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Abstract-A novel surrogate modeling methodology is
presented that utilizes space mapping combined with radial basis
function interpolation. The method has advantages both over the
standard space mapping modeling methodology and the recently
published space mapping modeling with variable weight
coefficients. In particular, it provides accuracy comparable or
better than the latter method and computational efficiency as
good as the standard space mapping modeling procedure.
Examples illustrating the performance of the new modeling
method as well as a comparison with previously published
approaches are given.

Index Terms-Computer-aided design (CAD), EM modeling,
space mapping, surrogate modeling, radial basis functions.

I. INTRODUCTION

Full-wave EM simulations of microwave structures are
CPU intensive. Statistical analysis and yield optimization,
crucial for manufacturability-driven designs in a time-to-
market development environment, demand accurate and fast
models. The space mapping (SM) concept [1] addresses this
issue.
SM assumes "fine" and "coarse" models. The "fine" model

may be a high fidelity CPU-intensive EM simulator,
undesirable for direct statistical analysis and design. The
"'coarse" model can be a simplified representation such as an
equivalent circuit with empirical formulas. SM modeling
[2]-[6] exploits the speed of the coarse model and the
accuracy of the fine model to develop fast, accurate enhanced
models (surrogates) valid over a wide range of parameter
values.
The standard SM modeling approach is based on setting up

the surrogate model using a small amount of fine-model data
(usually a so-called star distribution: 2n+1 points, where n is
the number of design variables) and performing extraction of
model parameters over the whole set of this data [4], [5]. This
simple methodology gives reasonable accuracy especially for
low-dimensional problems. In order to further improve the
modeling performance one needs to involve more fine model
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information. Unfortunately, SM is not suitable for handling
a large amount of fine model data by itself, i.e., increasing the
number of base points does not help if the number of degrees
of freedom of the model remains unchanged.
A recently published space mapping modeling technique

with variable weight coefficients [6] aimed at overcoming
these limitations. It provides better accuracy than the standard
method, however, at the expense of significant increase of the
evaluation time, which is due to a separate parameter
extraction required for each evaluation of the surrogate model.
This limits potential applications of the method.

In this paper, we present a new approach that combines the
standard space mapping modeling methodology with radial
basis function interpolation. This combination gives modeling
accuracy comparable to or better than the method [6] without
compromising computational cost.

II. SURROGATE MODELING WITH SPACE MAPPING AND RADIAL
BASIS FUNCTION INTERPOLATION

Let Rf: Xf-X Rm and R, Xc -X Rm denote the fine and
coarse model response vectors, where Xfc Rn and Xc c R' are
design variable domains of the fine and coarse models,
respectively. For example, R(x) and RC(x) may represent the
magnitude of a transfer function at m chosen frequencies.
We denote by XR C Xf the region of interest in which we

want enhanced matching between the surrogate and the fine
model. We assume that XR is an n-dimensional interval in Rn
with center at reference point xo = [x0.1 ... X0.n]T E :
XR =[X -,X0+=] [xO1 '11,xO1+516]x...x[0XO,nx0n^+(] (1)

where n=[T... 3n] determines the size of XR. We use
XR(xO,3) to denote the region of interest defined by xo and d.
Let XB = {Xl,X2, XR(X°,5X) be the base set, where N
is the number of base points, such that the fine model
response is known at all points xi, j= 1, 2, ..., N. We do not
assume any particular location of the base points.
We define a generic surrogate model RSXR Mmxm

x Mnxn x Mnx1 -* Rm as

RJ(x,A,B,c) = A.R(B x+c) (2)
with matrices A = diag{al, ..., am}, B E Mnxn, and c E Mnx,
(Mkxl denotes the set of kxl real matrices) found using the
parameter extraction process

(A, B, c) = arg min Ek1||R X )R X,a ,y 3
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Apart from model (2), (3), an optional frequency scaling
can be implemented that works in such a way that the coarse
model is evaluated at a different frequency than the fine model
using the transformation: co -fo±+fjco, where F= [fo fJ] E R2
is obtained together with matrices A, B, and c using a
parameter extraction process similar to (3). More general
space mapping surrogate models can be found in [4]-[7].
On the top of the standard SM surrogate, we use radial basis

function (RBF) interpolation [8], [9] of the difference between
the fine model Rf and standard surrogate R , denoted

R~~~~~~~~~~RaSRS :XR Rm Let Rf (x)=[Rf (x) ... Rfm(x)]' and

RS (X) =[RS 1(X) ... RS m(X)]T R is defined as

"2 0Ixi/(/x ) (4)
j=~ ~ x

R~(x)
Ej=lm ( )

where denotes the Euclidean norm. The parameters Ak.j
are calculated so that they satisfy

¢?k= F k k=I 21,2...... .., m (5)
where 2k= [2k., Ak.2 *- k.N],

Rf k(x )-Rs k (x')
Fk = . (6)

Rfk(XN) R k(XN)
and D is NxN matrix with elements

$1 = O(l xi - xj II /yV) (7)

y i,N) is a characteristic distance of the base set defined as
2 n

/(6,N) = Nll Y, g (8)nNII j=

Parameter y is, in fact, an average distance between base
points and it is used in (4) as a normalization factor.

