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Abstract—We apply space mapping to antenna design for the
first time. We exploit a coarse-mesh method of moments (MoM)
solver as the coarse model and align it with the fine-mesh MoM
solution through space mapping. We employ two plans: (I) im-
plicit and output space mapping, and (II) input and output space
mapping. We propose a local meshing method which avoids incon-
sistencies in the coarse model. The proposed techniques are im-
plemented through our user-friendly space mapping framework
(SMF) system. In a double annular ring antenna example, the S-pa-
rameter is optimized. The finite ground size effect for the MoM is
efficiently solved by space mapping plan I and the design specifi-
cation is satisfied after only three iterations. In a patch antenna
example, we optimize the impedance using both plans in separate
optimization processes. Comparisons are made. Coarseness in the
coarse model and its effect on the space mapping performance are
also discussed.

Index Terms—Antenna design, CAD, EM optimization, method
of moments (MoM), space mapping (SM).

I. INTRODUCTION

THE method of moments (MoM) is one of the most often
used numerical techniques for antenna and microwave

device analysis. Accurate MoM simulations of practical struc-
tures are memory and CPU intensive. This computational cost
could become prohibitive in complex design problems, which
may require anywhere between tens and thousands of system
analyses. The electromagnetics-based antenna design remains a
challenging task and ongoing research is pursuing acceleration
of the numerical analysis on the one hand and improving the
efficiency of the optimization algorithms on the other. The
space mapping approach proposed here addresses the latter
problem in conjunction with MoM-based analysis.

Common classifications of optimization algorithms include
gradient-based (e.g., steepest-descent, conjugate-gradient,
Newton and quasi-Newton), stochastic (e.g., random-search, ge-
netic, simulated-annealing, particle-swarm), and neural-based
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approaches [1]. Some of these have already been incorpo-
rated into commercial electromagnetic CAD packages. Only
recently, the space mapping (SM) and surrogate-based op-
timization have been recognized in the mathematical and
engineering community as a distinct class of approaches, e.g.,
[2]–[5]. They promise unprecedented efficiency in problems
where two system models are available: a coarse model, which
is not accurate but is fast (e.g., approximate analytical models,
empirical formulas, equivalent circuits), and a fine model,
which is very accurate but is expensive to evaluate (e.g.,
electromagnetic simulations, a set of measurements). The SM
technique takes advantage of the efficiency of the coarse model
and the accuracy of the fine model. It aligns the coarse model
with the fine model in an iterative optimization process where
most of the burden of the multiple system analyses is placed on
the coarse model [6]–[10].

So far, SM has been successfully applied to the electromag-
netics-based design of microwave filters, impedance-matching
networks, multiplexers, etc.; see, e.g., [6]–[10]. There, equiv-
alent-circuit, empirical, and semianalytical models and combi-
nations thereof have been linked to full-wave electromagnetic
simulators.

The application of SM to antenna design, on the other hand,
proves to be more challenging. This is due to the fact that, with
few exceptions, the radiating structures are too complex to lend
themselves to analytical and/or circuit modeling. Examples of
exceptions include printed patches of standard shapes and some
standard horn designs. In the former case, fast analytical models
include transmission-line and cavity representations loaded with
the aperture admittances [11], [12]. In the latter case, complete
design procedures exist [13] based on analysis where the edge
diffraction is ignored. Such fast models are good candidates for
coarse models in an SM optimization process. Unfortunately,
for the vast majority of modern antenna types, coarse models
are not available. This limits the applicability of the SM and
surrogate-based optimization in antenna design.

Here, we propose an approach, which allows the construction
of a coarse model for any radiating structure, which can be mod-
eled by an MoM solver. The same solver is used for the coarse
and the fine model. The fine model is an accurate MoM solu-
tion whose mesh satisfies rigorous convergence criteria, e.g., the
convergence error is below 1%. The coarse model uses a coarse
mesh, which normally would satisfy very relaxed requirements,
e.g., a convergence error below 15%. Some MoM analysis en-
gines may have additional features allowing for other types of
approximations, which can speed up the system analysis sig-
nificantly. A good example is the use of a specialized Green’s
function in the case of a ground plane and an -layered sub-
strate of infinite extent ( is finite), which is much faster than

0018-926X/$25.00 © 2007 IEEE



652 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 55, NO. 3, MARCH 2007

the analysis of a structure with a finite-size ground plane where
all interfaces are meshed.

