
1.PHOTOCREDIT

S
ince the space mapping con-
cept [1], [2] was first devel-
oped, it has been successfully
applied to microwave engi-
neering design problems as

well as in other engineering fields (e.g.,
[3], [4]). In the meantime, much re-
search has been carried out on various
space mapping and related approaches
[5]–[8]. Space mapping has also been
combined with formulations such as
neural networks [9]. Among the devel-
opments in the art of space mapping,
implicit space mapping [10] is probably
the simplest technique to implement.
Here, no matrix calculation is needed.
It can be generalized to include all
other forms of space mapping in a gen-
eralized implicit space mapping frame-
work [5]. 
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In the microwave arena, circuit-theory based CAD
tools such as Agilent ADS [11] are fast and easy to use
for design optimization. On the other hand, electromag-
netic (EM) simulators such as Agilent Momentum,
Sonnet em [12], Ansoft HFSS [13], or FEKO [14] are usu-
ally CPU-intensive but offer high-fidelity validations.
Implicit space mapping is a simple approach to combine
a circuit-theory based CAD model, or “coarse” model,
and an EM simulator, or “fine” model, to achieve fast
and accurate optimal design and modeling.

In both the fine model and corresponding coarse
models, certain preassigned parameters exist; for exam-
ple, dielectric constant and the height of the substrate.
They are normally selected and their values fixed early in
the modeling and design process. Implicit space map-
ping explores the flexibility of these parameters in the
design optimization [10] and device modeling [15] tasks.
The effects on the responses of microwave components
of varying the values of these parameters may be as sig-
nificant as those achieved by varying the optimizable
parameters. In our space mapping technique, we apply
this flexibility to the coarse model only. 

Thus, we calibrate certain selected coarse model pre-
assigned parameters in each space mapping iteration to
match the response of the fine model. With these re-cal-
ibrated preassigned parameters now fixed in value, the
enhanced coarse model (surrogate) is then re-optimized
to obtain a new design. We apply this new design to the
fine model. These steps are repeated until the design

specification is satisfied.
Generally speaking, the

coarse model could be imple-
mented using any circuit sim-
ulator. In our examples, coarse
models are realized in Agilent
ADS. We use Sonnet em and
FEKO as the fine model evalu-
ators. Agilent ADS schematics
organize the ADS optimiza-
tion engine and coarse and
fine models to perform para-
meter extraction (obtain a
mapping to re-match the mod-
els) and surrogate optimiza-
tion (obtain a new prediction
of the desired optimal solu-
tion). Figure 1 illustrates the
relationship between the mod-
els and simulators.

Space mapping belongs to
the category of surrogate-based
optimization approaches. There
is a rich literature concerning
surrogate-based optimization.
In [16], the authors describe so-
called approximation and
model management optimiza-
tion. This approach assumes
that the surrogate model satis-
fies so-called zero- and first-
order consistency conditions
with the high-fidelity model in
question. A surrogate manage-
ment framework and its appli-
cations for engineering design
are presented in [17]. Surrogate
optimization based on kriging

Figure 1. Space mapping implementation concept.
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In both the fine model and
corresponding coarse models, certain
preassigned parameters exist; for
example, dielectric constant and the
height of the substrate.
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models are discussed in [18]. A survey of surrogate-
based analysis and optimization methods is given in
[19]. It should be emphasized that a characteristic fea-
ture that differentiates space mapping from some other
surrogate-based optimization methods is that in our
space mapping approach the surrogate model is con-
structed using an available, low-fidelity (and physical-
ly meaningful) model of the object response (the model
being a function of the actual design variables), rather
than a pure interpolation or approximation. 

There are many other approaches that aim at
reducing the total time cost of fine model evaluations,
such as the model order reduction (MOR) method.
The MOR method [20] is a way of reducing unneces-
sary complexity in a system in order to obtain a faster-
to-compute model. It is a bottom-up approach, since
it considers the details of the fine model and attempts
to reduce its order. However, space mapping works
top-down. It tries to reconcile two existing models, a
coarse model with a fine model, even without the
implementation details of the fine model. MOR aims
at reducing the fine model’s complexity, while space
mapping aims at minimizing the number of calls to
the fine model.

