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Abstract—The efficiency of space-mapping optimization de-
pends on the quality of the underlying coarse model, which should
be sufficiently close to the fine model and cheap to evaluate. In
practice, available coarse models are often cheap, but inaccurate
(e.g., a circuit equivalent of the microwave structure) or accurate,
but too expensive (e.g., a coarse-mesh model). In either case, the
space-mapping optimization process exhibits substantial com-
putational overhead due to the excessive fine model evaluations
necessary to find a good solution if the coarse model is inaccurate,
or due to the cost of the parameter extraction and surrogate
optimization sub-problems if the coarse model is too expensive.
In this paper, we use an interpolation technique, which allows us
to create coarse models that are both accurate and cheap. This
overcomes the accuracy/cost dilemma described above, permitting
significant reduction of the space-mapping optimization time.
Examples verify the performance of our approach.

Index Terms—Coarse model, engineering optimization, mi-
crowave design, space mapping, space-mapping optimization.

I. INTRODUCTION

SPACE MAPPING [1]–[5] is a methodology that allows effi-
cient optimization of expensive or “fine” models by means

of the iterative optimization and updating of so-called “coarse”
models, which are less accurate, but cheaper to evaluate. Pro-
vided that the misalignment between the fine and coarse models
is not significant, space-mapping-based algorithms typically
provide excellent results after only a few evaluations of the fine
model. A similar idea is shared by other surrogate-model-based
methods [6]–[12], however, many of them do not use a coarse
model: the surrogate model is created by direct approximation
of the available fine model data.

Space mapping is widely used in the optimization of mi-
crowave devices [1]–[3], [13]–[17], where fine models are
often based on full-wave electromagnetic simulations, whereas
coarse models may be physically based circuit models. Re-
cently, space-mapping techniques have been applied to design
problems in a growing number of areas (e.g., [18]–[20]).
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A number of papers cover different aspects of space map-
ping, including the development of new algorithms ([2], [3],
[21], [22]), space-mapping-based modeling [23]–[28], theoret-
ical foundations ([21], [29], [30]), etc.

It is well known that the performance of a space-mapping
optimization algorithm depends on the quality of the underlying
coarse model, which should be as good a representation of
the fine model to be optimized as possible. On the other
hand, the coarse model should also be easy to optimize and
significantly less expensive than the fine model. Under these
conditions, a space-mapping algorithm can reach a satisfactory
solution after a few fine model evaluations. Moreover, the
total cost related to the parameter extraction and surrogate
optimization sub-problems, involving multiple coarse model
evaluations, is negligible in comparison with the total cost
of fine model evaluation.

In practice, however, available coarse models are either
cheap, but inaccurate, e.g., a circuit equivalent of the mi-
crowave structure, or accurate, but too expensive, e.g., a
microwave structure evaluated using the same simulator as
the fine model, but with a coarser mesh. In the first case,
the space-mapping optimization process exhibits substantial
computational overhead due to the excessive fine model eval-
uations necessary to find a good solution (i.e., the number
of space-mapping iterations is larger than it could be if the
accurate model were used). In the latter case, the total cost of
solving the parameter extraction and surrogate optimization
sub-problems may be comparable with the total cost of fine
model evaluation or may even determine the total cost of the
space-mapping optimization process.

In this paper, we utilize an interpolation technique, which al-
lows us to create coarse models that are both accurate and, at the
same time, sufficiently cheap. In particular, the original coarse
model is evaluated on a relatively coarse simulation grid and
the modified model is obtained by interpolating this data using
a suitable methodology. In this way, the original coarse model
(which is typically assumed to exhibit sufficient accuracy, but
is too expensive to make space-mapping optimization efficient)
is evaluated at a limited number of points, which allows us to
reduce the total space-mapping optimization time.

II. MOTIVATION

Let us consider the following optimization problem: a
second-order tapped-line microstrip filter [31] shown in Fig. 1.
The design parameters are . The fine model
is simulated in FEKO [32]. The number of meshes for the
fine model is 360, which ensures mesh convergence for the
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Fig. 1. Geometry of the second-order tapped-line microstrip filter [31].

Fig. 2. Coarse modelRRR of the second-order tapped-line filter (Agilent ADS).

structure. Simulation time for the fine model is 290 s. The
design specifications are

dB for GHz GHz

dB for GHz GHz

dB for GHz GHz

We also use to denote the response vector of the fine
model. In this case, the model response is the evaluation of
at 33 frequency points uniformly distributed in the interval from
3 to 7 GHz.

