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Abstract—We present a novel surrogate modeling methodology
based on a combination of space mapping and fuzzy systems. Fine
model data, the so-called base set, is assumed available in the re-
gion of interest. Although we do not assume any particular location
of the base points, it is preferable that they form a uniform mesh.
The standard space-mapping surrogate is established using avail-
able fine model data. The fuzzy system is then set up to interpolate
the differences between the space-mapping surrogate and the fine
model at all base points. Our new methodology offers significant
advantages with respect to some of the previous space-mapping
approaches to modeling, which are: 1) it handles any base set and
2) the number of space-mapping parameters does not limit the ac-
curacy of the surrogate. Moreover, it exhibits comparable or better
accuracy than the recently published modeling technique utilizing
space mapping and radial basis functions. We also consider a hi-
erarchical fuzzy space-mapping modeling, which relies on a fuzzy
interpolation of space-mapping parameters and subsequent fuzzy
interpolation of the residuals between the fine and surrogate model.
Examples demonstrate the robustness of our approach and give a
comparison with other space-mapping-based modeling techniques.

Index Terms—Computer-aided design (CAD), electromagnetic
(EM) modeling, fuzzy systems, microwave circuits, space mapping,
surrogate modeling.

I. INTRODUCTION

STATISTICAL analysis and yield optimization are crucial to
manufacturability-driven designs in a time-to-market devel-

opment environment and demand fast accurate device and com-
ponent models. Full-wave electromagnetic (EM) simulations of
microwave structures offer accuracy at the cost of CPU effort.
High CPU cost is undesirable from the point of view of di-
rect statistical analysis and design. The space-mapping concept
[1]–[8] addresses this issue.

Space mapping assumes the existence of “fine” and “coarse”
models. The “fine” model may be a high fidelity CPU-intensive
EM simulator, undesirable for direct statistical analysis and
design. The “coarse” model can be a simplified representa-
tion such as an equivalent circuit with empirical formulas.
Space-mapping modeling [9]–[16] and neuro-space-mapping
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modeling [17]–[19] exploit the speed of the coarse model
and the accuracy of the fine model to develop fast accurate
enhanced models (surrogates) valid over a wide range of param-
eter values. The main factor that distinguishes space mapping
from many other surrogate-based modeling methodologies
(e.g., [20]–[26]) is the use of physics-based coarse models,
which allows good modeling accuracy with a small amount of
fine model data.

The standard space-mapping modeling methodology [11],
[12] is based on setting up the surrogate model using a small
amount of fine-model data (usually, points, where
is the number of design variables). Extraction of the model
parameters is performed over the whole set of this data. This
methodology is simple and gives reasonable accuracy, which,
however, may not be sufficient for some applications. To
improve modeling performance, additional fine model infor-
mation needs to be involved. Unfortunately, this approach to
space mapping is not able to effectively harness a large amount
of data, i.e., increasing the number of base points does not help
if the number of space-mapping parameters (model flexibility)
remains unchanged [15].

Space-mapping modeling with variable weight coefficients
[14], [15] is aimed at overcoming these limitations. It indeed
provides much better accuracy than the standard method, how-
ever, at the expense of significant increase of the evaluation time,
which is due to a separate parameter extraction required for each
evaluation of the surrogate model. This limits potential applica-
tions of the method.

A recently published modeling technique utilizing space
mapping and radial basis function interpolation [16] gives mod-
eling accuracy comparable with [14] without compromising
computational cost. Moreover, because of the fact that the
surrogate is based on the underlying coarse model, modeling
accuracy is substantially better than for radial basis function
interpolation used directly. Unfortunately, the problem of de-
termining interpolation coefficients may be ill conditioned and
the method may be very sensitive to some control parameters.

In this paper, we present another approach that combines
standard space-mapping modeling with fuzzy system in-
terpolation. This technique has the same advantages as the
methodology [16], however, it is simpler to implement. More-
over, in some cases, it allows us to improve modeling accuracy
even further.

