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Wave Sensitivities of Networks

JOHN W. BANDLER, MEMBER, IEEE, AND RUDOLPH E. SEVIORA, MEMBER, IEEE

Abstracf—A theoretical foundation is presented for the efficient

computation of tirst- and second-order sensitivities of networks with

respect to network parameters in terms of wave variables. The con-

cept of the adjoint network is used. First-order sensitivity formulas

for a wide variety of elements are presented, including lumped and

uniformly distributed elements, active and passive elements, and

reciprocal and nonreciprocal elements. Parameters include electrical

quantities, geometrical dimensions, and frequency. It is shown how

gradients related to wave-based least pth and minimax objective

functions can be computed. A comparison with a method which avoids

the need for analysis of adjoint networks is made. Applications in the

computer-aided design of networks using efficient gradient minimiza-
tion methods are envisaged.

1. INTRODUCTION

A RECENT PAPER by the authors [1] reviewed

Tellegen’s theorem and showed how it can be

used in the derivation of the adjoint network

method [2] of evaluating sensitivities of lumped [3] and

distributed [4] networks in the frequency domain using

voltages and currents. The advantages of the adjoint

network method in terms of ease of implementation and

computational efficiency in computer-aided network op-

timization should now be widely appreciated.

It is inconvenient, if not impossible, to work with cur-

rents and voltages for certain classes of networks. In the

microwave region, for example, a wave description of

networks is often preferable. It is the purpose of this

paper to show how first- and second-order sensitivities

and gradients, with respect to network parameters, can

be evaluated directly in terms of wave variables employ-

ing the concept of the ad joint network.

A theorem for scattering variables which holds for

properly chosen subnetworks is first presented. This

theorem, which is proved without recourse to voltages

and currents, is considered more general than similar

results presented previously [5 ]– [7 ]. It forms the basis

for the derivation of the methods for evaluating the

sensitivities. Finally, the methods are related to a

method which avoids the analysis of an adjoint network

and uses only the results of an analysis of the given net-

work [8].

Manuscript received February 4, 1971; revised May 6, 1971. This
work was supported by the Natio~al Research Council of Canada
under Grants A7239 and A5277. This paper is based on a paper pre-
sented at the 8th Annual Allerton Conference on Circuit and System
Theory, Urbana, 111., October 7-9, 1970.

J. W. Bandler is with the Department of Electrical Engineering,
McMaster University. Hamilton. Ont.. Canada.

R. E. Seviora is With the Department of Electrical Engineering,
University of Torontoj Toronto, Ont., Canada.

,8..

(’ pmct,on
\

\

‘x
/

.
/

\

subne~work-- \

/ \__— —l
/

Fig. 1. Typical subnetwork,

—
-1 I

3<junctions elements
1~

J I

Fig. 2. Representation of incident and reflected waves
within a subnetwork.

II. A THEOREM EOR SCATTERING VARIABLES

Consider a network composed (in general) of one-port

and multiport elements. Let the normalized incident

and reflected waves at every port be denoted a and b,

respectively. Consider a second network also composed

of one-port and multilport elements. Let the normalized

incident and reflected waves at every port be denoted

a and ~, respectively. Now consider the subnetworks of

each network chosen, as illustrated in Fig. 1, such that

1) the topologies of both subnetworks are the same, 2)

all ports for all junctions in the subnetwork are included,

and 3) corresponding ports of the two subnetworks are

similarly normalized. Let

as = I’sbs (1)

and

C@ = I=sg,g (2)

where (see Fig. 2) as and bs contain all the incident and

reflected waves in corresponding ports of the first sub-

network, cxs and @S contain the corresponding quanti-

ties in the second subnetwork, and rs “accounts for

topology and normalization.1

1 If each junction has only two ports normalized to the same real
numbers, r will contain elements of value O or 1.
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Fig. 3. Two-port junction with element normalization numbers z,
and ZZ. Note that to obtain the appropriate scattering matri : of
the junction, we must assume normalization numbers ZI* and z2*
(see footnote 2).

Theorem

(La,b~)TLaO~s – (LO,a~)TLap@~ = O (3)

where Lab and L.fl are operators such that

Laba~ = L.h(17sbs) = F8L.bbs (4)

and

L.BCXS= L.fl(rs~s) = rsL@s. (5)

Prooj: Assuming reciprocal junctions, rs = r,.# so

that

(L.bbs)T&@!s – (L,,bas)TLa~@s

= (L.bbs)TL.@(17~~s) – (L.b(r~bs))TL&s

= (L.~b,q)T(r,s – 17sT)L.p~s

= o.

