) is
recommended if the response of the coarse model seems shifted
in frequency with respect to the response of the fine model. Mul-
tiplicative OSM ( term) should be used with care because it
introduces a large number of extractable parameters. Additive
OSM ( and terms) can be safely used all the time.

Having defined the family of surrogate models, we can
define an optimization algorithm [which is, in fact, an imple-
mentation of the generic surrogate-model-based optimization
algorithm (2)]

Step 1 Set ; Set ;

Step 2 Evaluate and ;
Step 3 Obtain using (7)–(11);
Step 4 Find ;

Step 5 If termination condition go to Step 7;
Step 6 Set ; go to Step 2;
Step 7 END

In numerical experiments, we use a termination condition of
the form , where is a small constant.

IV. SENSITIVITY INFORMATION VERSUS CONVERGENCE

RATE OF THE SM OPTIMIZATION ALGORITHM

The GISM framework explicitly uses sensitivity informa-
tion, i.e., the correction term , which allows the satisfaction
of a first-order consistency condition, i.e., the alignment of
first-order derivatives of the fine and surrogate models at the
current iteration. As we show below, this term is significant to
the convergence rate of the algorithm.

For the purpose of theoretical considerations, we shall con-
sider a simplified version of GISM that only uses OSM in the
form of the and terms, and no input mapping. In partic-
ular, we first consider the generic algorithm (2) that uses surro-
gate models with only the term. Let us define function

as

(12)

We build surrogates that use zeroth-order models of , i.e.,

(13)

where .
Next, we will consider the algorithm that utilizes surrogate

models based on both the and terms. In particular, we con-
struct surrogates that use first-order models of , i.e.,

(14)

where , and with
being the Jacobian of at .

We are going to formulate convergence results for algorithm
(2) with surrogate models (13) and for algorithm (2) with sur-
rogate models (14) in order to see the impact of the term on
the convergence properties of the SM algorithm.

Let us assume, for simplicity, that
(this implies, of course, that for ). We
also assume that is a closed subset of . We denote by
the range of , i.e., .

Definition 1: Let denote a set of solutions to the
problem .

Definition 2: We shall denote by the set of solutions to
(1) and call it the set of fine model minimizers.

Theorem 1: Suppose that is a closed subset of and
(i) is not empty for any , and the following

condition is satisfied:

(15)

for any , where (here,
),

(ii) the function is Lipschitz continuous, i.e.,

(16)

for any , where ,
(iii) and are such that .
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For any , the sequence defined by (2) and (13)
is then convergent, i.e., there is an such that
for . Moreover, for any , we have the estimate

(17)

A proof of Theorem 1 is given in the Appendix.
Let be defined as . We have the

following corollary.
Corollary 1: Suppose that for any there is an
such that and the assumptions of

Theorem 1 are satisfied. Then , where

is the limit of the sequence defined by algorithm (2), (13).
Proof: The convergence of the sequence follows

from Theorem 1. The assumption of the corollary implies that
for any .

In the limit , we have
so and

.
Let us now formulate the convergence result for algorithm

(2) with surrogate models (14). Again, we assume that
, is a closed subset of . We also admit the

following notation: (the range of ) and
(the range of ).

Theorem 2: Suppose that is a closed subset of . Let
be a sequence defined by algorithm (2) and (14) with

arbitrary and
(i) assumption (i) of Theorem 1 holds,

(ii) function is differentiable on and , the Jacobian
of , is Lipschitz continuous on , i.e.,

(18)

for any , where is a bounded
function on ,

(iii) there is an such that on ,
(iv) for , we have , where

is a given constant,
(v) there is an such that the following estimate holds:

(19)

for all , where is a given constant.
The sequence is then convergent, i.e., there is an
such that for .
A proof of Theorem 2 is given in the Appendix.
Corollary 2: Suppose that for each there is an

such that , that
the assumptions of Theorem 2 are satisfied, and that and

are continuous. Then , where is the

limit of the sequence defined by algorithm (2) and (14).
We omit the proof.
Remark 1: Theorems 1 and 2 can be formulated in such a

way that constants and in assumption (i) of Theorem
1 are local with respect to and , respectively.
This would relax the assumptions, but at the same time, make
the notation more complicated.

Theorems 1 and 2 show that there are basically two fun-
damental (and natural) requirements for convergence of algo-
rithms using and terms: (i) regularity of the perturbed coarse
model optimal solution with respect to the perturbation vector
and (ii) similarity between the fine and coarse models in terms
of the difference between their first-order derivatives.