When employing coarse-mesh coarse models, the mesh
topology must remain unchanged throughout the optimization
iterations in order to keep the coarse-model response smooth
and consistent in the design-parameter space. For that, local
mesh control is employed. This is not necessary for the fine
model, which can be remeshed at each optimization iteration.

We implement two SM plans: (I) implicit and output SM, and
(II) input and output SM, [14], [15]. The aim of implicit and
input SM is to roughly align the responses of the coarse and
fine models through parameter extraction in the coarse-model
design-parameter space. Then output SM performs response-
level adjustments to achieve a perfect local match between the
coarse and fine model responses.

The optimization is carried out with the space mapping
framework (SMF) system [16]. SMF is a prototype GUI-ori-
ented software package that implements a number of SM
optimization algorithms. The system provides sockets to pop-
ular simulators (e.g., MEFiSTo, FEKO, Sonnet em, ADS). It
allows for automatic fine and coarse model data acquisition
and, consequently, for fully automatic SM optimization. SMF
also provides interfaces for modeling and statistical analysis.

Our examples are implemented with a commercial MoM
solver [17]. We consider a double annular ring antenna and
a patch antenna. In the first example, we exploit the CPU-in-
tensive surface equivalence principle as a fine model and the
special Green’s function with a coarse mesh as a coarse model.
The -parameter response is optimized in three iterations. In
the second example, we optimize the input impedance at a
single frequency using two SM plans. The comparisons show
larger time saving in SM plan I. Last, we discuss the coarseness
in the coarse model and its effect on the SM performance.

II. BASICS OF SPACE MAPPING OPTIMIZATION

Space mapping (SM) technology is a recognized engineering
optimization paradigm, consisting of a number of efficient op-
timization approaches, e.g., [5]–[10]. The main feature is that
the direct optimization of the high-fidelity computationally ex-
pensive fine model is replaced by the iterative optimization and
update of the fast coarse model. Provided that the misalignment
between the fine and coarse models is not significant, SM-based
algorithms typically provide excellent results after only a few
evaluations of the fine model. In contrast, direct optimization
typically requires dozens or hundreds of evaluations and may
fail to provide acceptable results.

Let denote the response vector of the fine
model of a given device, where is the design-param-
eter domain of the fine model. Our goal is to solve

(1)

where is a given objective function and
is the vector of fine-model design parameters. In many engi-
neering problems, we are concerned with the so-called min-
imax objective function. If we denote the fine model response
components by , the lower specifica-

tion vector by , and the upper specifi-
cation vector by , then we require that

for and for , where ,
. The minimax objective function is defined

as

(2)
In some problems, may be defined by a norm, i.e.

(3)

where is the target response.
We consider the fine model to be expensive to compute and

solving (1) by direct optimization to be impractical. Instead, we
use surrogate models, i.e., computationally cheap models that
are supposed to be acceptable local representations of the fine
model.

According to the SM approach, the basis of the surrogate is
the coarse model. Let denote the response
vectors of the coarse model. Here, is the coarse-model
design-parameter domain (we assume that ) and

is the domain of auxiliary (preassigned) coarse model pa-
rameters. We emphasize that the preassigned parameters are
outside of and . They are used to align the coarse and
fine model responses in the parameter-extraction step of the SM
procedure; however, they remain fixed during the optimization
process aiming at an optimum surrogate with respect to the de-
sign specifications. Typical preassigned parameters in a layered
structure are the dielectric constant and the height of a dielectric
layer.

The optimal solution of the coarse model is

(4)

where denotes the initial preassigned parameter values.
Solving (4) is a necessary step in initializing the SM optimiza-
tion process.

We consider an optimization algorithm that generates a se-
quence of points , , so that

(5)

Here, is the surrogate model at iteration
. We assume that for . In the

SM framework, the family of surrogate models is constructed
from the coarse model in such a way that each is a suitable
distortion of , such that the response of the surrogate model
matches the response of the fine model as well as possible.

