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Abstract-A new implementation of space mapping
optimization and modeling procedures for microwave design is
presented. We use the optimization capability of the "coarse
model" simulator, Agilent ADS, to significantly reduce the
computational cost of solving the parameter extraction and
surrogate optimization sub-problems. This allows substantial
reduction of the overall optimization time for the space mapping
algorithm. Illustration examples are provided.
Index Terms-Computer-aided design (CAD),EM optimization,

space mapping, surrogate modeling.

I. INTRODUCTION

Space mapping (SM) has been widely used for optimization
and modeling of microwave devices and structures [1]-[4].
SM assumes "fine" and "coarse" models. In the microwave
area, the "fine" model is typically implemented with a high
fidelity CPU-intensive EM simulator. The "coarse" model can
be a simplified representation of the corresponding device,
e.g., an equivalent circuit. SM exploits the speed of the coarse
model and the accuracy of the fine model by iterative
optimization and updating of the surrogate model which is
built using the coarse model and available fine model data.
The coarse model is assumed to be much faster than the fine

model. In order to neglect the cost related to creating and
optimizing the surrogate model, the coarse model should be at
least three orders of magnitude faster than the fine model. In
the microwave area, the coarse model is often implemented
using a circuit simulator such as Agilent ADS [5] because
many microwave devices, in particular filters, transformers,
etc., have straightforward equivalent circuit representations.
A problem arises while using simulators such as Agilent

ADS as a "black box" in a space mapping optimization loop.
Although actual simulation time might be very short (e.g., a
couple of milliseconds), the whole process of evaluating the
coarse model is much longer (e.g., a couple of seconds)
because of additional cost related to preparing input data,
loading the simulator into memory and retrieving the model
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response. This substantially increases the computational cost
of the two optimization tasks, solved during each iteration of
the SM algorithm: extraction ofthe surrogate model parameters
and surrogate model optimization. The additional cost may
increase the total optimization cost of the SM algorithm so
that the time-saving advantages of space mapping are lost.

In this paper we describe a new implementation of an SM
algorithm in which both the parameter extraction and
surrogate optimization are carried out inside the available
coarse model simulator using its internal optimization
capabilities. This allows significant reduction of the total
optimization time in comparison with the standard way of
evaluating the coarse model as a "black box".

II. SPACE MAPPING OPTIMIZATION ALGORITHM

Let Rf: Xf- Rm, Xfc R', denote the response vector of a
fine model of the device of interest. Our goal is to solve

xf = argrinU (Rf (x)) (1)

where U: Rm -* R is a given objective function. We consider
solving (1) by direct optimization to be impractical. Instead,
we consider an optimization algorithm that generates a
sequence of points x(i) Xf, i= 0, 1, 2, ..., and surrogate
models Rs('): Xs(') Rm, Xs(') Rn, i = 0, 1, ... so that

x(+l) arg min U (R()(x)) (2)

and Rs(i'+) is constructed using suitable matching conditions
with the fine model at x(k), k= 0, 1, ..., i.

Space mapping assumes the existence of a coarse model
that describes the same object as the fine model: less accurate
but much faster to evaluate. Let R, : X, -* Rm denote the
response vectors of the coarse model, where XCc Rn. The
family of surrogate models is constructed from the coarse
model in such a way that the misalignment between Rs(') and
the fine model is minimized. A variety of SM-based surrogate
models are available [1]-[4]. Below, we show a surrogate
model that incorporates both input and output SM. At iteration
i, i = 0, 1, 2, ... the surrogate model Rs(') is defined as

R(i) (x) = A() . Rc (B(i) . x + c()) + d (3)
where

(A('),I B(i)d(i ) arg m)in Ak RrxB') A-A (B x(k) + C)+ (4)

d(i)=Rf(x(i))-A(i0 RJB i xf+Cf (5)
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Matrices A(') = diag{al(j), ..., am(i)}, B(') E Mn, and c(i) E Mn,1
are obtained by parameter extraction (PE), as defined in (4).
Matrix d(') E MmX1 is calculated using formula (5) after having
determined A('), B(i), c(i). The SM optimization algorithm can
be summarized as follows.
Step 0 Set i = 0 and choose starting point x();
Step 1 Evaluate the fine model at x
Step 2 Obtain Rj(') using (4) and (5); 6
Step 3 Optimize Rj(') and obtain x('+') as in (2); (6)
Step 4 If the termination condition' is not satisfied set

i = i +1 and go to Step 1; else END;
1 The algorithm is terminated if (i) jHx`)-x`-x) <ToJX and JjRf`)-Rf`-')jH<To/Fun
(convergence of the algorithm; ToJX and TolFun are user specified tolerances),
or (ii) i>Maxlter (user-specified maximum number of iterations)

As we can see, the two important steps of the SM
optimization algorithm are parameter extraction (4) and
surrogate model optimization (2). Both sub-problems involve
multiple evaluations of the coarse model and may
substantially affect the computational cost of the optimization
process if the coarse model evaluation is not fast enough.
Moreover, although increasing the flexibility of the SM
surrogate model (i.e., adding more parameters) usually
improves the performance of the SM algorithm in terms of its
ability of finding a good solution, it actually increases the
computational cost of PE as more parameters result in more
coarse model evaluations required to extract these parameters.

