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Abstract-Two important issues in space mapping
optimization are: (i) the quality of the coarse model used in the
optimization process, and (ii) the right choice of the space
mapping surrogate model for a given optimization problem. Both
issues are critical to the performance of the space mapping
algorithm. In this paper we introduce methods of assessing the
quality of coarse/surrogate models. The methods can be used to
predict whether a given combination of a coarse model and a
space mapping type can be successfully used in space mapping
optimization. They also allow us to compare different surrogate
models with respect to potential performance in optimization.
Theoretical considerations are illustrated by examples.

Index Terms-Computer-aided design (CAD), EM optimization,
surrogate model assessment, space mapping.

I. INTRODUCTION

Space mapping (SM) has been widely used for optimization
and modeling of microwave devices and structures [1]-[5].
SM shifts the optimization burden from an expensive "fine"
(or high-fidelity) model to a cheap "coarse" (or low-fidelity)
model by iterative optimization and updating of the surrogate
model which is built using the coarse model and available fine
model data.
The two central issues in space mapping optimization are

the quality of the coarse model and the choice of the space
mapping surrogate model for a given problem. Both may be
critical to the performance of the space mapping algorithm.
The coarse model should be as accurate a representation of the
fine model as possible. However, simple visual examination
of the similarity of the coarse and fine model responses is
typically not sufficient to predict the performance of a given
coarse model in the space mapping algorithm.
On the other hand, various types of space mapping such as

input SM [4], implicit SM [2], output SM [4], frequency SM
[3], manifold mapping [6], etc., can be combined in different
configurations [4], [5]. Although it seems clear that
combining different kinds of space mapping and introducing
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new parameters improves the flexibility of the surrogate
model, the proper choice of space mapping is usually problem
dependent. We do not want the surrogate model to be too
simple, because in that case it cannot properly reflect the
features of the fine model. Also, we do not want the surrogate
to be over-flexible, because its generalization properties may
be then lost. In general, a suitable choice of space mapping
requires both knowledge of the problem and engineering
experience.
A wrong choice of the coarse model and/or space mapping

type may result in poor performance of the SM algorithm and
significant increase of the optimization cost because a typical
approach is to try different space mapping combinations one
after another.

In this paper we provide methods of assessing the coarse
and surrogate model, which allow predicting the performance
of a given combination of a coarse model and space mapping
type before carrying out actual space mapping optimization.
The methods can be used to select the coarse model and the
mapping which are the best for a given optimization problem.

II. SPACE MAPPING OPTIMIZATION

Let Rf: Xf R', Xfc R', denote the response vector of a
fine model of the device of interest. Our goal is to solve

xf = argrinU (Rf (x)) (1)

where U: Rm -* R is a given objective function. We consider
an optimization algorithm that generates a sequence of points
x( E Xf, i= 0, 1, 2, ..., and a family of surrogate models
R5(i): X(i) , Rm,X5(l) Rn, i = 0, 1, ..., so that

x(i+l) = arg min U(R()(x)) (2)

and Rs(i'+) is constructed using suitable matching conditions
with the fine model at x(k), k= 0, 1, ..., i.

Let R, X, -* Rm, Xc c Rn, denote the response vectors of
the coarse model that describes the same object as the fine
model: less accurate but much faster to evaluate. Space
mapping assumes that the family of surrogate models is
constructed from the coarse model in such a way that the
misalignment between Rs(') and the fine model is minimized.
Let R X -X Rm be a generic space mapping surrogate model
which is the coarse model composed with some suitable space
mapping transformations, where X ,c Xc xp, with XAp being
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the parameter space of these transformations. At iteration i,
i = 0, 1, 2, ... the surrogate model Rj(') is defined as

R()(x) = R (x, p(i0 (3)
where

p( arg nmin EkOwi.k| Rf (x )-R (x , P) (4)
and Wi.k are weighting factors. We typically use Wi.k= 1 for all
values of i and k. A variety of space mapping surrogate
models is available [1]-[4]. For example, consider input SM
[4], in which space mapping is an affine transformation of the
coarse model domain of the form x -X Bx + c. In this case the
generic SM surrogate model takes the form
R(x,p) = RS (x, B,c) = RC (B x+c).