A special case of (3) is

bsTcts – asT~s = 0. (6)

Discussion

Since the theorem applies to subnetworks of the same

topologies, it clearly applies to two complete networks

of similar topology. Furthermore, the validity is not

affected by differences in elements or element values.

Consider the subnetworks containing two-port junc-

tions as shown in Fig. 3. rs reduces to the scattering

matrix of the junction, say SJ, e.g.,

1

[

*z’—” 24;X
rs = sJ = ———— _ll 1 (7)

Z1* + Z!* 24YIYZ ZI* – Z2

where 71 = Re(zJ and 72 = Re(zJ.2 The theorem is satis-

fied since SJT = SJ. Any practical multiport waveguide

junction can be considered in the same way. Since the

theorem is satisfied at any junction, it is satisfied at any

collection of junctions.

In the authors’ opinion, the derivations presented

here are more general than previous ones. Monaco and

Tiberio [6], for example, considered the complete net-

work with adj scent element ports occurring in pairs and

normalized to the same real numbers. Penfield, Spence,

2 In order to satisfy the compatibility y condition under complex
normalization [9, p. 285], the scattering matrix of the junction has
been written in an unconventional-looking form.

139

ae’em(’n’’=
tiedrk

L_ ._.

Fig. 4. Representation of a network with internal and
external waves (see footnote 3).

and Duinker [5] used voltage and current concepts in

their derivation via a generalized form of Tellegen’s

theorem.

Corollary

-(Ltl)”4;:l ‘8)
where (as indicated in Fig. 4) subscripts E and I dis-

tinguish waves associated with all extw%al unconnected

or excited ports of a subnetwork from waves associated

with the remaining intevnal or connected ports, respec-

tive y.3 The quantities with subscript 1 must satisfy

(3). The terms on the left-hand side of (8) also appear

on the right-hand side; hence (8) is valid.

III. FIRST-ORDER SENsIT1vI’rIEs

The Adjoint Netwo~k

Suppose a parameter @ in a given excited network is

to be varied without affecting topology. Further, let it

be contained in a multiport element characterized by a

scattering matrix S such that

b = Sa. (9)

Then

db 8S ~a
— —a+S—.

d@l– d+ 8+

Using (8), we may write

dbBT daET
‘(XE— —-@E

drp arp

(lo)

‘(i[::lY[::l-(i[::lY[;:l”‘1’)
Note that the variables a and (3 refer to an ad joint net-

work. The terms relating to the element under consider-

3 Quantities within the domain of aE and bu for convenience are
assumed to flow across sets of two-port junctions. To facilitate this,
there are no changes of normalization across any junctions which are
external to the networks. Any accommodation of renormalization or
multiport junctions is accomplished without loss of generality within
the networks.
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TABLE I

Expression YieldingAd joint

Element

Matrix

Type Sensitivity

B = sTa* m%Scat tering b=Sa
NW-U

Mult iport

trsns fer

scattering

TWO-port

t raas fer

scattering

U=TU
*P a, ‘IA

with

[1 [1

‘P bq
U4 “$
*P w

bP ‘q

with

[1 [1

aP
Bq

“~ ,:q ~
*p

‘P ‘%

a See footnote 5.

ation on the right-hand side of (11) are, using (10), izing (16),

(12) (17)
iEE

where G is a vector of sensitivities, V denotes the gradi-

ent vector, i.e.,

[

da

1
13T~& —__...— (18)

I%#q E@, dqh

and E is the set of external or excited ports.

Observe that (16) or (17) relates changes in port re-

sponses to changes in element or parameter values. Fur-

ther, the elements of G are obtainable from two net-

work analyses: one of the original network and one of

the suitably excited ad joint network. Table I sum-

marizes these results and the results for other matrix

descriptions of interest including the transfer scattering

matrix.5 Note also that the adjoint of a reciprocal ele-

ment is identical to the element itself, as is expected.

Derivation of Sensitivities

To evaluate the sensitivities, one needs to know the

partial derivatives of the element scattering matrices.

