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Abstract—We present a theoretical justification of a recently
introduced surrogate modeling methodology based on space map-
ping (SM) that relies on an available database and on-demand
parameter extraction. Fine-model data, the so-called base set,
is assumed available in the region of interest. To evaluate the
surrogate, we perform parameter extraction with weighting co-
efficients dependent on the distance between the point of interest
and base points. We provide theoretical results showing that
the new methodology can assure any accuracy that is required
(provided the base set is dense enough), which is not the case for
our benchmark SM modeling methodology. Illustrative examples
emphasizing differences between modeling methodologies are
provided.

Index Terms—Computer-aided design (CAD), electromagnetic
(EM) modeling, microwave circuits, space mapping (SM), surro-
gate modeling.

I. INTRODUCTION

STATISTICAL analysis and yield optimization are crucial to
manufacturability-driven designs in a time-to-market devel-

opment environment and demand fast accurate device and com-
ponent models. Full-wave electromagnetic (EM) simulations of
microwave structures offer accuracy at the cost of CPU effort.
High CPU cost is undesirable from the point-of-view of direct
statistical analysis and design. The space mapping (SM) con-
cept introduced by Bandler et al. [1], [2] addresses this issue.

SM assumes that a high fidelity CPU-intensive “fine” model
is accompanied by a low fidelity or “coarse” model. The
“coarse” model can be a simplified representation such as
an equivalent circuit with empirical formulas. SM modeling
[3]–[8] exploits the speed of the coarse model and the accuracy
of the fine model to develop fast accurate enhanced models
(surrogates) valid over a wide range of parameter values.

The standard SM modeling methodology [9], [10] is based
on setting up the surrogate model using a small amount of fine-
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model data (usually points, where is the number of de-
sign variables). Extraction of the model parameters is performed
over the whole set of this data. This methodology is simple and
provides accuracy that is good enough for some applications. It
has, however, a number of limitations, in particular, a limited
capability to model nonlinearity of the fine model, limited per-
formance for higher dimensional problems, and difficulty han-
dling a large amount of the fine-model data. The last drawback
is particularly important because in order to increase accuracy
of the surrogate model over some limit, we have to provide more
and more fine-model data. The only way to utilize this data in a
standard SM model is to increase the number of model parame-
ters, which makes the parameter-extraction process longer and
more difficult, leaving alone the problem of model definition
that would allow us to properly introduce linear and nonlinear
terms to follow fine-model nonlinearity.

To alleviate the foregoing difficulties, a new SM-based sur-
rogate modeling methodology has been introduced in [11]. It
requires an available database and performs on-demand param-
eter extraction. To evaluate the surrogate, we perform parameter
extraction with weighting coefficients dependent on the distance
between the point of interest and the base points. In other words,
this methodology uses local fine-model information.

In this study, we provide a theoretical justification of the
method [11] and show that this methodology can assure any
required accuracy provided that the base set is dense enough.
We also give a matching error estimate for the surrogate model
with respect to the fine model.

II. SM MODELING WITH VARIABLE

WEIGHT COEFFICIENTS [11]

Here, in order to set up the notation necessary for our subse-
quent theoretical considerations, we briefly recall the SM mod-
eling methodology [11].

Let : and : denote the fine and
coarse model response vectors, where and

are design variable domains of the fine and coarse models,
respectively. For example, and may represent the
magnitude of a transfer function at chosen frequencies. We
denote by the region of interest in which we want
enhanced matching between the surrogate and the fine model.
We assume that is an -dimensional interval in with
center at reference point

(1)
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where determines the size of . We use
to denote the region of interest defined by and

. Suppose we have the base set
, where is the number of base points such that the

fine-model response is known at all points , .
We do not assume any particular location of the base points.

We define a generic surrogate model :
as [11]

(2)

with matrices , , ,
and ( denotes the set of real matrices)
found using the parameter extraction

(3)

The flexibility of the generic model (2) can be adjusted by
imposing constraints on the parameter-extraction procedure. It
can also be enhanced by introducing additional parameters (see
[11]).