II. FUZZY SPACE-MAPPING SURROGATE MODELING

Let : , and :
denote the fine and coarse model response vectors. For

example, and may represent the magnitude of
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a transfer function at chosen frequencies. We denote by
the region of interest in which we want an enhanced

matching between the surrogate and fine model. We assume
that is an -dimensional interval in with the center at
reference point

(1)

where determines the size of . We use
to denote the region of interest defined by and

. Suppose we have the base set
, where is the number of base points, such that the

fine model response is known at all points .
A generic surrogate model is defined as in [16]

(2)

Matrices and are obtained by the parameter extraction

(3)

Apart from model (2) and (3), optional frequency scaling can
be implemented that works in such a way that the coarse model
is evaluated at a different frequency than the fine model using
the transformation [11]. More general space-
mapping models can be found, e.g., in [3] and [11].

Let us introduce the so-called characteristic distance
of the base set depending on the size of the region of

interest and the number of base points, defined as

(4)

If the base points are uniformly distributed in
is just an average distance between neighboring points.

We will use parameter to characterize and compare different
base sets .

On top of the standard space-mapping surrogate, we use fuzzy
interpolation of the difference between the fine model and
standard surrogate. Fuzzy systems have been successfully used
in the microwave area by other authors (e.g., [27]–[29]). In this
study, we use a fuzzy system with triangle membership func-
tions and centroid defuzzification [30]. We assume that we have
data pairs , where and

. Membership functions for the th
variable are defined as shown in Fig. 1. Each interval

, is divided into subintervals
(fuzzy regions). The number corresponds to the number of
base points and is given by the formula . In
particular, if consists of base points uniformly distributed
in the region of interest , then is exactly the number
of points of this uniform grid along any of the design variable
axes. In general, is chosen in such a way that the number of

Fig. 1. Division of the input interval [x �� ; x +� ] into fuzzy regions
and the corresponding membership functions.

-dimensional subintervals (and, consequently, the maximum
number of rules) is not larger than the number of base points.
The division of into subintervals cre-
ates values . In the case of a uniform
base set, points co-
incide with the base points. Value corresponds to the fuzzy
region for for

, and for ). We also use the symbol
to denote the -dimensional fuzzy region .

For any given , the value of membership function de-
termines the degree of in the fuzzy region . In this paper,
we only use triangular membership functions; one vertex lies
at the center of the region and has membership value unity; the
other two vertices lie at the centers of the two neighboring re-
gions, respectively, and have membership values equal to zero.

Having defined the membership functions, we need to gen-
erate the fuzzy rules from given data pairs. We use if–then rules
of the form IF is in , THEN , where is the re-
sponse of the rule. At the level of vector components it means

IF is in AND is in AND

AND is in

THEN (5)

where are components of vector . In gen-
eral, it may happen that there are some conflicting rules, i.e.,
rules that have the same IF part, but a different THEN part. We
resolve such conflicts by assigning a degree to each rule and ac-
cepting only the rule from a conflict group that has a maximum
degree. A degree is assigned to a rule in the following way. For
the rule “IF is in AND is in AND AND

is in THEN ,” the degree of this rule, denoted
by , is defined as

(6)

Having resolved the conflicts we have a set of nonconflicting
rules, which we denote as . We denote by

the output of our fuzzy system, which is
determined using a centroid defuzzification

(7)

where is an -dimensional fuzzy region corresponding to the
th rule, and is the output of the th rule.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 15:24 from IEEE Xplore.  Restrictions apply.



KOZIEL AND BANDLER: SPACE-MAPPING APPROACH TO MICROWAVE DEVICE MODELING EXPLOITING FUZZY SYSTEMS 2541

Fig. 2. Geometry of the second-order dual-behavior resonator filter [31].