We consider two coarse models. Model is the structure
in Fig. 1, also simulated in FEKO; however, the number of
meshes is only 48. The number of meshes for and
are measured at the optimal solution of , which is

mm. The simulation time for is approx-
imately 11 s. Model is the circuit model implemented in
Agilent ADS [33] shown in Fig. 2. Evaluation time for is
approximately 1.2 s. As before, symbols and are also
used to denote the response vectors of the respective models.

For this problem, we used input space mapping and output
space mapping [21]. In particular, the space-mapping surrogate
model is defined as , where vector

is found using parameter extraction [21], after which is
the residual vector evaluated by .
We perform space-mapping optimization twice: using model

with its optimal solution as a starting point, and then
using model with its corresponding optimal solution

mm as a starting point.
Figs. 3 and 4 show the responses of the fine and coarse model

at , as well as the fine and coarse model at , re-
spectively. It is seen that the model exhibits better accuracy

Fig. 3. Second-order tapped-line filter: initial fine model response (solid line)
and coarse model RRR response (dashed line) at xxx .

Fig. 4. Second-order tapped-line filter: initial fine model response (solid line)
and coarse model RRR response (dashed line) at xxx .

than the model with respect to matching the fine model re-
sponse. Note also that the response at its optimal solution
does not satisfy the design specifications.

Table I shows the optimization results. The optimized fine
model responses are shown in Fig. 5. As we can see, the final
specification error is almost independent of which a coarse
model is used in the space-mapping algorithm. Different re-
sponses reflect different optima found by the algorithm in both
cases: for and for .
However, because model is more accurate than , the
optimization result is obtained with a smaller number of fine
model evaluations. On the other hand, because is much
cheaper to evaluate than , the relative computational cost of
solving the parameter extraction and surrogate model optimiza-
tion sub-problems is much higher for the algorithm using
than for the algorithm using (59% versus 10%). Hence, the
total optimization time is larger for than for .

It should also be mentioned that model does not need to
achieve mesh convergence because it is a coarse model. How-
ever, as an effect of the lack of mesh convergence, the mesh
topology and number of mesh elements vary due to the variation
of geometrical design parameters during optimization. Conse-
quently, model is more difficult to optimize than , which
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TABLE I
SPACE-MAPPING OPTIMIZATION RESULTS FOR THE SECOND-ORDER

TAPPED-LINE MICROSTRIP FILTER

Includes fine model evaluation at the starting point

Fig. 5. Second-order tapped-line filter: final fine model response at the solution
obtained with space mapping using the RRR model (solid line) and the RRR
model (dashed line).

is reflected in a larger number of evaluations while performing
parameter extraction and surrogate optimization.

As mentioned earlier, model is accurate, but expensive
(and not easy to optimize), while model is cheap, but not ac-
curate. It can be inferred from the data in Table I that the cost of
space-mapping optimization can be substantially reduced if we
can provide a coarse model that is accurate, cheap, and easy to
optimize. Section III introduces the concept that satisfies these
conditions.

III. INTERPOLATED COARSE MODELS

A. Notation and Concept

Let , be an original coarse
model, which will typically be the model evaluated by
the same simulator as the fine model, but using a coarse
mesh (as in the example of Section II). Let be a grid

,
where is a user-defined grid size and
denotes the set of integers; is the number of design variables.
Grid divides into hypercubes with points being
corners of these hypercubes. For each , we define

as the
center of the corresponding hypercube, and denote by
the hypercube itself. Fig. 6 shows an example of the grid and
hypercubes for .

With each , we associate a base set , which
is a set of points located in the hypercube with center . We
will denote by a set of responses of the original coarse
model evaluated at points from .

Fig. 6. Grid example for the 2-D case.

Fig. 7. Example of the base set for fuzzy-system interpolation n = 2.

Let be the function interpolating the data pairs
. denotes the value of the

function at point .
For each , we define as

. In other words,
is the result of “rounding” to one of the grid points.

We define an interpolated coarse model as follows:

(1)

In the remaining discussion here, we consider the realization
of this concept, as well as implementation details. We employ
fuzzy systems, techniques successfully used in the computer-
aided design of microwave structures by other authors (e.g., [34]
and [35]).

B. Realization

It is desirable that the model is a continuous function,
as this will facilitate further optimization of the space-mapping
surrogate. This can be achieved using a fuzzy-system interpola-
tion based on the points located at the corners of the hypercubes
defined by the grid . In particular, we have

,
. An example of the base set for is shown in

Fig. 7. Note that the number of base points is .
In this study, we use a fuzzy system with triangle member-

ship functions and centroid defuzzification [36]. The fuzzy
system uses data pairs , where and

, . In our realization, each
interval , contains only one fuzzy
region (i.e., the whole interval). Membership functions for the
th variable are defined as shown in Fig. 8.