Theorems 1 and 2 indicate that the convergence rate of algo-
rithm (2) and (14) is much better than the convergence of algo-
rithm (2) and (13). In particular, we have

[cf. (A2)] for the algorithm using only the
term, and [cf. (A8)]
for the algorithm using the and terms (in fact, is not a
constant, but it does not depend significantly on ). Thus, the
explicit use of sensitivity information in the SM optimization
algorithm has a significant impact on the convergence rate.

Theorems 1 and 2 provide convergence results for the SM al-
gorithm using the and terms working without convergence
safeguards (in other words, it may happen that the algorithms
are not convergent if the coarse model is not good enough in
terms of satisfying the assumptions of the theorems). It should
be noted that, in practice, SM algorithms are often used together
with trust region methods [23] so that the optimization of the
current surrogate model is constrained to a neighborhood
of the previous iteration point , and the size of this neigh-
borhood is adjusted based on the actual improvement of the fine
model solution. It can be shown using classical methods (see,
e.g., [24]) that our SM algorithm working with the and terms
and trust region methods guarantees convergence to the local
fine model optimum (under classical conditions such as smooth-
ness of the fine/coarse models and convexity of the objective
function) [23]. This is probably the most important strength of
explicit use of Jacobian information in SM optimization algo-
rithms. In the numerical experiments of Section V, we use the
SM optimization algorithm with trust region methods.

Let us consider a third-order elliptic OTA-C low-pass filter
example [22] shown in Fig. 1. A coarse model of the filter is the
transfer function formula assuming ideal transconductors and
no parasitic elements, shown in (20), at bottom of the page.

A fine model is the transfer function formula that takes into
consideration parasitic conductances and capacitors

(21)

(20)
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Fig. 1. Diagram of the second-order OTA-C low-pass filter [22].

Fig. 2. Convergence of the SM algorithms for the elliptic OTA-C design
problem: algorithm (2) and (13) without (�) and with (+) the coarse model
improvement by input SM (BBB and ccc terms), and algorithm (2) and (14) without
(�) and with ( ) the input SM improvement.

where

(22)

and , . We use normalized elements with
fixed , , and . Optimization variables
are . The optimization problem is to
find such that the following specifications are satisfied:

for GHz

for GHz GHz

for GHz GHz

(23)

We have applied algorithms (2) and (13) and (2) and
(14) to find the fine model solution assuming

(the coarse model
optimal solution). We consider: (i) that the surrogate is con-
structed directly using , as in (13) or (14) and (ii) that the
coarse model is improved using the input SM, i.e., the GISM
framework with the , and terms, and with the , , , and

terms, respectively.
Fig. 2 shows the convergence properties of our algorithms

(w.r.t. the norm of the difference between current iteration
point and ). The optimal fine model solution is

.

Fig. 3. Geometry of the microstrip bandpass filter [25].

Fig. 4. Coarse model of microstrip bandpass filter (Agilent’s ADS).

The results clearly show that using the term plays a cru-
cial role in improving the convergence rate of the optimization
process. Using the input SM also speeds up convergence of the
algorithm, however, the impact of the term is significantly
larger, as shown in Fig. 2. This complies with the theory pre-
sented here.

V. EXAMPLES

A. Bandpass Filter

The GISM framework was applied to the optimization of the
microstrip bandpass filter [25] shown in Fig. 3. The design pa-
rameters are . The fine model is simu-
lated in FEKO [26], and the coarse model is the circuit model
implemented in Agilent’s ADS [27] (Fig. 4). For this problem,
we use ISM with preassigned parameters being electrical per-
mittivities (initial value: 9) and heights (initial value: 0.66 mm)
of microstrip elements MLIN and MLOC, shown in Fig. 4, fre-
quency SM ( term). as well as OSM ( and terms). The
Jacobian of the fine/coarse model was estimated using the for-
ward finite-difference method. The design specifications are

dB for GHz GHz

dB for GHz GHz

dB for GHz GHz

The initial design is the coarse model optimal solu-
tion mm. The
fine model response at , as well as the response at
the solution obtained using GISM after four iterations

mm are shown in
Fig. 5. The response at satisfies the design specifications
(specification error 1.4 dB). The optimization time on an
Intel P4 3.4-GHz machine was 2 h and 32 min. For the sake of
comparison, we also performed a direct optimization for this
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Fig. 5. Initial (dashed line) and optimized (solid line) jS j versus frequency
for the microstrip bandpass filter.

Fig. 6. Geometry of the bandpass filter with double-coupled resonators [25].

problem, which ended up in a local minimum that does not
satisfy the design specifications (specification error 1.4 dB).
Direct optimization took 32 h and 36 min using the same
machine.

