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 Abstract—An enhancement of the space mapping (SM) 

surrogate model through support vector regression is presented. 
This technique uses a standard SM model (trend function) and 
support vector regression to model the residuals between the fine 
model and the standard model. The latter is implemented as a 
additive output SM term. The proposed methodology offers 
efficient utilization of the available fine model data (not possible 
in the standard SM modeling) and accuracy comparable or 
better than the recently published modeling techniques 
combining SM with radial basis functions and fuzzy systems. 
Examples demonstrate the robustness of our approach. 

Index Terms—Computer-aided design (CAD), EM modeling, 
space mapping, surrogate modeling, support vector regression. 

I. INTRODUCTION 
Accurate and computationally efficient models of 

microwave components and devices are crucial in many areas 
such as signal processing, wireless communication and 
biomedical engineering. Full-wave EM simulations of 
microwave structures offer high accuracy at the cost of CPU 
effort, which is undesirable from the point of view of direct 
statistical analysis and design. The space mapping (SM) 
concept [1]-[4] addresses this issue. Space mapping assumes 
the existence of “fine” and “coarse” models.  The “fine” 
model may be a high fidelity CPU-intensive EM simulator. 
The “coarse” model can be a simplified representation such as 
an equivalent circuit with empirical formulas. SM modeling 
[5]-[9] and neuro-space-mapping modeling [4], [10], [11] 
exploit the speed of the coarse model and the accuracy of the 
fine model to develop fast, accurate enhanced models 
(surrogates) valid over a wide range of parameter values.  

The standard SM modeling [6] sets up the surrogate model 
using a small amount of fine-model data with extraction of the 
model parameters performed over the whole set of this data. 
This methodology is simple and gives reasonable accuracy, 
which, however, may not be sufficient for some applications.  
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SM modeling with variable weight coefficients [7] provides 
better modeling accuracy, however, at the expense of some 
computational overhead related to a separate parameter 
extraction required for each evaluation of the surrogate model. 
This limits potential applications of the method. 

SM modeling enhanced by radial basis function interpolation 
[8] and SM modeling with fuzzy systems [9] give modeling 
accuracy comparable with [7] without compromising 
computational cost. Unfortunately, the problem of determining 
the interpolation coefficients in [8] may be ill-conditioned and 
the method may be very sensitive to some control parameters. 
Model [9], on the other hand, may not be differentiable, which 
makes it difficult to optimize and hence not suitable for some 
applications. Also, model [9] works well if the base set is a 
rectangular grid; otherwise its performance may be degraded. 

In this paper, we present other approach that uses standard 
space mapping enhanced by support vector regression (SVR) 
[12]. SVR is implemented as an additive output SM term that 
models the differences between the fine and standard SM 
model responses at the base points. SVR is characterized by 
good generalization capability [13] and easy training through 
quadratic programming resulting in a global optimum for the 
model parameters [14]. We demonstrate that the accuracy of 
the new surrogate model is competitive with the accuracy of 
previously published SM modeling approaches as well as the 
direct support vector regression of the fine model data. 

II. SURROGATE MODELING WITH SPACE MAPPING AND SVR 

Let Rf : Xf → Rm, Xf ⊆ Rn, and Rc : Xc → Rm, Xc ⊆ Rn, denote 
the fine and coarse model response vectors. For example, 
Rf(x) and Rc(x) may represent the magnitude of a transfer 
function at m chosen frequencies. We denote by XR ⊆ Xf the 
region of interest in which we want an enhanced matching 
between the surrogate and the fine model. Typically, XR is an 
n-dimensional interval in Rn with center at reference point 
x0 = [x0.1 … x0.n]T ∈ Rn and size δ = [δ1 … δn]T [6]. 

Suppose we have the base set XB = {x1, x2, …, xN} ⊂ XR, 
where N is the number of base points, such that the fine model 
response is known at all points xj, j = 1, 2, …, N.  

