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Abstract—The proper choice of mapping used in space-mapping
optimization algorithms is typically problem dependent. The
number of parameters of the space-mapping surrogate model
must be adjusted so that the model is flexible enough to reflect the
features of the fine model, but at the same time is not over flexible.
Its extrapolation capability should allow the prediction of the
fine model response in the neighborhood of the current iteration
point. A wrong choice of space-mapping type may lead to poor
performance of the space-mapping optimization algorithm. In this
paper, we consider a space-mapping optimization algorithm with
an adaptive surrogate model. This allows us to adjust the type of
space-mapping surrogate model used in a given iteration based
on the approximation/extrapolation capability of the model. The
technique does not require any additional fine model evaluations.

Index Terms—Adaptive surrogate model, engineering opti-
mization, microwave design, space mapping, space-mapping
optimization.

I. INTRODUCTION

SPACE MAPPING is a recognized engineering optimization
methodology [1]–[5]. It shifts the optimization burden from

an expensive “fine” (or high fidelity) model to a cheap “coarse”
(or low fidelity) model by iterative optimization and updating
of the surrogate model, which is built using the coarse model
and available fine model data. A similar idea is exploited by
other surrogate-based methods [6]–[12], although many of them
construct a surrogate model by direct approximation of the fine
model data with no underlying coarse model.

Space mapping was originally applied to the optimization of
microwave devices [1], where fine models are often based on
full-wave electromagnetic simulators, whereas coarse models
are physically based circuit models. Recently, space-mapping
techniques have been applied to design problems in a growing
number of areas (see, e.g., [13]–[15]). A review of advances in
space-mapping technology is contained in [4].

Recent efforts have focused in several areas, which are: 1) the
development of new algorithms that use different space-map-
ping techniques such as implicit space mapping [2] and output
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space mapping [3]; 2) the development of new space-mapping-
based models [16]; 3) theoretical justification of space mapping
and convergence theory for space-mapping optimization algo-
rithms [17], [18]; 4) neuro-space mapping [19]–[22]; and 5) ap-
plications of space mapping (e.g., [23]–[26]).

The common problem in space-mapping-based optimization
is the proper choice of type of mapping. Space-mapping tech-
niques available include input, implicit, and different variations
of output space mapping, as well as customized mappings such
as frequency space mapping [3]. By combining these mappings
in different configurations, one can adjust the flexibility of the
space-mapping surrogate model, which is correlated with the
number and type of space-mapping parameters. The space-map-
ping surrogate model cannot be too simple, otherwise it will not
properly reflect the features of the fine model. The surrogate
model cannot be over-flexible because its extrapolation proper-
ties would then be too poor to allow accurate prediction of the
fine model response in the neighborhood of the current itera-
tion point. Unfortunately, it is difficult to tell beforehand which
combination of mappings may be optimal for a given problem.
A wrong choice of space-mapping type may lead to poor perfor-
mance of the space-mapping optimization algorithm. Another
issue is that surrogate models that are flexible and theoretically
suitable for a given problem may exhibit poor performance due
to difficulties in the extraction of the model parameters.

In this paper, we present a space-mapping-based optimiza-
tion algorithm with an adaptive surrogate model. Our technique
allows us to adjust the type of space-mapping surrogate model
used in a given iteration based on the approximation/extrapo-
lation capability of the model. This capability is estimated by
comparing properly chosen quality factors that measure the
ability of the surrogate model to match the fine model and to
extrapolate its response at points not used in parameter extrac-
tion. The technique does not require any additional fine model
evaluations because the quality factor calculation is based on
already available data.

II. BASICS OF SPACE-MAPPING OPTIMIZATION

Let , , denote the response vector
of a fine model of the device of interest. Our goal is to solve

(1)

where is a given objective function. To solve
(1), we use an optimization algorithm that generates a sequence
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of points , , and a family of surrogate
models , , so that

(2)

where denotes the trust region radius at iteration . We use a
trust region method [27], [28] to improve the convergence prop-
erties of the algorithm.