B. Bandpass Filter With Double-Coupled Resonators

Out next example is the microstrip bandpass filter with
double-coupled resonators [25] shown in Fig. 6. The design
parameters are . The fine model is simulated
in FEKO [26], the coarse model is the circuit model imple-
mented in Agilent’s ADS [27] (Fig. 7). For this problem, we
use input SM ( term), ISM with preassigned parameters being
electrical permittivities (initial value: 9) and heights (initial
value: 0.66 mm) of microstrip elements MLIN, MCORN, and
MTEE, shown in Fig. 7 (grouped into five groups in order to
reduce the number of parameters), design-variable-dependent
ISM ( term), frequency SM ( term), as well as OSM ( and

terms). The Jacobian of the fine/coarse model was estimated
using the forward finite-difference method.

The design specifications are

dB for GHz GHz

dB for GHz GHz

dB for GHz GHz

Fig. 7. Coarse model of bandpass filter with double-coupled resonators (Agi-
lent’s ADS).

Fig. 8. Initial (dashed line) and optimized (solid line) jS j versus frequency
for the bandpass filter with double-coupled resonators.

The initial design is mm.
The fine model response at , as well as the response
at the solution obtained using GISM after three iterations

mm are shown in Fig. 8.
The response at satisfies the design specifications (speci-
fication error 0.7 dB). The optimization time on an Intel P4
3.4-GHz machine was 2 h and 56 min. Direct optimization
for this problem took 18 h and 20 min on the same machine.
The specification error for the solution obtained by direct
optimization is 0.8 dB.

C. Seven-Section Impedance Transformer

We also apply the proposed GISM framework to the seven-
section capacitively loaded impedance transformer [28]. We
consider a “coarse” model as an ideal seven-section transmis-
sion line (TL), while the “fine” model is a capacitively loaded
TL with capacitors pF.

The characteristic impedances in the fine model are
kept fixed at the values

.
The models are shown in Fig. 9. Both models are implemented
in MATLAB [29].

Our design parameters are taken as the normalized lengths
with respect to the quarter-wave

length at the center frequency of 4.35 GHz. Design specifica-
tions are for GHz GHz with 68 points
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Fig. 9. Seven-section capacitively loaded impedance transformer [28]: “fine”
model (upper graph) and “coarse” model (lower graph).

TABLE I
COMPARISON OF THE OPTIMAL SOLUTIONS OF

THE THREE SURROGATE MODELS

per frequency sweep. The initial design is the coarse model op-
timal solution . In order to use ISM, we
introduce preassigned parameters to the coarse model, which are
the characteristic impedances .

We use the following optimization technique. First, we create
an SM surrogate model based on a number of a priori fine model
data, and then we optimize the surrogate. The whole optimiza-
tion process takes a single parameter extraction and only a single
surrogate model optimization, however, at the expense of the
initial effort of acquiring necessary fine model information.

In the first stage, we set up our surrogate model as in (7)–(11)
using the set of evaluation points (also called the base set) de-
noted as , (i.e., points, where

). We have (coarse
model optimal solution) and ,

, where is a unit
vector with 1 at the th position; is the size of the region
along the th axis. This distribution of points is called the star
distribution [30].

For the sake of comparison, we set up three models, which
are special cases of our GISM-based model (7)–(11). The first
one, i.e., , uses only matrices , , and ; the second one,
i.e., , uses matrices , , and preassigned parameters

; and the third model, i.e., , uses , , , , and
(we call this model the full GISM). The preassigned parameters
are kept fixed at their initial values in model . We do not
use the and terms in models , because
they are suitable for local modeling, which is not the case in
this example.

Having the models, we performed their optimization and
compared the results with the optimal solution of the fine
model (obtained by direct optimization). Table I shows the
results. We use the following notation: , the
optimal solution of the surrogate model ; ,
the response of the fine model at the optimal solution of the
th surrogate; , the response of the fine model at

Fig. 10. Fine (solid line) and surrogate (circles) model responses at the surro-
gate model optimal solutions for model RRR .

its final solution; and , the value of the minimax error of
response .

The results in Table I show that increasing flexibility by
means of preassigned parameters and our design-variable-
dependent ISM allows us to obtain a better quality of the
surrogate model (i.e., a better match between the fine and
surrogate models), as well as better accuracy of the optimiza-
tion outcome. In particular, the relative difference between the
minimax error of the fine model at its optimal solution and the
minimax error of the fine model at the surrogate model optimal
solution is more than 13% for the model using only the ,

, and terms, and 1.6% for the model using the full GISM.
Similarly, the distance between the fine model optimal solution
and the surrogate model optimal solution is more than eight
times smaller for the model using the full GISM than for the
model using only the , , and terms.

Fig. 10 shows the fine (solid line) and surrogate (circles)
model responses at the surrogate model optimal solutions for
model .