In this paper we use a Gaussian basis function defined as
%z(r) ecr > 0 c>0 (9)

Other choices of basis functions can be found in the
literature [9].
The combined surrogate model R,: XR - Rm is defined as

RS (x) = RS (x) + RS (x) (10)
Once coefficients A are found, evaluation of (4) is very fast,

which means that evaluation cost of model (10) is not
significantly larger than evaluation cost of the standard space
mapping surrogate model (2). This is in contrast with the
modeling technique [6] requiring a separate parameter
extraction for each evaluation of the surrogate model, which
involves a number of coarse model evaluations (typically
hundreds or even thousands).

III. EXAMPLES

In this section, we compare the modeling accuracy for the
standard SM modeling methodology [4], SM modeling with
variable weight coefficients [6], and the new modeling
approach (2)-(10) described in Section II.

A. Test Problem Description

Problem 1: Two-section capacitively-loaded impedance
transformer [10]. The coarse model and the fine model are,
respectively, an ideal two-section transmission line (TL) and a
capacitively-loaded TL as shown in Fig. 1. Both models are
implemented in Matlab. The design parameters are
x= [L1 L2]T. The frequency range is 0.5GHz < o < 1.5GHz.
The reference point is xo= [74.25 79.24 OT. The region of
interest is defined by a 10% deviation from xo. We consider
S11, as the model response.
Problem 2: Seven-section capacitively-loaded impedance

transformer [10]. The coarse and fine models are shown in
Fig. 2 (both implemented in Matlab). The frequency range is
l.OGHz < c < 7.7GHz. The design parameters are
x = [L1 L2 L3 L4 L5 L6 L7] T. The reference point is
x0 [11 11 1 1 1]T. We consider the region of interest
defined by a 5% deviation from xo.
Problem 3: Microstrip right-angle bend [3]. The fine model,

Fig. 3(a), is analyzed by Sonnet's eMTM. The coarse model,
Fig. 3(b), is an equivalent circuit with parameters calculated
from Kirschning et al. [12]. The design parameters are
x= [WH sjT. The frequency range is 1 to 31 GHz. The
reference point is x°= [25 12 9]T, and the region size is
=[64 1].

*- -* LI L2 L1

Zin C, C2 Ci RL1Q > 2 Z 1 RL710

(a) (b)
Fig.1. Two-section capacitively-loaded impedance transformer [10]: "fine"
model (a) and "coarse" model (b).
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Fig. 2. Seven-section capacitively-loaded impedance transformer [10]: "fine"
model (a) and "coarse" model (b).
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(a) (b)
Fig.3. The microstrip right-angle bend [3]: the fine model (a) and the coarse
model (b).
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B. Experimental Setup

For each of the test problems, we performed a number of
experiments using the standard SM surrogate model, SM
model [6], pure RBF interpolation (i.e., RBF interpolating
directly to fine model data) as well as the new SM model
(2)-(10). Table I shows details of the base sets used in our
experiments. The base sets have growing numbers of points
(and decreasing characteristic distances y) in order to examine
the dependence of the modeling error on the amount of fine
model data used to create the model. The standard SM model
uses the star-distribution base set [4] and surrogate model (2)
enhanced by frequency space mapping.
Accuracy was tested using 30 test points randomly

distributed in the region of interest. The error measure used
was the 12 norm of the difference between the fine model
response and the corresponding surrogate model response.

TABLE I
BASE SET DATA FOR TEST PROBLEMS 1-3

Test Base Base Set Number of
Problem Set Description Base Points Y

TABLE II
MODELING RESULTS FOR TEST PROBLEM 1
VERIFICATION FOR 30 RANDOM TEST POINTS
Model

Description
Standard SM Model
SM Model [6]
SM Model [6]
SM Model [6]
SM Model [6]

Pure RBF Interpolation
Pure RBF Interpolation
Pure RBF Interpolation
Pure RBF Interpolation
New SM Model (2)-(10)
New SM Model (2)-(10)
New SM Model (2)-(10)
New SM Model (2)-(10)

Base
Set

star dist.