Let , , denote the response vectors
of the coarse model. The surrogate models are constructed
from the coarse model so that proper matching conditions are
satisfied. A variety of space-mapping-based surrogate models
are available [1]–[5], [17], [18]. Here, we use a surrogate model
that incorporates both input [1] and output [3] space mapping.
We define and

(3)

for , where

(4)

(5)

Apart from model (3)–(5), there is an optional frequency
scaling that works in such a way that the coarse model is
evaluated at a different frequency than the fine model using the
transformation: , where
is obtained in a parameter-extraction process similar to (4).

Flexibility of the surrogate model can be adjusted by dis-
abling some of the parameters, i.e., constraining them to their
initial values. We shall use the following naming convention for
the surrogate models: the presence of any of the letters , ,
, and is equivalent to enabling (not constraining) the corre-

sponding model component, e.g., surrogate model denotes
the model that uses nontrivial components and .

III. SPACE MAPPING WITH ADAPTIVE SURROGATE MODEL

The general space-mapping model (3) allows us to use dif-
ferent combinations of space mapping. However, an optimal
choice of mapping is usually problem dependent and may also
be iteration dependent. We do not want the surrogate model to
be too simple because, in that case, it cannot properly reflect the
features of the fine model. We do not want the surrogate to be
over flexible because its extrapolation properties, i.e., its capa-
bility to properly model the fine model response in the neigh-
borhood of the current iteration point, may be lost. In general,
a suitable choice requires both knowledge of the problem and
engineering experience.

Here, we describe a simple algorithm that makes the process
of choosing a good space mapping automatic. The algorithm is
adaptive in the sense that it can change the space mapping used
from iteration to iteration based on the estimated performance

of space mapping both with respect to approximation and ex-
trapolation quality.

Let be a set of candidate surrogate
models considered at iteration . Each of is a special case
of (3). For simplicity, we assume the following compact way of
writing the surrogate models: , where

is a parameter domain of the model. We shall denote by
the set of initial values of the parameters of candidate model

. The model is set up by proper

choice of its parameter values , which are determined using
the parameter-extraction procedure

(6)

where is a subset of , the
set of all previous iteration points. Let , such
that . Now, let us define the following two
quantities:

(7)

and

(8)

If is empty, we set .

The first factor, i.e., , measures the quality of the ap-
proximation properties of model because it is the ratio of
the matching error before and after parameter extraction, cal-
culated for the points which were used in parameter extraction.
The second factor, i.e., , measures the quality of the ex-
trapolation properties of model because it is the ratio of the
matching error before and after parameter extraction, calculated
for the points which were not used in extraction.

At iteration , we select the surrogate model based on the
combined quality factor

(9)

In particular, we set

(10)

where

(11)

A good surrogate model exhibits high values for both

and ; however, we consider extrapolation properties as
even more important than approximation properties because

indicates the capability of modeling the fine model
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outside the points at which the surrogate was created. This
factor also indicates potential over flexibility of the surrogate
model. Therefore, in practice, we use small values of (e.g.,

).
The space-mapping algorithm with an adaptive surrogate

model selection scheme can be summarized as follows.
Step 0: Set ; Choose the candidate model set ;
Step 1: Given , set and

;
Step 2: Perform parameter extraction and calculate quality

factors and ; Choose the current sur-

rogate model ;
Step 3: Optimize and obtain using (2);
Step 4: Update ;
Step 5: If is accepted set , ;
Step 6: If the termination condition is not satisfied go to

Step 1; else terminate the algorithm.
The proposed adaptive scheme does not require any extra fine

model evaluations because the surrogate model assessment is
based on already existing fine model data. Additional compu-
tational effort concerns the coarse model only, and because we
assume that the coarse model evaluation is significantly cheaper
than the fine model evaluation, this additional effort does not
substantially affect the total execution time of the optimization
algorithm. In order to further reduce the execution time, un-
successful candidate models can be gradually eliminated from

(based, for example, on the ranking of ). In our nu-
merical experiment, however, we keep fixed throughout the
algorithm.