Our surrogate model combining the standard space-map-
ping surrogate and the fuzzy system is defined as

(8)

It should be noted that although the idea of combining space
mapping with fuzzy systems is similar to the idea of com-
bining space mapping with radial basis function interpolation
described in [16], the latter technique is more difficult to imple-
ment. In particular, the problem of determining interpolation
coefficients may be ill conditioned, especially if the number
of base points is large. Moreover, the radial basis function
interpolation may be very sensitive to control parameters, and
typically, some sort of adjusting algorithm is necessary in order
to find the proper values of these parameters. Fuzzy systems
are free of these problems.

III. EXAMPLES

Here we compare the modeling accuracy for the standard
space-mapping modeling methodology [11], space-mapping
modeling with variable weight coefficients [14], space mapping
with radial basis function interpolation [16], and the space map-
ping with fuzzy system interpolation described in Section II. In
our comparison, we also include direct interpolation of the fine
model data using a fuzzy system.

A. Test Problem Description

Problem 1: Second-order dual-behavior resonator microstrip
filter [31] shown in Fig. 2. The fine model is simulated in FEKO
[32]. The coarse model (see Fig. 3) is the circuit model imple-
mented in Agilent ADS [33]. The design parameters are

. The response vector consists of transmission coeffi-
cient in the frequency band GHz with samples
taken every 200 MHz. The region of interest is defined by the
reference point mm and the deviation
mm.

Problem 2: Dual-band microstrip bandpass filter [34] shown
in Fig. 4. The fine model is simulated in FEKO [32]. The coarse
model (see Fig. 5) is the simplified equivalent-circuit model
implemented in Agilent ADS [33]. The design parameters are

Fig. 3. Coarse model of the second-order dual-behavior resonator filter (Agi-
lent ADS).

Fig. 4. Geometry of the dual-band microstrip bandpass filter [34].

Fig. 5. Coarse model of the dual-band microstrip bandpass filter (Agilent
ADS).

. Parameter is set to 0.47 mm. The re-
sponse vector consists of transmission coefficient in the
frequency range from 1.5 to 5.5 GHz. The reference point is

mm and the region size is
mm.

Problem 3: Double-folded stub filter [1] shown in Fig. 6.
The fine model is simulated with Sonnet’s em [35] using a
high-resolution grid with a 0.0254 mm 0.0254 mm cell size.
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Fig. 6. Double-folded stub filter [1].

Fig. 7. Coarse model of the double-folded stub filter (Agilent ADS).

The coarse model (see Fig. 7) is the equivalent-circuit model
implemented in Agilent ADS [33]. The design parameters
are . Parameter is set to 0.254 mm. The
response vector consists of transmission coefficient
in the frequency range from 6 to 20 GHz. The reference
point is mm and the region size is

mm.

B. Experimental Setup

For each of the test problems, we performed a number of nu-
merical experiments using the standard space-mapping surro-
gate model, space mapping with variable-weight coefficients,
space mapping with radial basis functions, space mapping with
fuzzy systems, as well as direct fuzzy interpolation (i.e., the
fuzzy system directly interpolating the fine model data). Table I
shows details of the base sets used in our simulations. The base
sets have growing numbers of points (and decreasing charac-
teristic distance ) in order to examine the dependence of the
modeling error on the amount of fine model data used to create
the model. Accuracy was tested using 30 test points randomly
distributed in the region of interest. The error measure used was
the norm of the difference between the fine model response
and the corresponding surrogate model response.

TABLE I
BASE SET DATA FOR TEST PROBLEMS 1–3

TABLE II
MODELING RESULTS FOR TEST PROBLEM 1. VERIFICATION

FOR 30 RANDOM TEST POINTS

TABLE III
MODELING RESULTS FOR TEST PROBLEM 2. VERIFICATION

FOR 30 RANDOM TEST POINTS

C. Numerical Results and Discussion

Tables II–IV show numerical results (error statistics) for the
considered models with all the base sets considered. Figs. 8–13
show error plots, i.e., the modulus of the difference between
the fine model and the corresponding surrogate model response
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TABLE IV
MODELING RESULTS FOR TEST PROBLEM 3. VERIFICATION

FOR 30 RANDOM TEST POINTS

Fig. 8. Test problem 1: error plots for the standard space-mapping model.