Implicit Space Mapping
The formulation of the implicit space mapping algo-
rithm is presented in the sidebar (see “The Implicit
Space Mapping Concept”) [10], [21]. Our goal is to
obtain the fine model optimal design without going
to direct optimization of the fine model but instead
using the surrogate model; i.e., the coarse model
with updated values of the preassigned parameters.
Parameter extraction and design optimization are
performed solely on the surrogate model. A predic-
tion of the next fine model design is also obtained
through the surrogate.

We illustrate the space mapping process in Figure
2. In this illustration, the solid lines are the fine
model representations and the dotted lines are the

Figure 3. Implicit space mapping algorithm flowchart
[10], [21].
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Our goal is to design a fine model optimal solution

x∗ = arg min
x

U(Rf (x)) (1)

Here, the fine-model response vector is denoted by Rf ,
e.g., |S11| at selected frequency points. The fine-model
design parameters are denoted x. U is a suitable
objective function. In microwave engineering, U is typi-
cally a minimax objective function with upper and
lower specifications [22]; x∗ is the optimal design to
be determined. Implicit space mapping uses the fol-
lowing iterative procedure to solve (1)

xk+1 = arg min
x

U(Rc(x, pk)) (2)

where Rc(x, p) is a response vector of the coarse
model with x and p being the design variables and
preassigned parameters, respectively. Rc(x, pk) is an
implicit space mapping surrogate model with preas-
signed parameters pk obtained at iteration k using the
parameter extraction procedure

pk = arg min
p

‖Rf (x
k) − Rc(xk, p)‖ (3)

in which we try to match the surrogate to the fine
model. The initial surrogate model is Rc(x, p0), where
p0 represents the initial preassigned parameter val-
ues. In other words, the surrogate model is the
coarse model with updated values of the preassigned
parameters.

The Implicit Space Mapping Concept [10], [21]
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surrogates. In both cases, the selected preassigned
parameters p1 are extracted such that the surrogate is
closely matched to the fine model. After the extraction,
the new surrogate replaces the fine model, becoming
the function to be optimized. The solution is our new
fine model solution. We can then simulate the fine
model for verification of its response. If the fine model
design specification is not satisfied, the steps can be
repeated. Please refer to the sidebar for a formal
description of the implicit space mapping technique.
We summarize the implicit space mapping algorithm

in the flowchart of Figure 3.

Tapped-Line Microstrip
Filter Illustration 
We now demonstrate the
implicit space mapping tech-
nique on a simple optimiza-
tion problem, the second-
order tapped-line microstrip
filter [23] shown in Figure 4. 

For the sake of simplicity
we only use two design
parameters, L1 and g as
defined in Figure 4. The fine
model is simulated in FEKO
[14]. The design specifica-
tions are |S21| ≥ −3 dB for
4.75 GHz ≤ ω ≤ 5.25 GHz,
and |S21| ≤ −20 dB for 3.0Figure 5. Coarse model of the second-order tapped-line microstrip filter (Agilent ADS).
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(b) A good match is obtained after extracting the preassigned parameters. (c) A good fine model response is obtained in just
two iterations.
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GHz ≤ ω ≤ 4.0 GHz and 6.0 GHz ≤ ω ≤ 7.0 GHz. The
coarse model shown in Figure 5 is the circuit equiva-
lent of the structure in Figure 4 and is implemented in
Agilent ADS [11]. 

We want to optimize our filter using implicit space
mapping with the dielectric constant εr and the height
H of the substrate as tuning parameters. Initial values
of the parameters are 9.9 and 100 mils, respectively, for
both fine and coarse models. These parameters remain
fixed in the fine model; however, we are going to tune
them in the coarse model, according to the implicit
space mapping methodology.