III. NEW IMPLEMENTATIONS OF PARAMETER EXTRACTION AND
SURROGATE OPTIMIZATION

We shall assume that the coarse model is to be simulated
using Agilent ADS [5]. ADS can be considered as the primary
coarse model evaluator in the microwave area because it is
widely used and it allows convenient and straightforward
creation of coarse models for many microwave structures and
devices. Below, we describe three implementations of SM
optimization algorithm that make use of multipoint simulation
and optimization capabilities of the coarse model simulator in
order to reduce the computational cost of SM optimization.

A. Traditional Implementation (Method 1)

Standard implementation of the SM optimization algorithm
assumes that both the PE and surrogate model optimization
sub-problems are solved using appropriate optimization
routines that make calls to the coarse model simulator each
time the coarse model has to be evaluated. Each time we
invoke an ADS simulation, CPU clock cycles are consumed
on allocating memory, loading the simulator, verifying
license, loading the input file, parsing the input file,
simulating the circuit, exporting the response, etc. While the
circuit simulation is usually fast for a single design, calling
ADS simulation repeatedly will generate a huge amount of
overhead that cannot be neglected in the SM optimization
process. The flowchart of evaluating the coarse model is
shown in Fig. 1(a).

B. Multipoint Model Evaluation (Method 2)

The computational cost of the parameter extraction process
can be reduced by evaluating the coarse model at several
points in a single ADS simulator call while evaluating the
matching error (see (4)). In order to do that, the original ADS
netlist is modified by adding a data access component (DAC)
that imports multiple designs and corresponding fine model
responses. The method allows us to perform coarse model
evaluation at multiple points in one shot and avoids the
overhead related to loading the simulator. The coarse model
evaluation flowchart is shown in Fig. l(b). Fig. 2 shows the
difference in computational cost between Method 1 and 2 for
evaluating the coarse model at k points (designs). A traditional
call takes k(to+t5) and our new implementation takes torn+kt5,
where to and to,, are the overhead time for a one-simulation
call and for a multiple-simulation call respectively, k is the
number of desgins. t, is the circuit simulation time for a single
design. Note that to0 torn and t, << to in our ADS examples.
Note also that in parameter extraction we typically use all
available fine model data so that k= i, where i is the SM
iteration index. Thus, the benefit of this approach is that PE
time cost remains roughly constant in each iteration, while
according to the standard approach, it grows linearly with i
and can be large for large i.
Note that this approach does not affect the surrogate

optimization process because the optimization routine is not
evaluating the coarse model at multiple points in this case.

prepare single simulation
netlist file ------

ADS initializaton

parse netlist files

simulate surrogate at a
design

export respoinse

exit ADS

prepare mutiple simulation
fnetlist file
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parse netlist files
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(a) (b)
Fig. 1 Call to ADS for single-point (a) and multi-point simulation (b).
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Fig. 2. Time cost of k coarse model simulations using a standard single-point
evaluation (a), and multi-point evaluation (b).
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C. Inside-ADS Optimization (Method 3)

The third approach takes advantage of the ADS multipoint
simulation and built-in optimization capabilities. In particular,
it is possible to solve the whole PE and surrogate optimization
sub-problems inside the ADS simulator. Fig. 3(a) shows the
ADS optimization procedure in the PE process. Compared
with the traditional way, the optimization loop is moved into
ADS. Since the loop is inside ADS, the SM algorithm only
prepares the modified ADS netlist and initiates one call to
ADS for the entire optimization process. Since the
optimization takes a lot of surrogate model simulations, a
large amount of time is saved. The netlist originally
containing only the coarse model implementation in Method
1, is enhanced by DAC components importing multiple
designs and corresponding fine model responses, by VAR
components incorporating space mapping equations and
matrices, by optimization GOAL components specifying
matching goals between fine and surrogate models, and,
finally, by optimization engine OPTIM that searches for the
optimal solution for PE.

Fig. 3(b) shows the surrogate optimization in ADS. For the
reason discussed earlier, the surrogate model optimization
routine incurs an overhead for each ADS call. The overhead is
largely removed by shifting the optimization burden from the
SM algorithm to ADS. The way of modifying the ADS netlist
is similar as in the case of parameter extraction.
Both approaches, multi-point model evaluation and

inside-ADS optimization are implemented in our space
mapping software, the SMF system [6].