In this work, we use a surrogate model based on input SM
[6], implicit SM [7] and output SM [18]. The surrogate model
at iteration is defined as

(6)
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Fig. 1. Illustration of our approach to implicit, input, and output SM.

where

(7)

and

(8)

The matrices , , and the vector
are obtained using parameter extraction applied to the matching
condition as per (7). The vector is calcu-
lated using (8) after , , and are determined.

A matching condition that we use in this work is defined as

(9)

As follows from (7) and (9), we tune the values of the preas-
signed parameters of the coarse model (implicit SM) and/or

and (linear input SM) in order to reduce the misalign-
ment between the fine model and the current surrogate model
using the fine model data from the latest iteration. More general
matching conditions can be found in [19].

It is now clear that implicit and input SM exploit the physics-
based similarity of the models and tune their shape, material or
equivalent-circuit parameters, while the output SM ensures per-
fect local alignment between their responses at the current itera-
tion point. As follows from (6)–(9), we implement implicit/input
SM and output SM sequentially. This is illustrated in Fig. 1.

Having defined the surrogate model, we can define the op-
timization algorithm. It is, in fact, an implementation of the
generic surrogate model-based optimization problem (5).
Step 1) Choose coarse model and preassigned parameters

. Set .
Step 2) Solve (4) to find coarse-model optimal solution ;

set .

Step 3) Evaluate fine model to obtain .

Step 4) Update , , through parameter extraction
using (7).

Step 5) Compute using (8) and update surrogate
model using (6).

Step 6) Solve (5) to obtain .
Step 7) If termination condition is satisfied (convergence

achieved or design specification satisfied), stop;
otherwise, set , go to Step 3.

III. COARSE-MESH COARSE MODELS

In the numerical examples discussed in Section V, both fine
and coarse models are implemented using the same MoM-based
simulator [17]. The fine model uses a fine mesh satisfying mesh
convergence so that the results are accurate. The fine model eval-
uation is computationally demanding. The coarse model uses a
coarse MoM mesh which, as indicated here, results in signifi-
cant speed-up at the expense of the response accuracy.

A. CPU Time Cost Versus Mesh Density

The CPU time for an MoM simulation can be expressed as
[20]

(10)

where is the number of unknowns. , , , and are con-
stants independent of . accounts for the simulation setup.
The meshing of the structure leads to the linear term . The
filling of the system matrix is responsible for the quadratic term,
and solving the matrix equation for the cubic term. The values
of , , and depend on the problem at hand and the type
of the MoM discretization procedure.

The quadratic and cubic terms dominate. For small to medium
size problems, as the constant is much larger than , the so-
lution time is dominated by the matrix fill. For large-scale prob-
lems, the matrix solving time with its cubic term will eventually
dominate the CPU-time cost. Thus, for medium to large scale
problems, the time saving offered by coarse-mesh coarse models
will be significant.

B. Mesh Convergence and Meshing Method

The mesh convergence needs to be checked to get an accu-
rate simulation result. This is done by refining the mesh from
one simulation to the next, and keeping all other parameters the
same. If the results are significantly different, the surfaces are
not adequately discretized and we need to refine the mesh.

The coarse-mesh coarse model does not need to achieve mesh
convergence. Consequently, if the mesh topology and number
of mesh elements vary due to the variation of geometrical de-
sign parameters during optimization, inconsistent results are ob-
tained. To overcome this problem, we force the mesh topology
to remain unchanged during the optimization. This is done by
local meshing in FEKO [21]. In effect, for a given part of the
structure, the user can fix the number of mesh lines along its
contours. This enforces the same mesh topology regardless of
variations in some of the shape parameters of the part.

In the fine model, where mesh convergence is satisfied, we
use global meshing where the minimum mesh density is deter-
mined by the number of mesh lines per wavelength. At each
iteration, remeshing is allowed.
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Fig. 2. Flowchart of the optimization module in SMF [16].

IV. SMF: IMPLEMENTATION OF SM OPTIMIZATION

ALGORITHMS

In order to make SM accessible to engineers not experienced
in this technology, a prototype user-oriented software package
was created. SMF [16] is a GUI-based Matlab system that
can perform SM-based constrained optimization, modeling
and statistical analysis. It implements existing SM approaches,
including input, output, implicit and frequency SM. It contains
drivers for commercial simulators that allow linking the fine
and coarse model to the algorithm and make the optimization
process fully automatic. In this paper, we use SMF to validate
the antenna design based on SM optimization and MoM coarse
and fine models.