Let : m
s R pX X R× →R  be a generic SM surrogate model 

where Xp is a parameter domain. For any given base set XB the 
standard surrogate model Rs.SM is defined as 

. ( ) ( , )s SM s=R x R x p  (1) 
where 
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A variety of SM surrogate models is available [1]-[4]. The 
model often used in practice (e.g., [6]) employs both input and 
output SM, i.e., ( , ) ( , , , ) ( )s s c= = ⋅ ⋅ +R x p R x A B c A R B x c . It 
is often enhanced by a frequency SM [6]. More general SM 
models can be found, e.g., in [2]. 

Let Rk = Rf(xk) – Rs.SM(xk) for k = 1, 2, ..., N. We want to 
enhance the standard SM model by an additive term 
approximating the residuals Rk at all base points. We shall 
also use the notation Rk = [R1

k R2
k … Rm

k]T to denote 
components of vector Rk. Approximation of Rk is 
implemented using so-called support vector regression [12]. 
This technique is a variant of the support vector machines 
methodology developed by Vapnik [15], which was originally 
applied to solve classification problems. Support vector 
regression is gaining popularity in the microwave engineering 
area (e.g., [13]). In the case of linear regression, we want to 
approximate a given set of data, in our case, the data pairs 
Dj = {(x1,Rj

1),…,(xN,Rj
N)}, j = 1, 2, …, m, by a linear function 

fj(x) = wj
Tx + bj. The optimal regression function is given by 

the minimum of the functional [12] 
2

. .
1

1( , ) || || ( )
2

N

j j j j i j i
i

Cξ ξ ξ+ −

=

Φ = + +∑w w  (3) 

where Cj is a user-defined value, and ξj.i
+ and ξj.i

– are slack 
variables representing upper and lower constraints on the 
output of the system. The typical cost function used in support 
vector regression is the so-called ε-insensitive loss function 

0 for | ( ) |
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| ( ) | otherwise
j

j

f y
L y

f yε

ε− <⎧
= ⎨ −⎩

x
x

 (4) 

The value of Cj determines the trade-off between the flatness 
of fj and the amount up to which deviations larger than ε are 
tolerated [12].  

In this paper, we use nonlinear regression employing the 
kernel approach, in which the linear function wj

Tx + bj is 
replaced by the nonlinear function Σiγj.iK(xk,x) + bj, where K is 
a kernel function. Thus, the SVR term used to enhance the 
standard SM is defined as 
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with parameters γj.i and bj, j = 1, …, m, i = 1, …, N obtained 
according to a general support vector regression methodology. 
In this paper we use Gaussian kernels of the form  

2

2 2

|| ||( , ) exp 0
2

K c
c λ

⎛ ⎞−
= − >⎜ ⎟

⎝ ⎠

x yx y  (6) 

where λ = λ(δ,N)—used here as an normalization factor—is a 
so-called characteristic distance of the base set defined as [7] 

1/
1

2( , )
n

in
i

N
nN

λ δ
=

= ∑δ  (7) 

The scaling parameter c as well as parameters Cj and ε are 
adjusted to minimize the generalization error calculated using 
a cross-validation method and exponential grid search. 

The overall surrogate model is defined as follows 
. .( ) ( ) ( )s s SM s SVR= +R x R x R x  (8) 

Similarly as in the case of combining space mapping with 
radial basis functions [8] and fuzzy systems [9], the surrogate 
model (8) ensures good accuracy and, at the same time, 
computational efficiency almost the same as the underlying 
coarse model. Model parameters are determined as a convex 
optimization problem, which result in a unique global 
optimum, which is in contrast to [8] where the problem of 
obtaining model parameters may be ill-conditioned. Also, the 
support vector regression function is smooth, which may not 
be the case for modeling with fuzzy systems [9]. 

III. EXAMPLES 

In this section, we compare the modeling accuracy for the 
standard SM modeling methodology [6] (SM-Standard), SM 
modeling with variable weight coefficients [7] (SM-VWC), 
SM with radial basis function interpolation [8] (SM-RBF), the 
SM with fuzzy systems [9] (SM-Fuzzy) and the combination 
of SM with SVR described in Section II (SM-SVR). In our 
comparison we also include direct approximation of the fine 
model data using SVR. 