IV. EXAMPLES

situation. However, only Method 3 (inside-ADS optimization)
makes the computational overhead of the coarse model
evaluation insignificant. The total Method 3 optimization time
cost is about 2.5 times lower than Method 1.

prepare parameter extraction
netlist file

ADS initialization

parse netlist files

load multiple designs and
correspondinig reponses

optimize mapinig parameters
to maidtch fine anhd surrogate

exort mapping parameters

prepare surrogate
optimizatinetlistl+l file

ADS initialization

parse nletlit files

optimize surriogte

export optimal design

exit ADS

(a) (b)
Fig. 3. Inside-ADS parameter extraction (a) and surrogate optimization (b).
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Fig. 4. Geometry of the microstrip band-pass filter [7].
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In this section we consider two examples of microwave
design problems. For each problem we run the SM
optimization using Method 1, 2, and 3 (as in Section III) for
the parameter extraction and surrogate model optimization.
As the first example, consider the microstrip band-pass

filter [7] shown in Fig. 4. The design parameters are
x= [L1 L2 L3 L4 g]T. The fine model is simulated in FEKO
[8], the coarse model is the circuit model implemented in
Agilent ADS [5] (Fig. 5). The design specifications are JS211<
-20dB for 4.5GHz<w<4.7GHz and 5.3GHz<w<5.5GHz, and
JS211> -3dB for 4.9GHz<w<5.1GHz. The initial design is the
coarse model optimal solution x(= [6.784 4.890 6.256 5.28
0.0956]T mm. For this problem we use simplified input space
mapping with shift parameter c and output space mapping (d
term). The fine model initial and optimized responses after 6
SM iterations (x(6)=[6.431 4.760 6.175 4.886 0.0604]Tmm)
are shown in Fig. 6.

Table I shows a comparison of the optimization time for the
three implementations of the SM algorithm. For the standard
implementation, most of the computational cost comes from
the surrogate evaluation in PE and surrogate optimization.
Method 2 (multi-point model evaluation) improves the

MLOC
TL1
W=0.6 mm
L=LI mm

MLIN MGAP MLIN
TL2 Gapl TL3
W=0.6 mm W=0.6 mm W=0.6 mm
L=L2 mm S=g mm L=L3 mm

MTEE MLOC
Tee2 TL4
W1=0.6 mm W=0.6 mm
W2=0.6 mm L=L4 mm
W3=0.6 mm

MLIN Term 1
TL5 Z=50 Ohm
W=0.6 mm
L=5 mm

Fig. 5. Coarse model of microstrip band-pass filter (Agilent ADS).

0F

frequency [GHz]
Fig. 6. Initial (dashed line) and optimized (solid line) JS211 versus frequency for
the microstrip band-pass filter.
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TABLE I
MICROSTRIP BANDPASS FILTER: OPTIMIZATION TIME FOR THE
THREE IMPLEMENTATIONS OF SPACE MAPPING ALGORITHM

Total Total PE Optimization TimeTotal Fine Model and Surrogate Savings
MethodOptimiza Evaluation Optimization PE and Total

Time Time Time Surrogate Opt.
1 1lmin 39min(35%) 72 min (65%) - -
2 67 min 39 min (58%) 28 min (42%) 61% 40%
3 44 min 39 min (89%) 5 min (11%) 93% 60%

The second example is the three-section microstrip
impedance transformer [9] shown in Fig. 7. The design
parameters are x= [L1 L2 L3 W1 W2 W3]T. The design
specifications are IS11 < 0.09 for 5 GHz < c < 15 GHz. The
fine model is simulated in Sonnet em [10]. The coarse model
is implemented in Agilent ADS [5] and shown in Fig. 8.
The startingpointisx()= [117 121 124 15 62]Tmm.
For this problem we use input space mapping with

parameters B and c, and output space mapping (d term). The
initial fine model response and the response at the solution
obtained using the SM algorithm after 5 iterations (x(5)=[ 14.2
119.2 122.4 14.02 5.58 1.552]Tmm) are shown in Fig. 9.
Table II shows a comparison of the optimization time for

the three implementations of the SM algorithm. As before, the
standard implementation suffers from a considerable overhead
due to parameter extraction and surrogate model optimization.
The inside-ADS optimization approach makes this overhead
negligible compared with the total fine model evaluation time.

It should be noted that techniques such as distributed
evaluation of the fine model may significantly reduce the
evaluation time for the fine model. This would increase the
relative overhead of the PE and surrogate optimization
compared with our demonstration in this section and make the
techniques presented in the paper even more attractive.

V. CONCLUSION

A new implementation of the space mapping optimization
algorithm that takes advantage of the optimization capability
of a "black box" coarse model simulator is presented. By
solving the two basic sub-problems of the SM algorithm, i.e.,
parameter extraction and surrogate model optimization inside
the coarse model simulator, we are able to obtain substantial
reduction of the computational cost of the whole optimization
process. Examples utilizing Agilent ADS as a coarse model
simulator confirm the effectiveness of our approach.
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Fig. 7. The three-section impedance transformer [8].
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Fig. 8. The three-section impedance transformer: coarse model (Agilent ADS).
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Fig. 9. Initial (dashed line) and optimized (solid line) IS11I versus frequency for
the three-section microstrip impedance transformer.

TABLE II
THREE-SECTION TRANSFORMER: OPTIMIZATION TIME FOR THE
THREE IMPLEMENTATIONS OF SPACE MAPPING ALGORITHM

Total Total PE Optimization TimeTotal Fine Model and Surrogate Savings

Time Evaluation Optimization PE and Total
Time Time Surrogate Opt.

1 193 min 102 min (53%) 91 min (47%) - -

2 149 min 102 min (68%) 47 min (32%) 48% 23%
3 109 min 102 min (94%) 7 min (6%) 92% 44%
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