Fig. 2 shows a block diagram of the optimization module in
SMF. Optimization is performed in several steps. First, the user
enters problem arguments, including starting point, frequency
sweep, optimization type and specifications. Next, the user sets
up space mapping itself, i.e., the kind of space mapping to be
used (e.g., input, output, implicit), specifies the termination con-
dition, parameter extraction options, and optional constrains.

The next step is to link the fine and coarse models to SMF
by setting up the data that will be used to create model drivers.
Using the user-provided data (e.g., simulator input files and de-
sign-parameter identification data), SMF creates drivers that au-
tomatically invoke fine and coarse model evaluations as required
by the SM algorithm.

Parameter extraction, surrogate model optimization, and op-
tional trust-region specific options are set in the next step using
auxiliary interfaces.

Having done the setup, the user runs the execution interface,
which invokes the SM optimization algorithm and the output
visualization. The latter includes model responses, specification
error plots as well as convergence plots, all updated at each SM
iteration.

V. EXAMPLES

We use: (I) implicit and output SM, or (II) input and output
SM. As explained in Section III, the implicit SM operates on the

Fig. 3. Geometry of a stacked probe-fed printed double annular ring antenna
example.

preassigned parameters while the input SM operates on the map-
ping parameters and . Both approaches can be used sepa-
rately (as done in the examples below) or simultaneously. When
implicit SM is used alone, the input mapping parameters are
fixed at and , where is the identity matrix. When
input SM is used alone, is empty.

A. Double Annular Ring Antenna

We consider the stacked probe-fed printed annular ring an-
tenna [22] shown in Fig. 3. The antenna is printed on a printed
circuit board (PCB) with , for the
lower substrate, and , for the upper
substrate. The dielectric loss tangent is 0.001 for both layers.

The finite ground size is 100 100 mm. The radius of the
feed pin is . The design parameters are the
outer and inner radius of each ring and the feed position, namely,

. The design specification is

(11)

In the MoM solver used here, special Green’s functions are
available to model multilayer substrates where the ground plane
and the substrate are assumed infinite in extent. The method is
efficient since only the finite metallic surfaces are discretized.
However, in many applications, the infinite ground plane as-
sumption is not accurate. It is well known that the ground-plane
size has a strong effect on the performance of microstrip an-
tennas [23], [24].

The surface equivalence principle (SEP) allows the analysis
of layered structures with a finite-size ground plane. In this case,
however, the surfaces of all dielectric interfaces are discretized
for the electric and magnetic current densities. All sides of a
dielectric have to be meshed, making a closed solid. Thus, the
number of unknowns is many times larger in comparison with
the analogous structure of infinite ground plane analyzed with
the special Green’s function.

We choose the SEP model as the fine model and the special
Green’s function analysis as the coarse model. To further reduce
the simulation time in the coarse model, we apply a coarser mesh
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Fig. 4. Demonstration of local meshing of the annular ring in the coarse-mesh
coarse model for a stacked ring antenna example.

TABLE I
FINE MODEL AND COARSE MODEL IN THE DOUBLE ANNULAR RING ANTENNA

Number of mesh lines and time cost in the fine model are measured
at the initial point.

Fig. 5. Initial fine and surrogate responses corresponding to the coarse model
optimal solution for the double annular ring antenna.

by local meshing. As shown in Fig. 4, the number of mesh lines
along the three loops (thick lines) is topologically fixed at 5, 10,
and 15, respectively, regardless of the variation in the design
parameter values. The fine and coarse models are summarized
in Table I.

This problem has been solved using implicit and output SM.
The relative permittivities of the two layers, and , are
used as preassigned parameters. The initial fine model, which
takes its design-parameter values from the optimized coarse
model (see Step 2 of the algorithm in Section II), exhibits a

Fig. 6. Final fine and surrogate responses for the double annular ring antenna
example.

TABLE II
INITIAL AND FINAL DESIGN OF THE DOUBLE ANNULAR RING ANTENNA

Fig. 7. Objective function value versus iteration number in the double annular
ring antenna example.

poor response, shown in Fig. 5. In three iterations (four fine
model simulations), the fine model is optimized and aligned
with the surrogate very well. Both final responses are plotted
in Fig. 6. The total time taken is 5 h 58 min (note that a single
fine model simulation requires about 1 h 18 min). Fig. 7 shows
the reduction of the objective function versus the number of the
iterations. Table II summarizes the initial and final designs.