5 The multiport transfer scattering matrix describes a network
with an even number of ports, half of which are designated ? and the
rest s.

which, defining

@ = ST~ (13)

reduces to

Ew’

aT — tl.
dl$

(14)

Equation (13) defines the corresponding element of the

adjoint network. If all adj oint elements are similarly

defined, all terms of the right-hand side of (11) except

(14) drop out giving

Assuming the network is matched (the terminations are

equal to the normalization numbers), daE/&$ = O giving4

(16)

where G is a sensitivity relating to parameter ~. General-

4 Similar results have been derived by Monaco and Tlberio [6].
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For many common design components these can usually

be found after some manipulation. For real normaliza-

tion we can frequently write [10]
q=:)

02

(3s
=* I!-(l -s’)

G

where 1 is the unit matrix. In this case

(19) @Y!&l
P, %

~sT Fig. 5. Arrangement for insertion-loss design: al:= al = O.
# — ~ = + : #(1 — sZ)7’~

aql 20

1
the objective function

= i ; (d’s – NQ). (20)

Another situation which is readily exploited is when

(27)

where k is some constant. In this case
and where d~(ja) is a desired wave, w,(<o) is a nonnega-

tive real weighting function, and 0 defines the frequency

tw range of interest. Then
a~ —. ~ = — ~a~~.

d+
(22)

Tables II and III present sensitivity expressions for

vu= Zf Re {Ple@,,@)l=2w$(@)
<SE 0

a selection of components of interest with respect to oti*(@, @)V&(& jk) } da. (29)

useful parameters. Table 111 extends the results for
comparing (29) with (1 7), if we let the ad joint excita-

some of the general elements of Table 11 to more spe-
tions be given by

cific elements,

m = p I ei(+, ~ti) 1~-2w~(~)e,*(+, jo) (30)
Gradient Computations

then
Consider the design of a one-port. Suppose it is de-

sired to optimize the reflection coefficient. With p = bl/al
vu=~Re {G}d@ (31)

1
Vp = — vbl

’23) The adjoint excitations are arranged to be zero at portsal

so that, using (17), we get
whose response is of no concern. Unexcited ports, of

course, have zero excitations.

1
Vp = — G. (24) Sensitivities With Respect to Frequency

alal
The foregoing results are easily extended to sensitivi-

Consider Fig. 5. Suppose it is desired to optimize the ties with respect to frequency [11]. Now co will be com-
insertion loss. Using (17) and men, in general, to more than one ele~ment. Equation

1 (16) must be changed to the form’

we get

(25)

1 where

VS21 = — G. (26)
alaz b< == Siai (33)

Vp and VS21 are evaluated from the results of analysis for some ith element. Formulas for the right-hand side

of the original and adjoint networks. Any suitable anal- of (32) have to be obtained for specific elements. For

ysis method will do. Vp and VS,I, for example, are readily

used in evaluation of gradients of wave-based least pth c It is assumed that the network is so arranged that frequency-

or minimax objective functions. We have already re- dependent normalization numbers or frequency-dependent j unctions
do not affect the rs of (4) and (5), which must be independent of fre-

viewed the procedure involved [1]. Here let us consider quency.
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Element and
Normalization

3

r z

z
‘P ‘q

0 0

D

g Y

1

&!p Yg
q

0 a

‘P Zo’e =q
0 0

Short-circuit ed
waveguide 20

Open-circuited

waveguide Z.

U*ifQ~

waveguide

20’ Zo

TABLE II

Equation

I

Sensitivity
(scattering matrix) (component of :)

b=[~]a

I
&(act- bE)

b=z
1

TT
% 2.+20 (rp+rq) coth9+rprq

‘r~::~~=l’ x(-f;](-)

as above with

+ ‘2’”’
L J I

Parameter

:component of $)

z

z

Zo

the inductor entries of Table III we would have a con- Using (8), we may write

tribution of the form (1/2~)w, for the capacitor entries

– (1/2u)w; for Iossless transmission lines using ~ = w/c, ~ ~~ – =

where c is the velocity of propagation, we would have d+d~ ‘E

(l/c sin2fll)w for the short-circuit case and– (l/c sin 2@)w

for the open-circuit case, and so on. All one has to re- ‘(&[::lr[:;l-(&[::lY[;:l ‘3’)
member is if some appropriate dSJdxi are already avail-

able, then The terms relating to the element on the right-hand

side of (36) are, using (35),

~=x~$” (34) 82s AS da 8S da
3 ~T _ a+aT— —+c-XT— _

Thus, for example, given 0 =jaJ/c, the u-sensitivity of a
d+d+ d+ d+ d+ 86

lossless transmission line is jl/c times the 6-sensitivity d2a

shown in Table II.
+ (0!”s – Q’) —

thfx@5“ ’37)