III. ASSESSMENT METHOD BASED ON MATCHING CAPABILITY
OF SURROGATE MODEL

In this section we propose an assessment method that
measures the capability of a given combination of a coarse
model and space mapping surrogate to match the fine model
and thus assesses its suitability for space mapping
optimization.

Let XT {xt(l), ...,Ixt(K) cXf be a set of test points. Let
XTAPP andXT.GENbe subsets ofXT such that XTAPP U XT.GEN XT
and XTAPP r XTGEN= 0. Typically, XTAPP contains about 60-
80% of the total number of test points. We build a surrogate
model R 4.) R ( with Pt obtained by parameter
extraction, i.e., Pt arg min X Rr (x) Rs (X,p)P)
Note that the parameters of Rst are determined using fine
model data at points in XTAPP. Define F1 and F2 as

Z_ R(y) RS (P) 12
YEXT.p

R1IRr (y) _Rs.t (Y) 112
YEXT.APP

and

F2
E R (y) - O 2

YEXT GEN

E Rr (y) - R.t (Y) 2

YEXT.GEN

(7)

wherepo denotes initial values ofthe space mapping parameters.
The first factor, F1, measures the approximation capability

of the surrogate model, because it is the ratio of the matching
error before and after parameter extraction, calculated for the
points which were used in parameter extraction. The second
factor, F2, measures the generalization capability of the
model, because it is the ratio of the matching error before and
after parameter extraction, calculated for the points which
were not used in extraction.
Although both factors are important, F2 is the one which

tells us more about the suitability of the surrogate model for
space mapping optimization. In particular, it allows us to
detect over-flexibility of the model (i.e., a situation in which
the surrogate model is able to match the fine model perfectly
at points used in parameter extraction but exhibits large

matching errors for other points). A good surrogate model is
characterized by values of F1 and F2 which are much larger
than 1 (although F2 is typically considerably smaller than F1).

In order to perform the assessment, we have to evaluate the
fine model at all test points. The recommended number of test
points is at least 5 with at least 3 points in XT.APP and at least 2
in XT.GEN. Note, however, that test points can be reused in the
actual space mapping optimization. In particular, one can
build an initial surrogate model based on all test points and
also select the best test point as a starting point for the
optimization process. In other words, we can provide a warm
start for a space mapping optimization.
Let us consider a seven-section capacitively-loaded

impedance transformer [7], an example traditionally used as a
benchmark problem for testing space mapping optimization
algorithms. The "coarse" and "fine" models for the
seven-section impedance transformer are shown in Fig. 1. The
design parameters are x = [L1 L2 L3 L4 L5 L6 L7] T. Both models
are implemented in Matlab. The design specifications are

IS11l < 0.07 for 1.0GHz < c < 7.7GHz
Design variables are normalized to the coarse model

optimal solution, i.e., the normalized starting point is
x(0) = [11 1 11 1 1]T. Characteristic impedances of the coarse
model xp=[Z1 Z2 Z3 Z4 Z5 Z6 Z7]T are used as preassigned
parameters for implicit space mapping.

L7_L6_L --L4--L3--L-Z-L1_

Zin }C8 1C {C6 1C }C4 {C3 {C ~RL =100Q

(a)
-L7-*L6_-4L5-~L4- ~L3_--4L2_-4L1

Z7 Z6 Z5 Z4 Z3 Z2 Z1
Z > RL =100Q

(b)
Fig. 1. Seven-section capacitively-loaded impedance transformer: "fine"
model (a) and "coarse" model (b) [7].