A. Test Problem Description 

Problem 1: Microstrip right-angle bend [5]. The fine model, 
Fig. 1(a), is analyzed by Sonnet’s em [16]. The coarse model 
is an equivalent circuit shown in Fig. 1(b). The design 
parameters are x = [W H εr]T. The response vector consists of 
reflection coefficient |S11| in the frequency range of 1 to 31 
GHz. The reference point is x0 = [25 12 9]T, and the region 
size is δ = [6 4 1]T. 

Problem 2: Bandstop microstrip filter with open stubs [10] 
shown in Fig. 2. The fine model is simulated with Sonnet’s 
em [16] using a high-resolution grid with a 0.2 mil × 1 mil 
cell size. The coarse model, Fig. 3, is the equivalent circuit 
model implemented in Agilent ADS [17]. The design 
parameters are x = [W1 W2 L0 L1 L2]T. The response vector 
consists of transmission coefficient |S21| in the frequency 
range of 5 to 15 GHz. The reference point is 
x0 = [5.6 10.4 119.2 118 112]T mil and the region size is 
δ = [0.4 0.4 2 2 2]T mil. 
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Fig.1. The microstrip right-angle bend [5]: the fine model (a) and the coarse 
model (b). 
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Fig.2. Bandstop microstrip filter with open stubs [10]. 

 

 
Fig.3. Bandstop microstrip filter with open stubs: coarse model (Agilent ADS). 
 
B. Experimental Setup 

For both test problems we performed a number of 
experiments using models: SM-Standard, SM-VWC, SM-RBF, 
SM-Fuzzy, SM-SVR, and direct support vector regression. 

Table I shows details of the base sets used in our 
experiments. The base sets have growing numbers of points in 
order to examine the dependence of the modeling error on the 
amount of fine model data used to create the model. The 
standard SM model uses the generic model 

( , ) ( , , , ) ( )s s c= = ⋅ ⋅ +R x p R x A B c A R B x c  enhanced by frequency 
SM. Accuracy was tested using 30 test points randomly 
distributed in the region of interest. The error measure used 
was the l2 norm of the difference between the fine model 
response and the corresponding surrogate model response. 

C. Experimental Results and Discussion 

Tables II and III show numerical results (error statistics) for 
the considered surrogate models with the base sets XB1 to XB3. 
Figs. 4 and 5 show error plots (the modulus of the difference 
between the fine model and the corresponding surrogate model 
response versus frequency) for the SM-Standard and SM-SVR 
with base set XB3, for Problems 1 and 2 respectively. Figs. 6 and 
7 show dependence of average modeling error on the 
characteristic distance λ for all surrogate models considered.  

The results show that the new SM-SVR model provides 
modeling accuracy comparable or better than the best space 
mapping models known so far, i.e., SM-RBF and SM-Fuzzy. It 
should also be emphasized that the SM-SVR model does not 
have drawbacks of the SM-VWC, the SM-RBF and the SM-
Fuzzy models, which were mentioned in the introduction. Its 
computational complexity is similar to the SM-RBF and the 
SM-Fuzzy models. Altogether, SM-SVR seems to be an 
attractive alternative to the existing space mapping modeling 
approaches. 

TABLE I 
BASE SET DATA FOR TEST PROBLEMS 1 AND 2 

Test 
Problem

Base
Set Base Set Description Number of 

Base Points λ 

1 
XB1 Uniform mesh of density 3 27 2.44 
XB2 Uniform mesh of density 4 64 1.83 
XB3 Uniform mesh of density 5 125 1.47 

2 

XB1 Star distribution 11 1.68 

XB2 
Uniform mesh of density 2 ∪ star 

distribution 43 1.28 

XB3 
Uniform mesh of density 2 ∪ star 

distribution ∪ 30 edge* points 
73 1.15 

* 30 point randomly chosen out of points in the uniform mesh of density 3 but 
not belonging to XB2 

 

TABLE II 
MODELING RESULTS FOR TEST PROBLEM 1. 