Having defined membership functions, we need to generate
fuzzy rules from given data pairs. We use if–then rules of the
form IF is in THEN , where is the output of
the rule. At the level of vector components, this means

is in AND is in AND

AND is in THEN (2)
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Fig. 8. Input interval [y ; y + � ] and the corresponding membership func-
tions.

where , are components of vector . In our
case, all rules are conflicting because they have the same IF

part, but a different THEN part. However, each rule has a different
set of associated membership functions. In particular, if

, then the membership function associated with component
of the th rule is , otherwise it is .

Each rule has a degree that is assigned in the following way.
For the rule “IF is in AND is in
AND AND is in THEN ”, the
degree of this rule for any ,
denoted by , is defined as

(3)

where , are coeffi-
cients in the following expansion of

, .
The output of our fuzzy system is determined using centroid

defuzzification

(4)

which is a realization of an interpolated coarse model (1) and
can be written as since
is a function of both and .

As mentioned before, in this paper, we only use triangular
membership functions. This assures that is a continuous
function over the whole domain of the coarse model (regard-
less of the continuity of the original coarse model ). Other
choices, e.g., z-shaped membership functions, would permit
keeping first-order differentiability of the interpolated model,
which may be important for some problems.

C. Implementation Details

In order to reduce the number of evaluations of the original
coarse model , the interpolated model is implemented as a
database of interpolating functions (4), which is updated if the
coarse model needs to be evaluated. The coarse model evalua-
tion process can be described by the following algorithm (
denotes the model database).

1. Get (the point to evaluate the coarse model at)
2. If , retrieve the interpolation function and

return

3. Generate the base set
4. For each calculate ; create

5. Prepare fuzzy rules; prepare interpolating function
6. Update (save and corresponding )
7. Return

In other words, if belongs to a hypercube for which the in-
terpolating function is already set, the response of is obtained
as the value of the interpolating function corresponding to this
hypercube. Otherwise, must first be created (which requires
setting up the base set, acquiring the original coarse model data,
and calculating the necessary coefficients), then evaluated, and
finally, stored in the database.

As mentioned before, the number of base points for each hy-
percube is , i.e., the number grows exponentially with the
number of design variables. However, in practice, many hyper-
cubes considered during the optimization process are adjacent
to each other. This means that many corner points are shared
between hypercubes. Due to this, the actual average number of
original coarse model evaluations per hypercube is smaller than

. We observed that, depending on the problem, the figure is
, where is typically from 2 to 4.

It should also be noted that there is a tradeoff between the ac-
curacy of the interpolated coarse model and its computational
cost. On one hand, we want to take advantage of the accuracy of
the original coarse model, as this would allow us to maintain the
number of fine model evaluation as low during the space-map-
ping optimization process. On the other hand, we need to keep
the interpolated coarse model fast; otherwise the benefits of
using space-mapping optimization are lost due to the compu-
tational overhead related to parameter extraction and surrogate
model optimization. Both model accuracy and speed depend on
the user-defined grid , and the grid size should be adjusted so
that both the accuracy and computational cost of the interpolated
coarse model are sufficient. This may be easily achieved if the
number of design variables is small, such as two or three. For
larger values of , due to the exponential growth of the number
of base points for each hypercube, the number of actual evalu-
ations of the original coarse model may be too large and all the
benefits of using our interpolation scheme may be lost. In prac-
tice, our method should not be used for unless the model
is not highly nonlinear. Another method working regardless of
the number of design variables will be described elsewhere.

IV. EXAMPLES

As a first example, consider again the second-order
tapped-line microstrip filter described in Section II. We opti-
mized this filter again, using the interpolated model (4) based on
the original coarse model with grid size mm.
Table II shows the optimization results (the optimized design
is ). It is seen that space-mapping optimization
with the interpolated model gives the same final specification
error as optimization with models and (cf. Section II),
but with substantially smaller computational cost.

The reduction of the total optimization time in comparison to
optimization with is 69% (56%). Most of the savings
arise from using the interpolated coarse model. This resulted in
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TABLE II
SPACE-MAPPING OPTIMIZATION RESULTS FOR THE SECOND-ORDER

TAPPED-LINE MICROSTRIP FILTER (WITH INTERPOLATED COARSE MODEL)

Includes fine model evaluation at the starting point

Fig. 9. Geometry of the patch antenna.

a reduction of the total number of evaluations of to 8 (versus
115 when directly using in space-mapping optimization).