We consider the four different surrogate models shown in
Table I. Model 1 implements input space mapping, model 2
implements input space mapping and implicit space mapping;
model 3 is multiplicative output space mapping, partial input
space mapping, while model 4 is model 3 enhanced by
implicit space mapping.
We take a test set consisting of x(°) and 5 points randomly

selected in the neighborhood of x(°). For each model, we
calculate the F1 and F2 factors and then perform space
mapping optimization using all test points to build the initial
surrogate model. The values of F1 and F2 as well as the value
of the final specification error obtained after 6 space mapping
iterations are shown in Table I.
As we can see from Table I, both approximation and

generalization capability is much better for models 3 and 4
than for models 1 and 2. This means that a combination of
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output space mapping and partial input space mapping (with
or without implicit space mapping enhancement) is more
suitable for a seven-section transformer problem than a
regular input space mapping. This is reflected by the values of
the specification error: the space mapping algorithm working
with models 1 and 2 failed to find a solution satisfying the
design specifications. In contrast, the algorithm using models
3 and 4 found solutions which are very close to the fine model
optimum (-0.00987).

TABLE I
SURROGATE MODELS, QUALITY FACTORS AND OPTIMIZATION

RESULTS FOR SEVEN-SECTION TRANSFORMER EXAMPLE
gate MFinal Specification

No. Surrogate Model F1 F2 Error*
1 RJ(B x + c) 3.7 1.4 0.00684

2 RC (B * x + c, xp ) 4.4 1.7 0.00450

3 A * RC (x + c) 14.6 6.6 -0.00906

4 A * RC (x + c, xp) 27.2 11.7 -0.00939
Specification error value after 6 iterations of the space mapping optimization

algorithm

IV. ASSESSMENT METHOD BASED ON CONTRACTION
PROPERTY OF SURROGATE MODEL

The second assessment method is based on estimating the
"contraction" property of a given surrogate model and allows
us to predict whether the SM algorithm working with this
particular combination is likely to converge.

Again, let XT= Ix,O), ..., xt(K)cX-f be a set of test points.
For each test point xt°' we build a surrogate model
R,(j) (. ) = R (., p(j)) with ptY obtained using the parameter

extraction, i.e., pf(j) = arg minjk=K1 WIj) Rj (X(k)) - RS (xfk),p))
The weighting factors wkO' should correspond to the
distribution of weights used in the actual algorithm. We
recommend the following values: wj(') 1 for j= i, and
wj'i)= a for j. i, with a defined as a = / (K- /(K- 1)),
where /?= (Nmax 2 - 1)/ (Nmax 2) with Nmax being the expected
maximum number of iterations of the SM algorithm. This
definition assures us that the relative effect of increasing
wj'() from a to 1 in the parameter extraction is the same as the
effect of adding a next iteration point in the middle of the SM
algorithm execution.
Having R(J,) we find optimal solutions yt,() of our models as

y(j) = arg minU (R(',) (X))
Now we can define a quality factor C1 as follows

1 = 1maxK}i t(/) rt) (5)

The C1 factor measures the "contraction" property of the
SM surrogate. In particular, if C1 < 1, we can expect that the
SM algorithm should be convergent. This is because in actual
optimization, the next iteration point is the optimal solution of

the current surrogate model, which means that C1 gives an
estimate for the distance between two subsequent iteration
points with respect to the distance between previous points,
i.e., l '1 x K(i)<C11 x(- x(i-I)I . Thus, if C1<l, the
sequence {x(i)} produced by the SM algorithm is a Cauchy
sequence and it is convergent if the design space is a closed
subset of Rn. On the other hand, if C1 > 1 then convergence of
the algorithm is questionable.

It should be noted, however, that C1 is obtained using a few
test points, so it is only an estimate of the actual contraction
properties of the surrogate model. Therefore, we can conclude
that the SM algorithm is likely to converge if C1 is clearly
smaller than 1 (e.g., C1 < 0.7). For values close to 1, it is
difficult to say anything about convergence.
The value of the C1 factor can also be used for comparing

different SM surrogate models and choosing the best
surrogate model for a given optimization problem.

Similarly as for the assessment method described in
Section III, we can reuse the test points x/(', ..., xt(K) in the
actual space mapping optimization to provide a warm start for
a space mapping optimization by constructing an initial
surrogate model which is based on all test points.