The initial design, L1 = 6.977 mm and g = 0.060
mm, is the optimal solution of the coarse model with
respect to our specifications. Figure 6(a) shows the fine
and coarse model responses at the initial design. Note
that neither the coarse nor fine models satisfy the
design specifications. Also,
there is quite a significant mis-
alignment between the fine
and coarse models both with
respect to center frequency and
bandwidth. We now perform
the parameter extraction proce-
dure. Figure 6(b) shows the
fine model and surrogate
model (i.e., the tuned coarse
model) response at the initial
design. We (re)optimize the de-
sign parameters in our surro-
gate with the newly obtained

preassigned parameter values. A new set of design
parameter values is found to supply to fine model. In
this manner, we obtain a good fine model design in just
two iterations [Figure 6(c)].

For comparison purposes we also perform the
direct optimization of the fine model using Matlab
[24]. It turns out that the implicit space mapping

Figure 8. A microstrip hairpin filter is “half” implemented, since the structure is symmetric.
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Figure 7. The microstrip hairpin filter [25].
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Implicit space mapping is a simple
approach to combine a circuit-theory
based CAD model and an EM
simulator model to achieve fast
and accurate optimal design
and modeling.
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optimization of our filter, which requires only three
evaluations of the fine model (plus a small overhead
related to parameter extraction and optimization of
the surrogate model), takes only about 17 minutes.
This is substantially faster than the direct optimiza-
tion, which requires 54 fine model evaluations and
takes about 4.5 hours.

Microstrip Hairpin Filter Design
We now describe in detail the design process of the
microstrip hairpin filter [25] example of Figure 7,
where the implicit space mapping algorithm, includ-
ing the coarse/surrogate model evaluation, is imple-
mented in Agilent ADS. The fine model responses are
loaded from the result of an external EM simulator
using the ADS SnP file. In three iterations, we have a

Sonnet em design with much better performance than
reported in [25].

We use the original design specifications of
[25]: |S11| < −16 dB for 3.7 GHz ≤ ω ≤ 4.2 GHz; 
|S21| < −28 dB for ω ≤ 3.2 GHz and ω ≥ 4.7 GHz.

Our coarse model is the same ADS circuit model as
in [25]. A “half filter” is implemented in ADS, as shown
in Figure 8. The two half-filters are connected in a
“back-to-back” fashion [25]. We use L1, L2, L3, L4, S1,
and S2, as design parameters. An ADS test optimization
and tuning process show that if we add Lc to the set of
design parameters, the flexibility will improve the per-
formance of the filter. The test also shows that L2 should
be set to a small value. So we fix L2 to zero. The design
variable set now becomes L1, L3, L4, S1, S2, and Lc. We
implement a coarse model optimization schematic in
Figure 9. The coarse model is capable of obtaining a bet-
ter passband performance than the original design
specification. We then tighten the specification to
|S11| < −40 dB for the passband and |S21| < −30 dB for
the stopband.

In Figure 10, the ADS test shows that the specifica-
tion is easily satisfied. To compensate for the design
parameter value changes, we use a set of preassigned
parameters. The uniform dielectric constant εr and

Figure 9. The coarse (surrogate) model optimization process implemented in Agilent ADS.
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substrate height H are not sufficient to compensate for
the changes in the design parameters. We introduce dif-
ferent dielectric constants εr1 and εr2, and substrate
height H1 and H2 for the coupled lines “CLin1” and
“CLin2,” respectively, as annotated in Figure 8 (sub-
strate components MSub2 and MSub3 are assigned to
CLin1 and CLin2, respectively; MSub1 is assigned to
the rest of the microstrip components).

In the fine model, we use Sonnet em with a very fine
cell size of 1 mil × 1 mil (see Figure 11 and Figure 12).
Each frequency point takes about 50 minutes to com-
plete on a Pentium 4 with 3.4 GHz CPU and 2 GB RAM.
Total simulation time for a 25-frequency-point sweep is
around 17 hours.

One of the most important steps, parameter extrac-
tion, is implemented entirely in ADS (Figure 13). The
fine model solution is imported from a Touchstone file
generated by Sonnet em. The surrogate optimization is
implemented by ADS in exactly the same way as in
Figure 9 but with different preassigned parameter val-
ues for each iteration.