Fig. 9. Test problem 1: error plots for space mapping combined with the fuzzy
system.

versus frequency, for the standard space-mapping model and
the space mapping with fuzzy interpolation; data obtained for
the base set was used in all cases. Figs. 14–16 show the
average modeling error versus the characteristic distance .

It follows from the results that the modeling accuracy pro-
vided by the new model (2)–(8) is comparable with or better than
the accuracy of space mapping enhanced by radial basis func-
tion interpolation. All the other space-mapping approaches, as
well as the direct fuzzy interpolation, are clearly outperformed
by these two techniques. As expected, the accuracy of the stan-
dard space-mapping model is almost independent of the density

Fig. 10. Test problem 2: error plots for the standard space-mapping model.

Fig. 11. Test problem 2: error plots for space mapping combined with the fuzzy
system.

Fig. 12. Test problem 3: error plots for the standard space-mapping model.

of the base set. Other approaches exhibit improvement of the
modeling quality with decrease of the characteristic distance of
the base set.

It should be mentioned that the computational cost of the
model (2)–(8) is almost the same as the cost of the coarse model
because once the parameters are established (including fuzzy
rules), evaluation of formula (7) (defuzzification) is very fast.
Space mapping combined with radial basis function interpola-
tion exhibits similar advantages with respect to computational
efficiency, although, as mentioned in Section I, it has some in-
herent problems such as sensitivity to the control parameters
and the possibility of the parameter calculation being ill condi-
tioned. On the other hand, space mapping with variable weight
coefficients, which performs well in terms of accuracy, suffers
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Fig. 13. Test problem 3: error plots for space mapping combined with the fuzzy
system.

Fig. 14. Test problem 1: average modeling error versus characteristic distance
�. Data for the standard space-mapping model (o), space mapping with variable
weight coefficients (�), space mapping with radial basis functions ( ), space
mapping with the fuzzy system (�), and direct fuzzy interpolation (+).

Fig. 15. Test problem 2: average modeling error versus characteristic distance
�. Data for the standard space-mapping model (o), space mapping with variable
weight coefficients (�), space mapping with radial basis functions ( ), space
mapping with the fuzzy system (�), and direct fuzzy interpolation (+).

from computational overhead related to separate parameter ex-
tractions required for each evaluation of the model.

Overall, the presented combination of space mapping and
fuzzy systems seems to be a robust alternative to the existing
modeling techniques based on space mapping.

Fig. 16. Test problem 3: average modeling error versus characteristic distance
�. Data for the standard space-mapping model (o), space mapping with variable
weight coefficients (�), space mapping with radial basis functions ( ), space
mapping with the fuzzy system (�), and direct fuzzy interpolation (+).

D. Fuzzy Systems With Alternative Membership Functions

The fuzzy system described in Section II uses triangle mem-
bership functions. This kind of model has an interpolation prop-
erty provided that the base set is a uniform mesh and that base
points are located at the centers of the membership functions.
Here, we compare the accuracy of the space-mapping surro-
gate model (2)–(8) with the space-mapping model using the
fuzzy system with Gaussian and Z-shaped membership func-
tions. These functions can be beneficial in some cases, espe-
cially if the fine model response exhibits highly nonlinear be-
havior. Also, the resulting surrogate model is smooth, which is
not the case for triangular functions. The Gaussian membership
function is given by , with
being the control parameter, which must be optimized in general
in order to obtain the best performance. The Z-shaped function
is defined, for , as

if , and
if , where . Definitions for other
intervals are similar.

Table V presents a comparison of the average modeling error
for Problems 1–3 with the base sets and . It is
seen that the performance of the surrogate model is very similar
for all membership functions considered. It should be noted that
the model using the fuzzy system with unoptimized Gaussian
membership functions exhibits the worst performance, which is
most likely because this model does not exhibit an interpolation
property.