Let us consider the the microstrip band-pass filter [8] shown
in Fig. 2. The design parameters are x = [L1 L2 L3 L4 g]T.
The fine model is simulated in FEKO [9]. The design
specifications are

S211 < -2OdB for 4.5GHz < o < 4.7GHz
S21 2 -3dB for 4.9GHz < c < 5.1GHz
JS211 < -2OdB for 5.3GHz < c < 5.5GHz
We consider two coarse models. The first coarse model Rc,

is the circuit model implemented in Agilent ADS [10] (Fig. 3).
The substrate thickness and relative permittivity for all
microstrip elements MLIN, MTEE and MGAP are 0.66mm
and 9, respectively. The second coarse model RC2 is the same
equivalent circuit, however substrate thickness and
permittivity have been tuned for all microstrip elements
individually in order to obtain better matching with the fine
model. That is why, we know beforehand that model Rc1 is
better than model RC2-
The initial design is the coarse model Rc1 optimal solution

x(°)= [6.784 4.890 6.256 5.28 0.0956]Tmm.
We consider four surrogate models being different

combinations of the coarse model and space mapping type
shown in Table II. Model 1 combines coarse model Rc1 and
input space mapping, model 2 uses coarse model Rc1 and
multiplicative output space mapping. Model 3 and 4 combine
coarse model RC2 with input and output space mapping,
respectively. Additionally, all models are enhanced by
additive output space mapping (term d).
We take a test set consisting of x(°) and 5 points randomly

selected in the neighborhood of x(°). For each model, we
determine C1 and then perform space mapping optimization.
The values of C1 and the value of the final specification error
after 8 space mapping iterations are shown in Table II.
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Fig. 2. Geometry of the microstrip band-pass filter [8].

MTEE
Teel
W1=0.6 mm
W2=0.6 mm
W3=0.6 mm

Term 2 MLIN
Z=50 Ohm TL6

W=0.6 mm
L=5 mm

MLOC MLIN MGAP MLIN MTEE MLOC
TLI TL2 Gapl TL3 Tee2 TL4
W=0.6 mm W=0.6 mm W=0.6 mm W=0.6 mm WI =0.6 mm W=0.6 mm
L=L1 mm L=L2 mm S=g mm L=L3 mm W2=0.6 mm L=L4 mm

W3=0.6 mm

MLIN Term I
TL5 z=50 Ohm
W=0.6 mm
L=5 mm

Fig. 3. Coarse model of microstrip band-pass filter (Agilent ADS).

TABLE II
SURROGATE MODELS, QUALITY FACTORS AND OPTIMIZATION
RESULTS FOR MICROSTRIP BAND-PASS FILTER EXAMPLE
gate MFinal Specification
No. Surrogate Model Error* [dB]

1 Rcl(B-x+c)+d 1.71 0.13

2 A R, (x)+d 2.86 8.62
3 RC2(B * x+c)+d 0.79 -1.23

4 A * RC2 (x)+d 0.56 -1.21
Specification error value after 8 iterations of the space mapping optimization

algorithm.

Convergence properties of the space mapping algorithm
using surrogate models 1-4 are shown in Fig. 4.
As follows from Table II, the values of the C1 factor for the

surrogate models based on the coarse model RC1 indicate
potential convergence problems, which are actually the case:
the solutions obtained for both models do not satisfy design
specifications and the algorithms do not converge as shown in
Fig. 4. On the other hand, the values of C1 for models based
on RC2 are both smaller than 1. This indicates that the
contraction properties of surrogate models 3 and 4 are good
enough to ensure convergence of the space mapping
algorithm. Indeed, the plots shown in Fig. 4 confirm good
convergence properties, especially for the algorithm using
model 4 (which exhibits the smallest value of C1). Moreover,
the final solutions satisfy the design specifications.

V. CONCLUSION

Coarse and surrogate model assessment methods are
presented, which allow us to predict the performance of a
given combination of a coarse model and space mapping type
in the space mapping algorithm before carrying out the actual

optimization. The methods can be used to select the coarse
model and space mapping type which are best for a given
optimization problem. This reduces computational cost and
improves performance of the optimization process. Examples
confirm the usefulness of our approach.
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Fig. 4. Microstrip band-pass filter example: convergence properties for the
space mapping algorithm using model 1 (o), model 2 (+), model 3 (x), and
model 4 (E).
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