VI. AUTOMATIC SM OPTIMIZATION: SMF SYSTEM

In order to make SM accessible to engineers not experienced
in this technology, a prototype comprehensive user-oriented
software package is under development. SMF is a graph-
ical-user-interface-based MATLAB system that can perform
SM-based constrained optimization, modeling, and statistical
analysis. It implements existing SM approaches, including
input SM, output SM, ISM, and frequency SM (in partic-
ular, the GISM framework). It contains drivers for simulators
(Sonnet’s em, MEFiSTo, Agilent’s ADS, FEKO) that allow the
linking of commercial fine/coarse models to the algorithm and
make the optimization process fully automatic.

We only focus on one aspect of SMF: a module for automatic
SM optimization. Fig. 11 shows a block diagram of the SM opti-
mization module in SMF. Optimization is performed in several
steps. First, the user enters problem arguments: starting point,
frequency sweep, optimization type and design specifications.
Next, the user sets up SM itself, i.e., the kind of SM to be used
(e.g., input, output, implicit), specifies termination conditions,
parameter-extraction options, and optional constraints.

The next step is to link the fine and coarse models to SMF by
setting up the data that will be used to create the model drivers.
Using user-provided data (e.g., simulator input files and design
variable identification data), SMF creates drivers that are later
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Fig. 11. Flowchart of the optimization module in the SMF system .

Fig. 12. Setup of model driver in SMF.

Fig. 13. Evaluation of simulator-based models in SMF.

used to evaluate fine/coarse models for any necessary design
variable values. Model evaluation is accomplished by gener-
ating the simulator input file corresponding to the required de-
sign, running the simulator. and acquiring the results. Fig. 12
shows the flowchart for preparing the model driver in SMF.
Fig. 13 shows the flowchart for evaluating the simulator-based

model in SMF. Note that all the model responses are stored in
the database and retrieved if necessary.

Parameter extraction, surrogate model optimization, and op-
tional trust-region specific options are set in the next step using
auxiliary interfaces.

Having done the setup, the user runs the execution interface,
which allows execution of the SM optimization algorithm and
visualization of the results, including model responses, specifi-
cation error plots, as well as convergence plots.

All the test problems presented in Section V have been
solved using SMF. In order to do that, we only needed to
prepare projects corresponding to fine and coarse models in
FEKO and ADS, respectively (or in MATLAB in the case of
the seven-section transformer example). The models are then
linked to SMF by simply pointing into corresponding input
files, as well as providing data concerning the design variable
labels. The SM options are set up as described above. In partic-
ular, the selection of SM type is performed by checking check
boxes corresponding to the terms. All the other
setup is done using separate graphical user interfaces.

VII. CONCLUSION

We have presented a novel GISM optimization framework.
Our algorithms have exploited “traditional” input-SM-based
preconditioning of the coarse model, design-variable-dependent
ISM, and output-SM external terms to ensure perfect matching
of the responses and first-order derivatives between the sur-
rogate and the fine model. GISM performance is illustrated
through a microstrip bandpass filter, a bandpass filter with
double-coupled resonators, and a seven-section capacitively
loaded impedance transformer.

We have also provided theoretical results that have demon-
strated the importance to the convergence properties of the al-
gorithm of the explicit use of sensitivity information.

Our SMF system, a novel prototype user-oriented software
package that implements our SM optimization algorithms, has
been described. It provides sockets to popular commercial sim-
ulators (e.g., Sonnet’s em, Agilent’s ADS, FEKO) that allow
automatic fine/coarse model data acquisition and, consequently,
fully automatic SM optimization and modeling.

APPENDIX

Proof of Theorem 1: Take any . Define
according to (2) and (13), i.e.,

for . From Definition 1, we have that

(A1)

We would like to obtain an estimate for .
Bearing in mind that and

, and using assumptions (i)–(iii), we get

(A2)
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where . Now, for any , we have

(A3)

which is arbitrarily small for sufficiently large , i.e., is
a Cauchy sequence. Thus, there is an , .

Estimate (17) is obvious. This ends the proof of the theorem.
Proof of Theorem 2: Let us take any . Define

as in (2) and (14), i.e.,

for From Def-
inition 1, we have that

. We would like to obtain an estimate for
. From assumption (i), we get

(A4)

It follows from assumption (ii) and [23, Th. 3.1.6] that

(A5)

From (A4) and (A5), we have

(A6)

which gives

(A7)

Let be the smallest index for which assumption (v) is satisfied.
For any , we then have

(A8)

where

(A9)

Thus, is a Cauchy sequence, and since is closed, there
is an , . This ends the proof of the

theorem.
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