XB1
XB2
XB3
XB4
XB1
XB2
XB3
XB4
XB1
XB2
XB3
XB4

Average
Error
0.0404
0.0218
0.0133
0.0087
0.0058
0.0310
0.0073
0.0042
0.0033
0.0134
0.0057
0.0031
0.0016

Maximum Standard
Error Deviation
0.0703 0.0130
0.0446 0.0080
0.0330 0.0064
0.0244 0.0048
0.0220 0.0043
0.0642 0.0165
0.0181 0.0045
0.0189 0.0044
0.0124 0.0028
0.0259 0.0059
0.0154 0.0036
0.0067 0.0016
0.0041 0.0011

TABLE III
MODELING RESULTS FOR TEST PROBLEM 2
VERIFICATION FOR 30 RANDOM TEST POINTS

Uniform mesh of density 3
Uniform mesh of density 5
Uniform mesh of density 7
Uniform mesh of density 10

Star distribution
Uniform mesh of density 2 + xo
Uniform mesh of density 3
Uniform mesh of density 2
Uniform mesh of density 3
Uniform mesh of density 4
Uniform mesh of density 5

9
25
49
100
15
129
2187
8
27
64
125

5.12
3.07
2.19
1.53
0.136
0.100
0.067
3.66
2.44
1.83
1.47

Model
Description

Standard SM Model
SM Model [6]
SM Model [6]
SM Model [6]

Pure RBF Interpolation
Pure RBF Interpolation
Pure RBF Interpolation
New SM Model (2)-(10)
New SM Model (2)-(10)
New SM Model (2)-(10)

Base Average Maximum Standard
Set

star dist.

XB1
XB2
XB3

XB1
XB2
XB3

XB1
XB2
XB3

Error
0.0136
0.0151
0.0105
0.0053
0.0821
0.0679
0.0365
0.0098
0.0088
0.0036

Error
0.0232
0.0299
0.0150
0.0082
0.2057
0.1441
0.0788
0.0195
0.0129
0.0057

Deviation
0.0039
0.0061
0.0020
0.0013
0.0509
0.0244
0.0144
0.0039
0.0019
0.0009

C. Experimental Results and Discussion

Tables II, III, and IV show numerical results (error
statistics) for the standard SM model, SM model [6], pure

radial basis function interpolation, and the new model (2)-(10)
with all the base sets considered. Figs. 4-6 show dependence
of average modeling error on the characteristic distance y.
Table V presents the qualitative comparison of the surrogate
model evaluation cost for all the considered methods.
The results show that the new model the combination of

space mapping and RBF interpolation outperforms both the
standard SM model and the SM model with variable weight
coefficients [6], as well as the pure RBF interpolation.
Moreover, the computational cost of the new method is
significantly lower than the cost of the SM model [6] and
almost the same as for the standard SM model. The pure RBF
interpolation is the fastest method because it only requires
evaluation of formula (4), however, it cannot compete with
the new model (2)-(10) in terms of modeling accuracy.

TABLE IV
MODELING RESULTS FOR TEST PROBLEM 3
VERIFICATION FOR 30 RANDOM TEST POINTS
Model

Description
Standard SM Model
SM Model [6]
SM Model [6]
SM Model [6]
SM Model [6]

Pure RBF Interpolation
Pure RBF Interpolation
Pure RBF Interpolation
Pure RBF Interpolation
New SM Model (2)-(10)
New SM Model (2)-(10)
New SM Model (2)-(10)
New SM Model (2)-(10)

Base
Set

star dist.

XB1
XB2

XB3

XB4

XB1
XB2
XB3

XB4

XB1
XB2
XB3

XB4

Average
Error
0.0116
0.0492

0.0089
0.0036

0.0023
0.0824

0.0306

0.0316

0.0273

0.0062

0.0013

0.0011
0.0009

Maximum Standard
Error Deviation
0.0275 0.0062
0.1728 0.0389

0.0541 0.0096
0.0093 0.0020

0.0066 0.0014
0.1050 0.0198

0.0726 0.0158

0.0891 0.0219

0.0337 0.0136

0.0115 0.0028

0.0036 0.0008

0.0027 0.0009

0.0030 0.0006
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TABLE V
QUALITATIVE COMPARISON OF COMPUTATIONAL COST

OF EVALUATING SURROGATE MODEL

Modeling Main Sources of Relative Evaluation
Method Computational Cost Cost

Standard SM Model Coarse model evaluation Similar to coarse
model

SM Model [6] Parameter extraction Much higher than
coarse model

Lower than coarse
RBF Interpolation Evaluation of formula (4) model

Similar to coarse
SM Model (2)-(10) Coarse model evaluation m odelmodel

IV. CONCLUSION

A new SM-based modeling methodology is presented. It

combines space mapping with radial basis function

interpolation. This combination allows us to reduce the

modeling error to a level not attainable by any other space

mapping technique without compromising computational cost.
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5 6

F ig.4. Average modeling error versus characteristic distance yof the base set
for test problem 1 (two-section impedance transformer). Data for SM model
[6] (o), pure RBF interpolation (x), and new SM model (2)-(10) (*).
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Fig.5. Average modeling error versus characteristic distance y of the base set
for test problem 2 (seven-section impedance transformer). Data for SM model
[6] (o), pure RBF interpolation (x), and new SM model (2)-(10) (*).
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Fig.6. Average modeling error versus characteristic distance yof the base set
for test problem 1 (microstrip right-angle bend). Data for SM model [6] (o),
pure RBF interpolation (x), and new SM model (2)-(10) (*).
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