VERIFICATION FOR 30 RANDOM TEST POINTS 

Model Base 
set 

Average 
Error 

Maximum 
Error 

Standard 
Deviation

SM-Standard [6] 

XB1 

0.0094 0.0191 0.0037 
SM-VWC [7] 0.0089 0.0541 0.0096 
SM-RBF [8] 0.0013 0.0036 0.0008 

SM-Fuzzy [9] 0.0051 0.0089 0.0016 
SM-SVR (1)-(8) 0.0027 0.0052 0.0013 

Direct SVR approximation 0.0253 0.0635 0.0142 
SM-Standard [6] 

XB2 

0.0083 0.0184 0.0038 
SM-VWC [7] 0.0036 0.0093 0.0020 
SM-RBF [8] 0.0011 0.0027 0.0009 

SM-Fuzzy [9] 0.0015 0.0042 0.0009 
SM-SVR (1)-(8) 0.00047 0.0014 0.00036 

Direct SVR approximation 0.0055 0.0140 0.0037 
SM-Standard [6] 

XB3 

0.0079 0.0175 0.0038 
SM-VWC [7] 0.0023 0.0066 0.0014 
SM-RBF [8] 0.0009 0.0030 0.0006 

SM-Fuzzy [9] 0.0008 0.0019 0.0005 
SM-SVR (1)-(8) 0.00021 0.00072 0.00016 

Direct SVR approximation 0.0011 0.0033 0.0008 
 

TABLE III 
MODELING RESULTS FOR TEST PROBLEM 2. 

VERIFICATION FOR 30 RANDOM TEST POINTS 

Model Base 
set 

Average 
Error 

Maximum 
Error 

Standard 
Deviation

SM-Standard [6] 

XB1 

0.0389 0.0635 0.0084 
SM-VWC [7] 0.0326 0.0483 0.0058 
SM-RBF [8] 0.0055 0.0154 0.0038 

SM-Fuzzy [9] 0.0222 0.0581 0.0141 
SM-SVR (1)-(8) 0.0061 0.0171 0.0041 

Direct SVR approximation 0.0263 0.0958 0.0216 
SM-Standard [6] 

XB2 

0.0403 0.0581 0.0073 
SM-VWC [7] 0.0296 0.0440 0.0051 
SM-RBF [8] 0.0024 0.0108 0.0022 

SM-Fuzzy [9] 0.0176 0.0441 0.0102 
SM-SVR (1)-(8) 0.0021 0.0109 0.0021 

Direct SVR approximation 0.0060 0.0169 0.0044 
SM-Standard [6] 

XB3 

0.0404 0.0599 0.0074 
SM-VWC [7] 0.0243 0.0343 0.0061 
SM-RBF [8] 0.0022 0.0110 0.0021 

SM-Fuzzy [9] 0.0139 0.0421 0.0086 
SM-SVR (1)-(8) 0.0017 0.0108 0.0022 

Direct SVR approximation 0.0038 0.0111 0.0023 
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IV. CONCLUSION 

A new SM-based modeling methodology is presented 
which combines the standard space mapping with support 
vector regression. This method not only provides modeling 
accuracy competitive with recently published space mapping 
models enhanced by radial basis functions and fuzzy systems, 
but also overcomes some of the drawbacks of these 
techniques. 
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Fig.4. Test problem 1: error plots for the SM-Standard (a) and SM-SVR (b) 
surrogate models with base set XB3 (30 test points). 
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Fig.5. Test problem 2: error plots for the SM-Standard (a) and SM-SVR (b) 
surrogate models with base set XB3 (30 test points). 
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Fig.6. Test problem 1: average modeling error versus λ: SM-Standard (o), 
SM-VWC (×), SM-RBF (+), SM-Fuzzy (�), and SM-SVR (∗). 
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Fig.7. Test problem 2: average modeling error versus λ: SM-Standard (o), 
SM-VWC (×), SM-RBF (+), SM-Fuzzy (�), and SM-SVR (∗). 
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