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Abstract

A new approach to nonlinear programming is presented.
programming problem is formulated as an unconstrained minimax problem.

The original nonlinear
Under

reasonable restrictions it is shown that a point satisfying the necessary
conditions for a minimax optimum also satisfies the Kuhn-Tucker necessary
conditions for the original problem. - A least pth type of objective function for
minimization with extremely large values of p is proposed to solve the problem.

1. INTRODUCTION

A number of examples can be citedll] when general
nonlinear minimax approximation problems involving
a finite point set have been reformulated as non-
linear programs and solved by well-established
methods such as the penalty function method of
[2’3]. Other methods of

solving the resulting nonlinear programs include

Fiacco and McCormick

the repeated application of linear programming to
suitably linearized versions of the nonlinear
problem[4]. In the present paper, on.the other
hand, we show how conventional nonlinear pro-
gramming problems can be formulated for solution
as minimax problems, with several attendant
advantages. To our knowledge, the scheme we have
adopted does not appear to have bheen previously

attempted.
2. THE NEW APPROACH
2,1 THE EQUIVALENT MINIMAX PROBLEM

The nonlinear programming problem can be stated as

minimize U($) )
subject to
g;(9) 20 i=1,2,...,m 2

where U is the generally nonlinear objective
function of k parameters ‘

T

$a08 o, o 8] &)

and gl(*) » 22(,@ »

linear functions of the parameters.

ooy gm(g) are, in general, non-
We will assume
that all the functions are continuous with con-
tinuous partial derivatives, and that the inequal-
ity constraints 81(2)2 o, i=i,2,...,m satisfy the
constraint qualification[5 .

Consider the problem of minimizing the uncon-
strained function

V(¢,2) = max [U(), U($) - a.g.(9)] (4)
2’m 1<iam t 2 i®i 2

where

[ 4 [cl a, ... am]T 5)

and

a; >0 i=1,2,...,m (6)

Theorem. Sufficiently large @, @,...,a can be

found such that at the point $° where the necessary
conditions for optimality of V(%,g) with respect to
$ are satisfied the Kuhn-Tucker necessary
conditions for optimality of the original nonlinear
programming problem are also satisfied. '
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It can be shownl6] that the necessary

Proof.
conditions for optimalitv of V(Q,g)_for fixed g
at some point Qf’, for
] ] 3 ,T

VA - = L 2 (7
vield
v, TU(3%)+ guv (U™ -0, Tr, (g )) = (8)
oo Loy ©

ieM
v; 20 ieM (10)
v, = 0 ifgM (11)
and, for
Vo 0 (12)
also that

o o o :

U(g™) = U($) - o;e;(8) ieM (13)
U(3®) > U(g%) - a;e,(¢°) ig (14)
Thus, the index set M, a subset of {1,2,...,m},

denotes functions gi(go) belonging to the equal

maxima of U($%), U($") - a,g,(¢"). Using (6), we
have
.ai(ggo) =0 ieM (15)
2. (67 >0 i¢M (16)
1~

The conditions can thus be rewritten into the form

(vVo* S v Uy - 7 VitidE; (") = (17
via.g. (6°) =0 (18)
T }’ i=1,2,...,m
vy 2 0 (19)
or
o m
- 2
2N = 1wy v (%) (20)
i=1
0
u g (¢) =0 2n
i i=1,2, ,m
u; > 0 (22)
where )
oy Q v, oa i=1,2,...,m (23)
Since a; > 0 and v; <1 for all i=1,2,...,m it
follows that
re i= ied -
Y, a, i=1,2,...,m 24)
hut, from (9) and (23)
oY
v0 v ) — = 1

i=l %
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Now, the rclations (20) to (22) are the Kuhn-
Tucker necessary conditions for optimality of the
- The

cee,Uy are specific nonnegative numbers,

original nonlinear programming problcm.
U, Uy,
so that sufficiently large positive By Cyy wee,0p
must be chosen to provide vo>0 satisfying (25).

Clcarlv, some flexibility in their choice exists,
but since Uy, u,, ceesup are not usually known in
advance one may not be able. to forecast their

values.

PR

Threshold values can be’ found from

(26)

It should be noted that if insufficiently large

values of Ay, Gy, .i.,0 aTe chosen it can be
shown that although a valid minimum of V(g,%) may
be found, the constraints gi(g) > 0 for all

i=1,2,...,m may not be satisfied at that point.

2.2 POSSIBLE IMPLEMENTATION
One possible approach for minimizing V(Q,%) with
respect to ¢ and which the authors have used with

some success is to assume

W($,g,8) = max [U($)+8, U($)+B-a g, (¢)]
) l1<i<m
= lim X(¢,q,8,p) (27)
. pe .
where
X(8,a.8,0) = ([w,(u(g) + &)]7 1
m . -
o L D (U(9)+8-asg, (91N (28)
i=1
and where
B >0 (29
{n for U(%)*B <0
w_ = (30)
1 for 0(2)48 >0
0 for U(¢)+B - a.g.(d) < 0O
\\’i ={ N 171 A ) (31)
1 for U($)+B - “igi(ﬁ) >0
m
W+ izl wo 21 (32)
p>1 (33)



and proceed to minimize X(%,%,B,p) with respect
to Q from an arbitrary starting point for selected
g and B using a very large value of p.

In particular, it is noted that

V($,@) = W($,0,8) - B (34)

The reason for B is to ensure that (32) is
satisfied, i.e., that X(%,%,B,p) > 0. If
X(%,%,B,p) becomes 0, B may be increased, and the

minimization procedure restarted.

_If a minimum of X(z,g,s,p) with respect to * is
obtained for which some or all of the constraints
are violated, the elements of a are increased,

and the minimization procedurc restarted.
3. CONCLUSIONS

A number of advantages are obtained by our
approach. The first is that the minimization of
V can be regarded as an essentially unconstrained
problem and a number of simple and suitable
The

second is that the starting point can, in principle,

methods are available for its solution.

There is no need to distinguish
The

be anywhere.
between feasible and nonfeasible points.
third is that once suitable values for the aj have
been determined, one complete optimization yields
the solution unlike, of course, penaltv function

methods.
[7-9]

The fourth is that, as the authors have
shown , minimax problems can be reformulated
as lecast pth problems and easily ahd efficiently
solved by using extremely large values of p in
conjunction with gradient methods such as the
Fletcher-Powell method. Finally, we note that
nonlinear equality constraints can also be readily

handled bv our method.
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