Consider the patch antenna shown in Fig. 9. This antenna is
printed on a substrate with relative dielectric constant
and height mm. The design parameters are the patch
length and width, i.e., . The objective is to obtain
50- input impedance at 2 GHz. The fine model is simulated
in FEKO [32]. The number of meshes for the fine model is 1024,
which ensures mesh convergence for the structure. Simulation
time for the fine model is 34 s.

We consider two coarse models. Model is the structure in
Fig. 9 also simulated in FEKO, however, the number of meshes
is only 100. Simulation time for model is 0.45 s. Model
is an interpolated model (4) based on the original coarse model

with grid size mm. The number of meshes for
and are measured at the optimal solution of , which

is mm. The fine model response at
is 38.8 .

For this problem, we used the same space-mapping surrogate
model as described in Section II. We perform space-mapping
optimization twice: using model and then using model .
In both cases, we use the same starting point .

Table III shows the optimization results. As we see, the
final value of the input impedance is similar in both cases (the
corresponding final designs are for and

for ), although the accuracy is better for
than for (a specification error of 0.05 for versus

0.09 for ). The computational cost of space-mapping
optimization is also more than two times smaller for than
for , which is because the total number of evaluations of the
original coarse model has been reduced from more than 500
(when directly using in space-mapping optimization) to 29
(when using ).

Consider the microstrip notch filter with mitered bends
[37] shown in Fig. 10. The design parameters are

mil. Other parameters are mil,

TABLE III
SPACE-MAPPING OPTIMIZATION RESULTS FOR THE PATCH ANTENNA

Includes fine model evaluation at the starting point

Fig. 10. Microstrip notch filter with mitered bends [37].

mil, and (loss tangent 0.0009). The
fine model is simulated in Sonnet em [38] with a fine grid of
0.5 mil 0.5 mil. The simulation time for is 1 h and 34 min
(12 points per frequency sweep). The design specifications are

for GHz GHz

for GHz GHz

for GHz GHz

We consider the original coarse model , which is also simu-
lated in Sonnet em, however, with a coarse grid of 5 mil 1 mil.
The simulation time for is 65 s. Obviously, cannot be
directly used in the optimization process because it is avail-
able only on a coarse grid. Instead, we use model , which
is an interpolated model (4) based on with grid size

mil. The optimal solution of this model is
mil. Fig. 11 shows the fine and coarse model re-

sponses at .
We also use another coarse model, i.e., , which is the

circuit model implemented in Agilent ADS [33] and shown in
Fig. 12. The evaluation time for is approximately 1.5 s.
Model has its substrate permittivity tuned to ,
which allows us to shift the center frequency of its response
to 13.2 GHz at . Without tuning, the center frequency of

is approximately 11.12 GHz. This causes severe misalign-
ment between the fine model and and makes it unsuitable
for space-mapping optimization. Fig. 13 shows the responses of

at before and after the tuning of .
To solve our problem, we used the same space-map-

ping surrogate model described in Section II. We perform
space-mapping optimization twice: using model with
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Fig. 11. Microstrip notch filter: initial fine model response (solid line) and
coarse model RRR response (dashed line) at xxx .

Fig. 12. Coarse model RRR of the notch filter (Agilent ADS).

Fig. 13. Microstrip notch filter: response of the coarse model RRR at xxx
without tuning of " (dashed line) and with " tuned to 1.46 (solid line).

starting point and then using model with starting point
(the optimal solution of the (tuned) ).

Table IV shows the optimization results. As we can see, the
final solutions (the responses shown in Fig. 14) satisfy the de-
sign specification in both cases (the corresponding final designs
are for and for ). The
computational cost of space-mapping optimization, however, is

TABLE IV
SPACE-MAPPING OPTIMIZATION RESULTS FOR THE MICROSTRIP NOTCH FILTER

Includes fine model evaluation at the starting point

Fig. 14. Microstrip notch filter: final fine model response at the solution ob-
tained with space mapping usingRRR model (solid line) andRRR model (dashed
line).

substantially smaller for than for . This is because is
more accurate than .

Note that although the evaluation time for the original coarse
model is 65 s, the total time required for parameter extraction
and surrogate optimization is only 28 min. This is because our
interpolated model only required 26 evaluations of the original
coarse model.

V. CONCLUSION

An interpolation technique for creating coarse models suit-
able for space-mapping optimization has been presented. Our
technique allow us to build models that are tradeoffs between
accuracy and computational cost. As a result, we are able to
reduce the computational cost of space-mapping optimization
by decreasing the number of fine model evaluations necessary
to obtain satisfactory solutions (because of good coarse model
accuracy), as well as by reducing the total cost of solving the
parameter extraction and surrogate optimization sub-problems
(because the interpolated coarse model is faster than the original
coarse model). Examples demonstrate the robustness of our ap-
proach.
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