IV. POSSIBLE EXTENSIONS OF FUZZY SPACE MAPPING

Apart from the fuzzy space-mapping surrogate model (8)
described in Section II, it is possible to employ fuzzy systems
to approximate the space-mapping parameters in a regular
space-mapping model . In order to discuss this concept,
we will use the following notation. Let be
a compact way of denoting the space-mapping surrogate
model, where is a vector of the model parameters. Let

denote a fuzzy
system that approximates variable and is built using data
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TABLE V
MODELING ACCURACY FOR SPACE-MAPPING SURROGATE WITH FUZZY

SYSTEM USING DIFFERENT MEMBERSHIP FUNCTIONS

pairs with from a given base set
denotes the response of the fuzzy system at point .

Using this notation, fuzzy space-mapping model (8) can be
written as . Thus, we can
call it the fuzzy output space-mapping model. As mentioned
before, one of the possible extensions of the model (8) is to use
a fuzzy system not only to approximate the differences between
the fine model and the regular space-mapping model, but also
to approximate space-mapping parameters in the regular space-
mapping model. Using our notation, the extended model has the
following form:

(9)

where, in general, both base sets and can be different,
although in practice they should be the same in order to effi-
ciently use the available fine model data. Another possibility is
to use a fuzzy system only to approximate the space-mapping
parameters, which would give the following model:

(10)

Using space-mapping terminology, model (10) is the fuzzy input
space-mapping surrogate, while model (9) is the fuzzy input and
output space-mapping surrogate. It should be noted that model
(10) does not fully use available fine model information, and,
therefore, model (9) is expected to outperform model (10) when
using the same base set .

An extended fuzzy space-mapping model (9) may seem at-
tractive, however, there is an issue that makes its actual useful-
ness questionable. In order to model the space-mapping parame-
ters with a fuzzy system, one has to extract the optimal set of pa-
rameters for each of base points from and then hope to re-
trieve the optimal set of parameters for any other point from the
region of interest using a fuzzy system. The problem is that, typ-
ically, the optimal space-mapping parameter set corresponding
to a given design variable vector is nonlinearly dependent on
the vector and it might be very difficult to model this depen-
dency with a fuzzy system (or, more generally, with any other
approach).

Fig. 17. (a) Fine and (b) coarse model, two-section capacitively loaded
impedance transformer [36].

TABLE VI
BASE SET DATA FOR TWO-SECTION TRANSFORMER EXAMPLE

TABLE VII
MODELING RESULTS FOR TWO-SECTION TRANSFORMER EXAMPLE. AVERAGE

ERROR FOR 30 RANDOM TEST POINTS

For illustrative purposes, consider a capacitively loaded 10 : 1
two-section impedance transformer example [36]. The “coarse”
model and “fine” model, both implemented in MATLAB, are
an ideal two-section transmission line and a capacitively
loaded transmission line, as shown in Fig. 17. The electrical
lengths and are chosen as design parameters. The
response vector consists of reflection coefficient in the
frequency range from 0.5 to 1.5 GHz. The reference point is

. We consider the region of interest
defined by a 10% deviation from .

The base sets considered for this problem are shown in
Table VI. In Table VII, we compare modeling accuracy for
the space-mapping model (8), as well as fuzzy space-mapping
models (9) and (10). Space-mapping parameters for models (9)
and (10) were obtained using space mapping with the variable
weight coefficient modeling technique [14].

It follows from the results that although models (9) and (10)
retain the pattern of improving accuracy with growing density
of the base set, their performance is not as good as for model
(8).

V. CONCLUSION

A modeling methodology has been presented that combines
the standard space-mapping technique and fuzzy interpolation.
The new methodology can efficiently handle any base set. As
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with most of the recent space-mapping-based surrogate mod-
eling techniques, it has the property of increasing modeling ac-
curacy when the number of base points increases. Examples
have demonstrated the robustness of our method. It follows that
the new approach provides modeling accuracy comparable with
or better than the recently published space mapping enhanced
by radial basis function interpolation, and outperforms any other
space-mapping approach. The new technique is easy to imple-
ment and computationally efficient.
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