The proposed adaptive scheme alleviates certain problems in
parameter extraction. In particular, the space-mapping surro-
gate model , which is potentially better than another model,
say, , may appear worse at a given iteration because of pa-
rameter-extraction problems, e.g., a large number of parameters
or the wrong starting point may prevent the parameter-extrac-
tion process from finding optimal values of the space-mapping
parameters.

A possible extension of the proposed method is to exploit
more than one coarse model so that the candidate surrogate
models are combinations of both different space-mapping types
and different coarse models. In particular, our method can be
used for the adaptive selection of the coarse model.

IV. EXAMPLES

A. Test Problem Description

Problem 1: Six-section -plane waveguide filter [29]
(Fig. 1). The fine model is simulated using MEFiSTo [30] in
a 2-D mode. The MATLAB coarse model (Fig. 2) has lumped
inductances and dispersive transmission line sections. We
simplify formulas due to Marcuvitz for the inductive suscep-
tances corresponding to the -plane septa. Design parameters
are . The design speci-
fications are for GHz GHz,

for GHz GHz, and
for GHz GHz. The starting point is

mm
(coarse model optimal solution).

Fig. 1. Six-sectionH-plane waveguide filter: the 3-D view [29].

Fig. 2. Six-section H-plane waveguide filter: the equivalent empirical circuit
model [29].

Fig. 3. Geometry of the microstrip bandpass filter [31].

Fig. 4. Coarse model of microstrip bandpass filter (Agilent ADS).

Problem 2: Microstrip bandpass filter [31] (Fig. 3). The
design parameters are . The fine model is
simulated in FEKO [32], the coarse model is the circuit model
implemented in Agilent ADS [33] (Fig. 4). The design speci-
fications are dB for GHz GHz,

dB for GHz GHz, and
dB for GHz GHz.

The initial design is the coarse model optimal solution
mm.

Problem 3: Microstrip bandpass filter with double-cou-
pled resonators [31] (Fig. 5). The design parameters are

. The fine model is simulated in FEKO
[32], the coarse model is the circuit model implemented
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Fig. 5. Geometry of the microstrip bandpass filter with double-coupled res-
onators [31].

Fig. 6. Coarse model of microstrip bandpass filter with double-coupled res-
onators (Agilent ADS).

in Agilent ADS [33] (Fig. 6). The design specifications
are dB for GHz GHz,

dB for GHz GHz, and
dB for GHz GHz. The initial

design is mm.

B. Experimental Setup

For each of the test problems, we performed space-mapping
optimization using the adaptive surrogate model selection
scheme and the algorithm described in Section III. Table I
shows the candidate model sets for each of the problems. For
the sake of comparison, we also solved our problems using
each of the candidate surrogate models separately.

For all the problems, we have set
, where , and

( is empty if ,
i.e., ). Thus, roughly 2/3 of the available points are used
to assess approximation quality, as well as to determine the
next surrogate model, while 1/3 of the points are used to assess
extrapolation capability of the model. Obviously, there is a
number of other choices available; the above is just one of
many reasonable ones. Among other benefits, it allows reuse
of space-mapping parameters for the winning candidate model
without performing additional parameter extraction.

TABLE I
DESCRIPTION OF CANDIDATE MODEL SETS

the naming convention for surrogate models (e.g., BcdBcdBcd) is explained in
Section II.
III denotes implicit space mapping with preassigned parameters being elec-

trical permittivities (initial value 9) and heights (initial value 0.66 mm) of mi-
crostrip elements MLIN, MCORN, and MTEE (all these elements are grouped
into five groups; there is a separate electrical permittivity and height for each
group, which makes a total of ten preassigned parameters).