The weighting coefficients in (3) are functions of . I Coeffi-
cients are calculated according to

(4)

where is the evaluation point, and is a charac-
teristic distance depending on the size of the region of interest
and the number of base points

(5)

If the base points are uniformly distributed in ,
is just an average distance between neigh-

boring points. Constant determines how fast the
weighting coefficients decrease with an increase of base-point
distance from . Reference [11] contains a discussion on the
implementation details of this method.

III. MODELING ERROR VERSUS CHARACTERISTIC

DISTANCE OF THE BASE SET

It is intuitively obvious that modeling accuracy, according to
the methodology presented in Section II, depends on the charac-
teristic distance , in particular, that accuracy improves with de-
creasing . Here, we provide theoretical results showing that our
methodology can assure any accuracy that is required (provided
the base set is dense enough, i.e., is small enough), which is
not the case for the standard methodology [9], [10]. We also give
an error estimate for the surrogate model with respect to the fine
model. Let us start with the following remarks.

Remark 1: It follows that the standard SM modeling tech-
nique [9], [10] is a particular case of the new technique (2)–(4),
as it can be obtained from (2)–(4) by choosing a standard (i.e.,
star-distribution-like) and letting in (4).

Remark 2: It should be emphasized that if the coarse model
is continuous, then the surrogate model (2) is continuous

with respect to regardless of the fact that evaluation of the
surrogate requires a separate parameter extraction for every ar-
gument. This follows from the fact that both and matrices

, , , and are continuous functions of . The latter as-
sumes that parameter extraction (3) has a unique solution for
any values of the weighting coefficients , ,
and both and are continuous; the uniqueness assumption
can be replaced by the assumption of regularity of the solution
to (3) with respect to the weighting coefficients, e.g., ordinary
or Lipschitz continuity.

As mentioned before, one can expect that the modeling accu-
racy depends on the characteristic distance . In fact, it is pos-
sible to prove a rigorous result showing that the modeling error
can be arbitrarily small as .

For the purpose of theoretical considerations, we shall con-
sider a slightly generalized formulation of the SM-based surro-
gate model. Let be a generic surrogate
model, where is the region of interest and is a parameter
domain. For any given base set , the actual surrogate model
response at any is defined as

(6)

where

(7)

with coefficients defined by (4) for given constant . For
simplicity, we assume that no sensitivity information is used in
the model. Note that the model is a compact way of writing

, in which we represented all the parameters (in the case of
, parameters are matrices , , , and ) by a single param-

eter vector . We also introduce single-point parameter extrac-
tion denoted as

(8)

Definition (8) should be understood in the following sense: if
, then is the limit of obtained for .

This means that is uniquely defined (if are unique
for any nonzero ) even if problem (8) has nonunique solutions.
In order to assure the existence of the limit, we need to extend
definition (4) for and as follows:
if and if . We also need to assume
continuity of the functions involved, in particular, the continuity
of solution to (7) with respect to parameter for .

Assumption 1: Suppose that the following conditions hold.
(i) and are compact sets.

(ii) and are continuous on and , respec-
tively.
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(iii) For any base set and any , the solution to
the problem [see

explanation under (8)] is unique. Moreover, the solution
to (8) is uniformly continuous with respect to perturba-
tion in the following sense: if : is
the (bounded) perturbation function, then for any
there is a (independent of ) such that

provided

that .
(iv) For any base set and any , the solution to the

problem is such

that .
Remark 3: Assumption 1 is quite natural. First of all, is

usually a multidimensional closed rectangle so it is compact.
Similarly, can be made compact by setting suitable bounds
for the surrogate model parameters. Continuity of the fine and
coarse model [which usually implies continuity of the surrogate,
e.g., as in (3)] is also typical. Assumption 1 (iii) is more com-
plex, although it also typically follows, at least for continuous
perturbation functions. Eventually, Assumption 1 (iv) is always
satisfied if the surrogate model allows output SM, i.e., the trans-
formation of the coarse model image (e.g., in the case of model
(2) this can be done by either of the matrices or ).