IV. SECOND-ORDER SENSITIVITIES Using (13), we can reduce (37) to

Consider two distinct nontopological parameters @

(

dw dS ~a W da
and # in the original network. Assume they are con-

~T

)
—a+——+——. (38)

tained in a multiport element with scattering matrix S.
8*84 d+ 13$ 8+ 84

Applying d/d~ to (10) we get If @ and # are identical, we have
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TABLE II (CONTINUED)
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Element and
Normalization

Transformer

rp, r
q

Gyrator

‘P’ ‘q

Voltage
controlled
vo It age sourct

‘P ‘ ‘q

Voltage
controlled

current sourc

‘P ‘ ‘q

Current

control led
voltage sourc

rp, r
q

Current
control led
current Sourc{

‘P ‘ ‘q

3

L-j

,x

Directional
coupler

3 4

u,x
Directional

coupler

Equation
(scattering matr, x)

[1

2
nr-r 2n~

1 qP
~=—
b 2

nr+r :

qP 2n~ rp-nzr
q

[1

2 - Zufi
a-l-r

1 Pq Pq
,=—
L ci2+r r

-2a~
2;

Pq a -rPrq

[1

1 0

b=
*

r

:
2V > -1

q

Sensitivity
(component of $)

[1

o -1

~ bT

nr+r% :

qP 10

[1

o -1

~ bT

a2+r r * :

Pq 10

rr
Z$ aa

qPq

-267 a a
PqP’3

2

~
— aP”q

where

[’1

001

1’ 4000
%-

-100

[1

0010

~bTOOOl
;

/7’
1000

010’0

-—
Parameter

component of $)

n

a

V

‘m

r
m

—

6

c

—

c

If @ belongs to an element with a scattering matrix S+ Summarizing the results thus far, we can write

and # belongs to an element with a scattering matrix

S$, the corresponding expression is

(40)

where subscripts ~ and # denote quantities related to

the appropriate elements.

Assuming matched terminations, t12a~/d @cp = O and

the left-hand side of (36) reduces to

where H is a matrix of second-order sensitivities con-

taining expressions of the form of (38), (39), or (40), as

appropriate, and B, is the matrix of second-order deriva-

tives of b~, namely,

Bi = VVTbi. (43)

Equation (42) relates second-order changes in the

port responses to second-order changes in the element

or parameter values. The elements of 2Y are obtainable
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Element a

Resistor

Inductor

Capacitor

Short-circuited

transmission
line

Open-circuited
transmission

line
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TABLE III

Description Sensit ivit y’a Parameter
(component of $) (component

.’
$

of )

Z’=R
1
3FW

R

Y.G
1

-Xw
G

‘. Z = jwL ~w L

Y=~r
1

-Fw
r

2= !-s 1
JW 2-SW s

Y,=jw C
1-zw c

1
qw Z.

Z.zotsnke
1

w e~
Y = Y. coth o

1
-qw Yo

Z = jZo tan @&
1

qw
ZD

Y = -jYo cot BL
&“

L

(10ss1.ss transmission 1

lines) -q”
Y.

1
~“ Zo

Z = Zo coth O

1

sinh 20 w
e

Y= Yo tanhe

1
-~w Yo

Z = -jZ~ cot 81
1

~w
20

Y ,. jYo tan BK
&w

L

(10ss less transmission 1
lines)

Y.
-~w

from one analysis of the original network, one analysis

of the appropriately excited ad joint network, plus as

many further analyses of the adjoint network as there

are ports of elements containing parameters to be

varied. The reason for the further analyses is that (38),

(39), and (40) require the derivatives of incident waves

on these elements.

To compute these derivatives, let

~=~’+~a (44)

represent the reflected waves from a certain element in

the ad joint network, where

@ = ST~ (45)

defines the element. If, in particular, we are interested

in the pth port, then we set

~a=[l (). ..()]T. (46)

unit
wove ,/

=

,’
/

/
— &p

element
\/

—P;
/<

I t ‘\:’
pori P junct!on \

Fig. 6. Injection of a unit wave at some port p in the adjoint net-
work for evaluation of the sensitivity of al in the original (see
footnote 7).