In the initial iteration, we use an adaptive frequen-
cy sweep, since it is shifted away from the specifica-
tion as seen in Figure 14. (The passband details are
not important at this stage.) The first iteration shifts
the responses back to the desired frequency bands

(Figure 15). We conducted a fine frequency sweep in
the passband region. The second iteration finds a
good solution without much difficulty (Figure 16).
The third iteration fine tunes the responses. A return
loss of −34 dB in the passband is obtained, as shown
in Figure 17. In Table 1 we list the parameter values of
the initial and the final designs.

The solution reported in Table 1 can be further
improved by performing one iteration of a space
mapping algorithm using the so-called output space

Figure 12. The fine model in Sonnet em: a three-dimen-
sional view.
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em with a very fine cell size of
1 mil x 1 mil.
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mapping surrogate model, which allows us to ensure
a perfect match with the fine model at the current
iteration point [5]. The improved solution is L1 = 280,
L3 = 448, L4 = 342, S1 = 9, S2 = 12, Lc = 86 (dimen-
sions in mil), and the corresponding fine model
response is shown in Figure 18.

Discussion
Our design starts from Brady’s back-to-back ADS
design [25]. In his paper [25], the author probably
expected a narrower passband from the Sonnet em
simulation and the test fabrication, so he applied a
wider bandwidth for the passband in the ADS circuit

Figure 13. The parameter extraction process implemented in Agilent ADS.
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simulator (coarse model) optimization specification;
i.e., the passband is changed to 3.55 GHz ≤ ω ≤ 4.4
GHz from 3.7 GHz ≤ ω ≤ 4.2 GHz.

However, the trade-off is that the increased band-
width deteriorates the passband performance. When
the ADS design is applied to Sonnet em, the specifica-

tion is barely satisfied, while the bandwidth is much
wider than necessary. Space mapping uses a parameter
extraction procedure in each iteration. The parameter
extraction procedure “absorbs” the difference between
the Sonnet em model and the ADS model. Therefore,
we can keep the desired specification as our coarse

Figure 17. Fine model responses |S11| (---) and |S21| (—)
after the third iteration, the desired specification [25] (—),
and the tightened specification (. . . ).
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Figure 18. Fine model responses |S11| (---) and |S21| (—)
at the final solution improved by one space mapping 
iteration with an output space mapping surrogate model,
the desired specification [25] (—), and the tightened 
specification (. . . ).
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Figure 14. Fine model responses |S11| (---) and |S21| (—)
at the initial solution, the desired specification [25] (—),
and the tightened specification (. . . ).
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Figure 15. Fine model responses |S11| (---) and |S21| (—)
after the first iteration, the desired specification [25] (—),
and the tightened specification (. . . ).
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Figure 16. Fine model responses |S11| (---) and |S21| (—)
after the second iteration, the desired specification [25] (—),
and the tightened specification (. . . ).
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TABLE 1. Microstrip hairpin filter design
parameter values.

Initial Design (mil) 
Design (Coarse Model Final On-Grid 
Variables Optimal Design) Design (mil)

L1 273 280

L3 382 448

L4 327 341

S1 10 9

S2 15 12

Lc 70 87
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model or surrogate optimization specification. With a
proper choice of design parameters, we can even use
the tightened design specifications and thus obtain a
better Sonnet em design.

Summary
In this article we reviewed the implicit space map-
ping concept. We illustrated it using a simple tapped-
line microstrip filter example. We demonstrated the
robustness of our approach by performing an accu-
rate design of a microstrip hairpin filter. A detailed
and easy-to-follow design optimization procedure
was provided and the Agilent ADS implementation of
the algorithm was described. A good electromagneti-
cally validated design in Sonnet em was obtained in a
few fine model simulations.
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Space mapping uses a parameter
extraction procedure in each
iteration, which “absorbs” the
difference between the Sonnet em
model and the ADS model.