Theorem 1: Suppose that Assumption 1 is satisfied. The sur-
rogate model (6) and (7) is then arbitrarily accurate in the fol-
lowing sense. For any , there is a such that for any
base set that satisfies the condition

(i.e., is uniform enough), we have
for any , provided that the constant in

(4) is sufficiently small.
Proof: Let us take . We shall show that there exist

and such that the assertion of the theorem holds.
For any point in , any base set , and any point ,
we have

(9)

From Assumption 1 (ii), and are continuous on and
, respectively, and because both and are

compact [Assumption 1 (i)], they are, in fact, uniformly contin-
uous. Thus, there is a (independent of ) such that if

, then

(10)
However, according to Assumption 1 (iv), we have

(11)

Let be any base set that satisfies
. For any , there is then an such that

(12)

We would now like to find a condition under which the term
is smaller than . Due to the

uniform continuity of on , there is a (inde-
pendent of ) such that

whenever

(13)

However,

(14)

and (15), shown at the bottom of this page, in which we have
taken into consideration that the weighting coefficients are nor-
malized, i.e., for any . Let us define a func-
tion as .
Using this function, we can write (16), shown at the bottom of
this page. Let us now define function : as

. Using this func-
tion, we can rewrite (16) as

(17)

(15)

(16)
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We would like to take advantage of Assumption 1 (iii). In par-
ticular, there is a such that if

(18)

then

(19)

for any that belongs to some base set. What we need to do now
is to show that there is a base set and constant for which
(18) holds. Let ( is
well-defined because is continuous on the compact set). Let

be such that for all
whenever .

Let be any base set such that
. For such and any satisfying ,

, we have for all
. We divide into two subsets:

and .
Obviously, we have , and

. Let us denote by the point from that is
closest to . We define

(20)

(21)

Clearly, . Due to our definition of
, we have

(22)

Let us now set the constant such that for any such that
, we have . For this , we have

(23)

Let and let be any base set for which
. For this set, it follows from (22)

and (23) that on . At
the same time, it follows from (9), (12), (13), and (19) that, for
our choice of , we have . Since the
above reasoning is valid for any , this ends the proof of
the theorem.

Remark 4: Adjustment of the decrease rate of coefficients
(by changing ) plays a crucial role in the proof of Theorem 1.
In particular, it is not possible in general for the standard model
to be arbitrarily accurate, regardless of the base set used (i.e.,
even if the characteristic distance of the base set is very small).

Remark 5: Results equivalent to Theorem 1 can be proven
for a different choice of the formula that determines weighting

Fig. 1. Example 1: fine-model response (�), standard SM surrogate model re-
sponses for k = 1; 2; 4 (�), and the new SM surrogate model responses for
k = 1 ( ), k = 2 (�), and k = 4 (+).

coefficients [cf. (4)]. The only requirement is that the for-
mula allows changing the decrease rate of while moving
away from the evaluation point (e.g., by proper adjustment of
the control parameters).

Remark 6: Good coarse models allow us to obtain very ac-
curate surrogate models even for sparse base sets. However, it
follows from Theorem 1 that even for poor coarse models, we
still have the property of making the surrogate model error arbi-
trarily small provided that the base set is sufficiently “dense” and
one can obtain perfect matching for single-point parameter ex-
traction (this can be guaranteed by any kind of output SM). This
follows from the fact that there is no assumption about “quality”
of the coarse model in the Theorem: the basic analytical condi-
tion is continuity.

Example 1: Let , , and : ,
are defined as

(24)

(25)

Let

(26)
For the standard model (i.e., the one with all weighting coeffi-
cients the same and equal to 1), for any integer , we have

, which implies that the
modeling error is the same, and does not depend on the choice
of in the base set (26). On the other hand, the modeling error
for the new model can be reduced to zero in the limit
according to Theorem 1. As an illustration, Fig. 1 shows the
fine-model response, as well as the standard and the new SM
surrogate model responses for and .