That is, only the row corresponding to the pth port is

nonzero. The situation is illustrated in Fig. 6.7

The right-hand side of (11) relating to the element

[see (12)] becomes

(47)

,,
7 The reason for making it unity is to obtain simple formulas.
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TABLE III (CONTINUED)
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Element a

Loss less

transmission

1 ine

Rectangular
wave guide
operating in

%0
mode

(width a,
height b,
length L)

Uniform
RC line

(total resistana

R, total
capacitance c)

Description

as for transmission line

with real Z. or Y.

and 0 . js~

as for transmission line

with Z. . bi
!?’

B replaced by 6g = 2n/A
8

where ig . A//l-

as for transmission line

with Z .
E

and e-m

Sensitivity
a

(component of $)

Parameter

(component
of ~,)

‘o

L

Yo-——

a

b

L

R

c

‘ w is aa — b~ or a~a — zY5 depending on whether we are dealing with a one-port or tw?-port element, respectively. Sensitivities for the re-
sistor, inductor, capacitor, short-circuited, and open-circuited transmission lines are vahd for these elements viewed as one-port, two-port
series, and two-port shunt components.

if ~ is contained in the element described by S’. Using

(45), (47) becomes

(48)

If all external ports of the adjoint network are

matched with zero excitations, @ = O, and since 3aB/

&5= O, the left-hand side of (11) is zero. If all ~“ are zero

for the other elements, only the expression shown in

(48) remains on the right-hand side of (11), and (11)

reduces to

i?ap ~sT

__. aT_._~

13c# &#)
(49)

where @ for the elemerit is as given in (46). Clearly

3aP/3 ~, required in (38), is obtained through a similar

formula. Indeed, 3aPJs3 ~ and 3aP$/@5, as required in

(40), can also be shown to have similar formulas associ-

ated with them. Thus we can obtain VCZPfrom one addi-

tional analysis, vaq from another one, and so on, until

all the gradient vectors necessary to produce the da/&#

and t)a/3 + for situations corresponding to (38) and (39),

and 3ati/3 + and c9ati/&# for situations corresponding to

(4o), are available.

An alternative way of computing the elements of H

suggests itself. Suppose it is desired tc) evaluate cz@T

(&!3Jt@) (3a+/3 +), as in (40), for all possible +. Assume

(44) and (45), as before, but let

(50)

In this case, the right-hand side of (11), with ~ replac-

ing @, becomes

&s,)T da$T

a*T d+ ,* ‘+
—a*—— a (51)

where all other Q“ are zero. If all external ports of the

adjoint network are matched with zero excitations,

a!~ = O, and since 3aE/3 ~ = O, the left-hand side of (11),

with ~ replacing @, is zero. Now, from (!51 )

(52)

This approach, then, requires as many further anal-

yses of the adjoint network to compute the elements of
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Has there are parameters to be varied, since excitations

of the form of (50) must be provided for every param-

eter.

All other things being equal, the choice of method for

evaluating second-order sensitivities would depend on

whether the number of variable parameters is less than

or greater than the number of relevant ports. One could

derive, for specific elements, second-order sensitivity

formulas which will, of course, involve first-order ex-

pressions such as shown in Tables II and II 1.

V. RELATION TO DIRECT METHOD

The authors have presented a method for evaluating

first- and second-order sensitivities using the results of

only one analysis of the given network [8 ].8 It was shown

that

where

and

Fig. 7. (a) m-section resistive y terrni}la~ed ~ascade of transmission
lines. (b) Arrangement for analysls mdlcatmg normalization num-
bers.

VI. EXAMPLES

Convenient examples are provided by the m-section

resistively terminated cascade of lossless transmission

lines shown in Fig. 7(a). It is desired to compute

VI P(4, .@) I , where + contains the lengths and charac-

teristic impedances of the lines. Note that

Observe that (53) clearly leads to evaluation of the

gradient vectors of the port responses independently,

whereas (17) gives them only as a Iinear combination.

premultiply both sides of (53) by some vector ~ET,

define the adjoint network in terms of equations cor-

responding to (54) and (55), and note that 17T = r.

After some manipulation, one obtains

To reduce the right-hand side of (56) to the right-hand

side of (16), one simply notes that @ belongs to a par-

ticular element and that dXT/d~ has appropriate non-

zero elements, which select out the appropriate a and

a waves.