TABLE II
OPTIMIZATION RESULTS

the naming convention for surrogate models (e.g., BcdBcdBcd) is explained in
Section II.

the results marked bold are acceptable solutions; the rest of the results are
considered not acceptable with respect to the given specification.

C. Experimental Results

Table II shows the results of our experiments, i.e., the ob-
jective function value (minimax error) and the number of fine
model evaluations necessary to obtain the solution for problems
1–3. As an illustration, Table III shows, for test problem 3, the
actual sequence of surrogate models used in subsequent itera-
tions of the algorithm, as well as the corresponding combined
quality factors compared to quality factors averaged over the
whole set of candidate models. Note that the number of itera-
tions does not correspond to the number of fine model evalua-
tions shown in Table II because we use a trust region approach
and there may be more than one fine model evaluation per it-
eration. Figs. 7–9 show the fine model responses at the initial
solution and final solution obtained using our space-map-
ping algorithm with adaptive model selection for problems 1–3,
respectively.
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TABLE III
SURROGATE MODEL EVOLUTION FOR TEST PROBLEM 3

the naming convention for surrogate models (e.g., BcdBcdBcd) is explained in
Section II.
F = K F is the average combined quality factor (i.e., the

combined quality factor averaged over all candidate surrogate models).

Fig. 7. Optimization results for the six-section H-plane waveguide filter
problem using adaptive surrogate model selection: initial solution (dashed line)
and final solution (solid line).

Fig. 8. Optimization results for the microstrip bandpass filter problem using
adaptive surrogate model selection: initial solution (dashed line) and final solu-
tion (solid line).

D. Discussion

The results shown in Table II indicate that the algorithm
working with adaptive model selection performs either better
than the algorithm using any fixed surrogate model (problem 1)
or almost as good as the best algorithms using a fixed surrogate
model (problems 2 and 3). In the latter case, our space-mapping
algorithm with adaptive model selection requires fewer fine

Fig. 9. Optimization results for the microstrip bandpass filter with double-cou-
pled resonators problem using adaptive surrogate model selection: initial solu-
tion (dashed line) and final solution (solid line).

TABLE IV
PERFORMANCE COMPARISON: ADAPTIVE SPACE MAPPING

VERSUS FIXED SURROGATE MODEL

Values averaged over the whole candidate set for a given test problem.

model evaluations than the best fixed-model algorithms to
obtain a solution of similar quality.

Note that some of the space-mapping algorithms with a fixed
model fail to find an acceptable solution. In some cases (problem
2), this applies to the most flexible surrogate model .
In some cases (problems 2 and 3), most of the fixed-model al-
gorithms give results that are not acceptable. This means that
choosing the surrogate model type “at random” may lead to in-
adequate performance of the algorithm.

On the other hand, because choosing the surrogate model
without prior knowledge and experience is almost the same
as a random choice, it is fair to make a comparison between
the adaptive space-mapping approach and the average perfor-
mance of the fixed-model algorithm. Table IV provides this
kind of comparison. It shows, in particular, that the average per-
formance of the fixed-model space-mapping algorithm is much
worse than the performance of the space-mapping algorithm
with adaptive surrogate model selection for all considered test
problems.

V. CONCLUSION

A novel adaptive surrogate model selection procedure has
been presented. The proposed technique allows us to adjust
the type of space-mapping surrogate model used in a given
iteration based on the approximation/extrapolation capability
of the model. The technique does not require any extra fine
model evaluations. Examples verifying the performance of our
approach are provided. It follows that our adaptive surrogate
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model selection improves the performance of the space-map-
ping optimization algorithm. It prevents a bad choice of the
space-mapping type. The algorithm working with our adaptive
space mapping never failed to find a solution close to the op-
timal one. Failures happened to the algorithms working with a
fixed space-mapping type, and this is exactly what may occur
when the space-mapping type is wrongly chosen. The optimiza-
tion results obtained with adaptive surrogate model selection
are comparable to or better than the results obtained with a fixed
space-mapping type.
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