Direct optimization of the fine model in this example was not
attempted. With a simulation time of 1 h and 18 min per system
analysis, direct optimization would require about a week, which
is not acceptable.

We also note that Fig. 3 shows a general layout of the stacked-
ring structure, which represents the relative sizes of the rings
before the preliminary coarse-model optimization. In it,

and . However, the coarse-model optimization as well
as the subsequent SM optimization of the fine model resulted in
a design where while remained smaller than .
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Fig. 8. Execution interface of SMF after the optimization procedure has
stopped.

Fig. 9. Demonstration of the coarse model and the fine model. (a) The
coarse model with three mesh lines along L and seven mesh lines along W .
(b) The fine model with global mesh density of 30 mesh lines per wavelength.

Finally, we show the execution interface of the SMF system
at the final iteration of the SM algorithm in Fig. 8. Plots in
the interface correspond to the algorithm status after the last
iteration. The top left plot shows the fine model response and
the design specifications; the top right plot shows the specifica-
tion error versus iteration number; the bottom left and bottom
right plots are convergence plots that show and

versus iteration number, respectively.

B. Patch Antenna

The antenna is printed on a substrate with relative dielectric
constant and height . The design pa-
rameters are the patch length and width, i.e., . The
objective is to obtain 50 input impedance at 2 GHz. The ob-
jective function is .

In the fine model, the global mesh density is 30 mesh lines per
wavelength. In the coarse model, the mesh number and topology
are fixed through local meshing. We choose three mesh lines
along and seven along . The meshes of the two models are
shown in Fig. 9. We use implicit SM and output SM (SM plan
I) where the selected preassigned SM parameter is .
In the parameter extraction, we match the complex instead
of the input impedance.

The initial design point is the coarse model optimal solution
. SM requires five iterations

(six fine model simulations). Fig. 10 shows the reduction of the

Fig. 10. Objective function value versus iteration number for the microstrip
patch antenna example.

TABLE III
OPTIMIZATION RESULTS FOR THE PATCH ANTENNA EXAMPLE

objective function versus number of iterations. The final design
is . Table III shows the
evolution of the design parameters, the objective function, the
preassigned parameter and the output SM parameter at each it-
eration. The computation time is 341 s, compared with 2816 s
for the direct fine model optimization.

An alternative way to solve this problem is through input and
output SM (SM plan II). To save time in the parameter-extrac-
tion step, we extract only the variable vector in the input map-
ping ( is fixed at ). The coarse model mesh is the same
(100 mesh lines). The algorithm takes five iterations and 695 s
to reach the specified error of . As expected, it takes
more time than the first SM option, because in the input SM, we
tune two input SM variables in the parameter extraction rather
than one as in the implicit SM.

Table IV summarizes the effect of the coarseness of the coarse
model on the SM performance in the patch antenna example.
The algorithm does not converge for 24 mesh elements (trian-
gles). As the number of mesh elements increases, the function
evaluation time increases while the SM iterations decrease. For
SM plan I, we have the best SM performance in terms of total
time cost for 100 mesh elements, which requires only 341 s. For
SM plan II, we have the best SM performance with 48 mesh el-
ements, which requires 479 s.
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TABLE IV
THE EFFECT OF LOCAL MESHING ON SM PERFORMANCE FOR THE PATCH ANTENNA

The number of mesh lines and function evaluation time for the fine model is measured at the starting
point [L W ] = [55 85] mm.

VI. CONCLUSION

We have presented an effective space-mapping technique for
antenna optimization based on a coarse model, which exploits a
coarse nonconvergent mesh of fixed topology. Both coarse and
fine models are implemented in the same MoM solver. A separate
coarse model is not required. In the double annular ring example,
our SMF system provides an efficient way to address the finite
ground size problem. We solve the optimal impedance of a patch
antenna problem using two SM plans. The coarseness in the
coarse model and its effect on the space mapping performance
are discussed. The approach is applicable to the design of antenna
and microwave devices aided by method-of-moments models.
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