The same kind of comparison can be carried out for

second-order sensitivities, the direct-method result

being

“[ 1 1aE.
(r – s,r)-wE

(57)

s The analysis technique is based on a paper by Monaco and
Tiberio [12].

using (24). Fig. 7(b) indicates how the one necessary

analysis was carried out. Thus a unit wave was assumed

incident on the resistor R. A transfer scattering matrix

analysis was carried out to find the wave al necessary

to produce it. The waves on both ports of the m+ I

junctions were computed. Because of reciprocity and

the fact that the normalizing numbers were conveniently

1,21,22, - . . ,Zm and R, the formula (1/220) (aTa –bTb)

could be used for characteristic impedances and ( –jti/c)

aTb for lengths. In the latter case the element was

treated as a transmission ~ine normalized to its own

characteristic impedance; in the former case it was

treated as a transmission line with normalizations cor-

responding to the adj scent elements.

Optimum two- and three-section quarter-wave trans-

formers with R =10 and a 100-percent bandwidth were

chosen. The parameter values were taken from [13 ].

Tables IV and V show the components of V] p ] at 0.5

GHz estimated from 1- and 0.01-percent incremental

changes in the parameters compared with those ob-

tained from the adj oint network method using one

analysis. Gradient calculations at other frequencies have

been made [14].

VII. DISCUSSION

What do we mean by a network analysis and how do

we compare efficiencies of different methods of evaluat-

ing sensitivities? It is fairly obvious, for example, that

evaluating just the reflection coefficient at some fre-

quency of the network in Fig. 7 by transforming im-
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TABLE IV

COMPARISON OF GRADIENT COMPONENTS OF THE REFLECTION COEFFI-
CIENTOF THE2-SECTION T’RANSFORMERAT ().5 GHz (1P! =0.4286)

Parameter
Values

Grzdient Components

l-Percent O.01-Percent Adjoint
Increment Increment Network

~1 = 7.49482 cm -7.4397 x 10-2 -7.3337 x 10
-2

-7. ?.326 X 10-2

21 = 2.2361 0 -1.8250 X 10-1 -1.8254 X 10-1 -1.8254 X 10-1

L2 = 7.49482 CUJ -7.3745 x 10-2 -7.3330 x 10-2 -7.3326 X 10-2

Z2 = 4.4721 Q 9.0050 x 10-2 9.1260 X 10-2 9.1272 X 10-2

——

TABLE V

COMPARISON OF GRADIENT COMPONENTS OF THE REFLECTION

COEFFICIENT OF THE 3-SECTION TRANSFORMER AT

0.5 GHz (Ipl =0.1973)

Parameter
Values

Gradient Conqxnents

l-Percent O.01-Percent Adjoint
Increment Increment Network

L1 = 7.49482 CM -4.4498 X 10-2 -4.3777 x 10-2 -4.3770 x 10-2

Z1 = 1.63471 i7 -4.3461 X 10-1 -4.3555 x 10-1 -4.3556 x 10-1

12 = 7.49482 cm -9.1695 X 10-2 -9.1294 X 10
-2

-9.1289 X 10-2

22 = 3.16228 rl -6.7 X 10-4 -6,5 X 10-6 4.0 x 10-’

~3 = 7.49482 cm -4.3545 x 10-2 -4.3767 X 10-2 -4.3770 x 10-2

Z3 = 6.11729 !2 1.1543 x 10-1 1.1638 X 10-1 1.1639 X 10-1

pedances can be faster than evaluating all the necessary

incident and reflected waves which will lead to the first-

order sensitivities. It would also appear, for example,

that using (57) in evaluating second-order sensitivities

involving only one matrix inversion might be more effi-

cient than using the ad joint network concept.

It is hard to answer these questions, in general, with-

out reference to particular networks and without con-

sidering whether the sparseness of the matrices will be

exploited. One can certainly expect some tradeoff be-

tween complexity of the formulas, computation time,

and numerical accuracy. If a given network, for ex-

ample, is divided into a large number of simple subnet-

works (elements), the formulas for the adjoint network

method will be simple, but there will be many waves to

be evaluated. If the network is divided into a smaller

number of subnetworks, the formulas become more com-

plicated but fewer waves need to be evaluated. The

parameters in both cases are assumed identical.
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VIII. CONCLUSIONS

This paper has presented some theoretical work which

facilitates the evaluation of first- and second-order sen-

sitivities of reciprocal and nonreciprocal networks in

terms of wave variables in a systematic and straight-

forward manner. Applications in accurate and efficient

gradient computation of wave-based objective functions

for optimal design of networks by computer are en-

visaged. The results are not limited to microwave net-

works but apply to any networks for which a wave de-

scription is to be employed.
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