Example 2: Consider a two-section impedance transformer
example [12]. Both fine and coarse models in this problem
are circuit models with design variables being the lengths
of the transmission lines. The region of interest is defined
by (coarse model optimal solution), and size

. Fig. 2 shows a comparison of the average mod-
eling error versus characteristic distance of the base set for
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Fig. 2. Example 2: average modeling error versus characteristic distance � of
the base set for: standard SM model with input and output SM (+), standard
SM model with input, output, frequency, and implicit SM (�), SM model with
variable weight coefficients using input and output SM surrogate (�), and SM
model with variable weight coefficients using input, output, frequency, and im-
plicit SM ( ).

the standard SM model with the surrogate model using input
and output SM ( ), the standard SM model with the surrogate
using input, output, frequency, and implicit SM ( ), and the
SM model with variable weight coefficients using an input
and output SM surrogate ( ), and input, output, frequency, and
implicit SM ( ). The results were obtained for 100 random
test points. Characteristic distances range from approximately
1.5 (which corresponds to a uniform mesh base set with 100
points) to approximately 10 (uniform mesh with four points)

The results clearly show the difference between the standard
and new SM modeling technique. The modeling error for the
standard SM model is almost independent of the base set size.
The accuracy improvement can only be observed for large
values of ; after the number of base points is increased, the
standard SM model is not able to exploit all available fine-model
information due to the limited flexibility of the surrogate. The
only way of increasing the model accuracy in a significant way
is to increase the number of model parameters (in our case, by
introducing additional degrees of freedom with frequency and
implicit SM). In case of SM modeling with variable weight
coefficients, modeling error is decreasing while characteristic
distance is going down, as predicted in Theorem 1. More results
can be found in [11].

Example 3: In this example, we again use the two-section
transformer example in order to investigate the dependence of
the modeling error on the value of the scaling factor . As be-
fore, the region of interest is defined by (coarse
model optimal solution) and size . Fig. 3 shows
comparison of the average modeling error versus scaling factor

for four different base sets being uniform meshes with nine
points ( ), 16 points ( ), 25 points ( ), and 49 points ( ). The
results were obtained for 100 random test points.

The results show that is, for the considered example,
the optimal value of the scaling factor, which is independent
of the density of the base set. This independence of the base
set can be explained by the construction of (4), which is used
for calculating the weight coefficients necessary to evaluate the
SM surrogate model. In particular, (4) contains the square of

Fig. 3. Example 3: average modeling error versus scaling factor C for SM
model with variable weight coefficients for uniform base sets with nine points
(+), 16 points (�), 25 points (�), and 49 points ( ).

the characteristic distance . Since is nothing else but the av-
erage distance between base points, the density of the base set
is already taken into account in (4) and the distribution of the
weight factors in the neighborhood of any evaluation point is
invariant with respect to the base set (or, more specifically, to
the relative distance between and base points ).
Similar experiments performed for other examples (not shown
here) indicate that the optimal value of is equal or close to 1
for most cases.

The following result gives an error estimate for the surrogate
model (2) and (3).

Assumption 2: Suppose that functions and satisfy the
following conditions:

(i) ,
is Lipschitz continuous with respect to the first variable,
i.e.,

(27)

where ,
(ii) is Lipschitz continuous with respect to the second vari-

able, i.e.,

(28)

where .
Theorem 2: Suppose that Assumption 2 is satisfied and

is a base set. Let be such that .
Let . Suppose
further that the function

[cf. (7)] is Lipschitz continuous, i.e.,
, where . We then have

the following estimate for the modeling error on

(29)

where .
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Proof of Theorem 2: Let be any point in , and
be such that . We have

(30)

According to Assumption 2 (i), we have

(31)

From the assumption of the theorem, we get

(32)

Finally, it follows from Assumption 2 (ii) and the assumptions
of the theorem that we have

(33)

Now, we have from (30)–(33) that

(34)

This ends the proof of the theorem.
Remark 7: Theorem 2 says, in fact, that the modeling error

is proportional to the characteristic distance of the base set and
to the error at base points. On the other hand, for any fixed ,
one can reduce to as small a value as desirable by proper
choice of (provided that Assumption 1 (iv) is satisfied, i.e.,

at the base points), although this
would affect the constant (usually in an undesirable way if

is too small).

IV. CONCLUSION

A theoretical justification of the recently published SM-based
modeling methodology with variable weight coefficients has
been presented. We have provided theoretical results showing
that the new methodology can assure any accuracy that is re-
quired (provided that the base set is dense enough), which is
not the case for the standard methodology. We have also given
an error estimate for the surrogate model with respect to the
fine model. Examples have demonstrated the fundamental dif-
ferences between the standard and novel modeling method.
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